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Abstract: Continuum dislocation dynamics (CDD) is a single crystal strain gradient plasticity theory
based exclusively on the evolution of the dislocation state. Recently, we derived a constitutive
theory for the average dislocation velocity in CDD in a phase field-type description for an
infinite domain. In the current work, so-called rational thermodynamics is employed to obtain
thermodynamically consistent boundary conditions for the dislocation density variables of CDD.
We find that rational thermodynamics reproduces the bulk constitutive equations as obtained from
irreversible thermodynamics. The boundary conditions we find display strong parallels to the
microscopic traction conditions derived by Gurtin and Needleman (M.E. Gurtin and A. Needleman,
J. Mech. Phys. Solids 53 (2005) 1–31) for strain gradient theories based on the Kröner–Nye tensor.
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1. Introduction

Size-effects in small-scale plasticity have received much attention in continuum mechanics
and materials science, starting with the work of Fleck and co-workers in the mid 1990s [1,2].
The continuum modeling of size-effects has since been divided into strain gradient approaches
extending phenomenological laws from macroscopic plasticity to incorporate strain gradient effects on
the one hand (influential works in this regard are due to Acharya and co-workers [3–5] and Gurtin
and co-workers [6,7]) and approaches from materials science which seek continuum descriptions
for the evolution of the dislocation state on the other hand (influential works are due to Groma,
Zaiser, and later Hochrainer [8–11] and from Roters and co-workers and Arsenlis [12–14]). Presumably
any researcher working at this cross-roads of continuum mechanics and materials science has been
confronted with deep reservations of either side to acknowledge the progress of the other. The current
paper tries to build a bridge between both approaches, in that the description of the dislocation state
and its kinematic evolution law are taken from continuum dislocation dynamics (CDD) theory [11],
while the derivation of the microscopic balance equations and the constitutive law for the average
dislocation speed (substituting the flow rule from phenomenological approaches) are derived from
the virtual work principle and energy imbalance in the spirit of Gurtin [6,7]. Through this combined
derivation, we find on the one hand a clarification of the boundary conditions for CDD, which have
not yet been achieved without abstract continuum mechanics, while the bulk constitutive laws derived
for CDD provide a new perspective for phenomenological strain gradient modeling.

What we term CDD stands for a class of dislocation density-based single crystal plasticity
theories which are based on conservation laws for scalar or tensorial dislocation density measures
which characterize a distribution of dislocation lines (that is, oriented curves) in sufficient detail to
predict at the same time the evolution of the dislocation state and the ensuing plastic slip rates [11].
A constitutive theory for CDD is given in terms of the average dislocation speeds per slip system,
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which govern all evolution equations including plastic slip rates. Such a constitutive theory has
recently been derived [15] with methods from irreversible thermodynamics, provided that there is
an energy density given in terms of the CDD density variables. A suitable energy density was recently
derived from a local density approximation by Zaiser [16]. However, the constitutive model in [15]
excluded the discussion of boundary conditions. The derivation of thermodynamically consistent
boundary conditions for CDD is the original objective of the current paper.

CDD is uncommon from a continuum mechanical perspective, in that the material state is solely
described by elastic strain and dislocation density variables, and that the plastic deformation rates
(i.e., the slip rates on the individual slip systems) are exclusively due to the motion of dislocations
displayed in the evolution of the density variables. On the other hand, one of the dislocation
variables—namely, the dislocation density vector on each slip system—derives from the gradient of
accumulated plastic shear on the slip system. Therefore, CDD theory is also related to size-dependent
theories which have been derived based on the classical dislocation density tensor, and more specifically,
based on the slip system-specific Burgers vector densities. For the latter types of approaches,
complete theories including boundary conditions have been derived by Gurtin [6] and Gurtin and
Needleman [7]. We take mostly the latter paper as a guideline for deriving boundary conditions for
CDD. We also recover from this ansatz the bulk constitutive theory as earlier derived from irreversible
thermodynamics in terms of a dissipation inequality.

The paper is structured as follows: after introducing notations and recalling the basics from
small deformation CDD in Section 2, we postulate work-conjugates to the evolving microstructure
variables and define the external and internal power expenditure of a deforming material region
in Section 3. Subsequently, we introduce elastic and plastic virtual (generalized) velocities and use
the principle of virtual work to derive local macroscopic and microscopic balance laws in the bulk
and traction conditions at the surface. From a postulated energy density additively composed of an
elastic and a dislocation density-depending part, we derive constitutive laws for the macroscopic
and microscopic stresses and derive thermodynamic restrictions for the average dislocation speed in
Section 4. After briefly discussing constitutive restrictions on the boundary conditions, we discuss the
results in relation to those from [7] in Section 5.

2. Preliminaries

2.1. Notation

Throughout this paper, we mostly use coordinate notation for tensor calculus, but we also employ
symbolic vector and tensor notation. In symbolic notation, vectors and tensors are marked by bold face
letters. A central dot is used to denote contraction over one index (the last index of the left hand and the
first index of the right hand tensorial argument). We refrain from introducing symbolic notations for
operations involving other pairs of indices, and use coordinate notation with the Einstein summation
convention instead.

In the current paper, we focus on small deformations. Let u denote the displacement field.
We employ the additive decomposition of the displacement gradient in the elastic and plastic part as

ui,j = βe
ji + β

p
ji. (1)

Accordingly, we decompose the total strain εij =
1
2
(
ui,j + uj,i

)
into its elastic εe and plastic part εp.

2.2. Kinematics of Single Crystals and CDD

The evolution of the plastic distortions in single crystals is governed by plastic slip rates γ̇α on the
individual slip systems (labeled with α in the sequel) through

β̇
p
ij = ∑

α

γ̇α nα
i mα

j , (2)
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where nα denotes the slip plane normal and mα = bα/bα the slip direction, which is the normalized
Burgers vector bα with modulus bα.

Given the total dislocation densities per slip system ρα and the average dislocation speeds vα on
the slip systems, the plastic slip rates are governed by Orowan’s equation, γ̇α = ραvαbα.

CDD includes a potential hierarchy of theories based on a tensor expansion of the local directional
dislocation distribution [11]. In the current work, we focus on the most simple CDD theory for
curved dislocations, which is based on the total dislocation density ρα, the dislocation density vector
ρα = curl (γαnα), and the total curvature density qα. For the conservation laws of the density variables
of CDD, we employ the conservative form for q [11,17]. In the current work, we only summarize
the evolution equations of the dislocation variables together with the evolution law of the plastic
distortion tensor,

β̇
p
ij = ∑

α

ραvαbα nα
i mα

j , (3)

ρ̇α = ∂i

(
vαρα

j εikjnα
k

)
+ vαqα, (4)

ρ̇α
i = −εikj∂j (vαραnα

k ) , (5)

q̇α = ∂i

(
vαqα

i − ρα
ji∂jvα

)
. (6)

Note that these evolution equations incorporate the assumption that dislocations of every
character move with the same speed vα relative to the crystal lattice in directions perpendicular
to their line-direction within the glide plane. Moreover, the curvature vectors qα

i and the second-order
dislocation density tensors ρα

ij appearing in the evolution equations of qα (6) are in principle additional
unknowns, and therefore subject to closure assumptions. Here we do not specify the closure
assumptions and refer to [18] and [11] for discussions of this kinematic closure.

Given the dislocation speeds vα on all slip systems, the plastic distortion rate and the evolution
of the density variables are completely defined. These slip system-specific dislocation speeds are
therefore the central quantities to be specified from a constitutive theory as developed in the sequel.

We shall now rewrite the above evolution equations in terms of flux quantities. Notably, the plastic
distortion rate tensor is itself a flux-type quantity, containing the total dislocation flux ραvα. The density
variables of CDD are obtained from averages over curves, and their evolution equations are accordingly
conservation laws [10,11]. Each of the evolution equations hence contains first-order differential
operators applied to flux-like quantities. The evolution of the total dislocation density ρα additionally
contains a term accounting for line-length changes of curved dislocations, which acts as a source terms.
Moreover, note that the evolution of the dislocation density vector is of curl-type. As we will be dealing
with volume integrals in the sequel, it is advantageous to also write the curl-type evolution of the
dislocation density vector as a divergence (of an antisymmetric second order tensor); that is,

ρ̇α
i = −∂j

(
vαραεjiknα

k

)
. (7)

With the flux variables

jα
i := −vαρα

j εikjnα
k , (8)

Jα
ij := −vαραεjiknα

k , (9)

kα
i := −

(
vαqα

i − ρα
ji∂jvα

)
, (10)
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the above set of evolution equations assumes the form

β̇p = ∑
α

γα nα ⊗mα, (11)

ρ̇α = −divjα + vα, qα (12)

ρ̇α = −divJα, (13)

q̇α = −divkα. (14)

For the derivation of boundary conditions, we moreover introduce an auxiliary flux tensor, Kα,
which is connected to dislocation rotations in the evolution of dislocation curvature

Kα
ij = ρα

jiv
α. (15)

3. Principle of Virtual Power

3.1. Internal and External Expenditure of Power

In the current section, we formulate the principle of virtual power to derive the macroscopic and
microscopic force balance in order to present analogies and differences to the work of Gurtin and
co-workers [6,7]. Like in the latter works, we deal with linear small deformation crystal plasticity.
We also introduce the stress tensor as the power conjugate to the elastic distortions. We will not
direct much attention to recovering the macroscopic force balance and the classical traction boundary
condition for the stress tensor, because this remains unaltered as compared to the above named works.
The important difference of CDD to phenomenological theories based on the Kröner–Nye tensor
([19,20]) is that all internal variables of CDD relate to the current dislocation state and that their
evolution equations are all flux-type partial differential equations. We view the rates of these variables
(ρ̇α, ρ̇α, q̇α) as generalized velocities, and postulate the existence of according work-conjugate micro
stresses (λα, ξα, χα). Additionally, we regard the plastic slip rates γ̇α as generalized velocities and
denote their work-conjugate micro forces with πα.

The internal power expenditure I (Ω) in any part Ω of the body is hence supposed to be
additively composed of the elastic power expenditure and the power expenditure due to the changing
microstructure as

I (Ω) =
∫

Ω

[
σij ε̇

e
ij + ∑

α

(παγ̇α + λαρ̇α + ξα
i ρ̇α

i + χα q̇α)

]
dV. (16)

The external power expenditure is supposed to result from body forces b within the volume and
due to defect flow across the surface. To this end, we introduce chemical potential-like quantities(

Λα, Ξα
i , Xα, Xα

j

)
conjugate, respectively, to the normal flows

(
jα
i ni, Jα

ijnj, kα
i ni, k jini

)
through a surface

with outer normal n. In line with Gurtin, we additionally introduce micro tractions Πα (n) conjugate to
the shear rates γ̇α at the surface. That is, we have the external powerW (Ω) expended on Ω defined as

W (Ω) =
∫

Ω
bividV +

∫
∂Ω

[
tivi + ∑

α

(
Παγ̇α −Λα jα

i ni − Ξα
j Jα

jini − Xαkα
i ni − Xα

j Kjini

)]
dA. (17)

3.2. Principle of Virtual Power

In order to apply the principle of virtual power, we consider a deformation and dislocation state
as given, and regard the virtual internal and external power expenditure for virtual variations of the
deformation and the dislocation state. In line with [7], we postulate the principle of virtual power such
that for all compatible variations of the deformation and dislocation state, the virtual external power
expenditure must equal the virtual internal power expenditure. We consider a compatible variation of
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the deformation state to be defined by a virtual velocity field ṽi, while we shall consider as compatible
variations of the plastic deformation and the dislocation state ( ˜̇ρα, ˜̇ρα

i , ˜̇qα) only those which may result
from a virtual dislocation speed ṽα and the given state (ρα, ρα

i , qα) in compliance with (3)–(6), such that

˜̇βp
ij = ∑

α

ραṽαb nα
i mα

j , (18)

˜̇ρα = ∂i

(
ṽαρα

j εikjnα
k

)
+ ṽαqα, (19)

˜̇ρα
i = −εikj∂j (ṽαραnα

k ) , (20)

˜̇qα = ∂i

(
ṽαqα

i − ρα
ji∂jṽα

)
. (21)

The virtual fluxes in the interior are likewise defined in accordance with the virtual
dislocation speeds.

With the virtual elastic strain variation given by ˜̇εe
ij = 1/2

(
ṽj,i + ṽi,j

)
− 1/2

(
˜̇βp

ij +
˜̇βp

ji

)
, we

henceforth obtain the virtual internal power expenditure

Ĩ (Ω) =
∫

Ω

[
σij ˜̇εe

ij + ∑
α

(πα ˙̃γα + λα ˜̇ρα + ξα
i

˜̇ρα
i + χα ˜̇qα)

]
dV, (22)

and likewise, the virtual external power expenditure as

W̃ (Ω) =
∫

Ω
bi ṽidV +

∫
∂Ω

[
ti ṽi + ∑

α

(
Πα ˙̃γα −Λα j̃αi ni − Ξα

j J̃α
jini − Xα k̃α

i ni − Xj k̃ jini

)]
dA. (23)

By the standard argument of independent variations for deformations and defects, we obtain
from Ĩ (Ω) = W̃ (Ω) upon varying the deformation state with fixed dislocation distribution for all
suitable volumes Ω the classical (macroscopic) force balance

∂jσji + bi = 0, (24)

and the traction boundary condition
ti = σjinj. (25)

For the microscopic force balance and tractions, we transform the microstructural part of the
internal power expenditure into a volumetric part and a surface-related part via the product rule and
Gauß theorem as

∑
α

∫
Ω
(−τα ˙̃γα + πα ˙̃γα + λα ˜̇ρα + ξα

i
˜̇ρα
i + χα ˜̇qα) dV = −∑

α

∫
∂Ω

(
λα j̃α

i + ξα
j J̃α

ij + χα k̃α
i

)
nidA+

∑
α

∫
Ω

(
−ταγ̃α + πα j̃α + j̃α

i ∂iλ
α+ (26)

ṽαqαλα + J̃α
ij∂iξ

α
i + k̃α

i ∂iχ
α
)

dV,

where τα = σijnα
i mα

j are the resolved shear stresses in the direction of slip on the individual slip systems.
A standard argument requires that for the microscopic force balance in the bulk, the volume

integral vanishes for all virtual dislocation velocities ṽα. Note, however, that the curvature density flux
kα

i contains spatial derivatives of the virtual dislocation velocities—compare (10). In order to formulate



Crystals 2017, 7, 235 6 of 12

the microscopic force balance in the bulk independent of these derivatives, we apply Gauß theorem
once more to the according portion of the power expenditure to find∫

Ω
k̃α

i ∂jχ
αdV =

∫
Ω

(
ṽαqα

i ∂iχ
α + ṽα∂jρ

α
ji∂iχ

α + ṽαρα
ji∂j∂iχ

α
)

dV −
∫

∂Ω
ṽαρα

ji∂iχ
αnjdA

=
∫

Ω

(
2ṽαqα

i ∂iχ
α + ṽαρα

ji∂j∂iχ
α
)

dV −
∫

∂Ω
k̃ij∂iχ

αnj.dA (27)

In the second step, we used the fact that the curvature vector derives as the divergence of the
second order alignment tensor; i.e., qα

i = ∂jρ
α
ji, cf. [11].

As already noted, we require that the volume integrals in (26) vanish identically. In this we
assume the dislocation velocities on the individual slip systems to be independent of each other such
that the summands are presumed to vanish independently. Inserting (27) into (26) yields a pointwise
equation which we divide by ραbα such that we obtain the microscopic force balance in the form

πα − τα +
ρα

j

ραbα
εikjnα

k ∂iλ
α +

qα

ραbα
λα +

1
bα

εijknα
k ∂iξ

α
j + 2

qα
i

ραbα
∂iχ

α +
ρα

ji

ραbα
∂j∂iχ

α = 0. (28)

For the microtraction condition, we likewise require that the remaining surface integrals vanish.
These surface integrals contain the surface terms from the external power expenditure (23) and the
boundary terms obtained from applying Gauß integration theorem to the internal work rate (26).
The resulting micro traction condition reads

∫
∂Ω ∑α

[
Πα ˙̃γα − (Λα − λα) j̃α

i ni −
(

Ξα
j − ξα

j

)
J̃α
ijni − (Xα − χα) k̃α

i ni −
(

Xα
j − ∂jχ

α
)

k̃α
ijni

]
dA = 0. (29)

The microtraction condition may be fulfilled by setting the microtraction to zero, Πα = 0, and the
“chemical potentials” of the density variables equal to the limiting values of the micro forces from the
bulk. This yields open boundary conditions, where all flux terms may, for example, be obtained as
the limiting values of the according bulk quantities. Note, however, that this also allows for any other
prescribed fluxes at the boundary. An alternative trivial option is to set all fluxes to zero. In that ,
we distinguish two cases: (i) if the micro tractions are not zero, Πα (n) 6= 0, setting the flux quantities
to zero would include all plastic slip rates, γ̇α = 0, which is the hard-slip condition of [6]. (ii) if the
micro tractions are set to zero, Πα (n) = 0, the no-flux condition will only restrict normal fluxes and
therefore this reproduces the micro-hard boundary condition as developed by [7], because the slip
rates on slip systems which are parallel to the boundary will not be affected. As a further condition,
we may allow for chemical potentials at the boundary which are not equal to the micro forces in
the bulk. This is the general case which we expect to be necessary for modeling non-trivial surface
behavior where dislocations may neither freely pass the surface nor are fully blocked by it. This is of
interest when targeting grain boundaries as internal surfaces or free surfaces as sources of dislocations
in future work. Similar to the case of the bulk, all boundary fluxes appearing in (29) are linear in the
dislocation velocities, except for a term in the curvature fluxes k̃α

i which involves derivatives of the
velocities. This term reads ∫

∂Ω
− (Xα − χα) ρα

ji∂jvαnidA. (30)

Note that in the above form this term will involve derivatives of the velocity in tangential
direction (i.e., along the intersecting line of slip plane and outer boundary) which may not be
prescribed independently of the velocity at the boundary. This conflict would be circumvented
if we succeed in reducing the term such that it only involves derivatives of the velocity normal to
the boundary. (This may be paralleled to the boundary values for the Kirchhoff–Love plate theory,
where torques derive from the tangential derivative of the out-of-plane displacement and are hence
not considered independent boundary conditions; meanwhile, bending moments—deriving as normal
derivatives—may be prescribed independently). In order to see that in fact only normal derivatives
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contribute to the integral in (30), we make use of the following theorem on the integrals of the
divergence of a vector field over a surface.

Theorem 1. Let S be a surface patch in R3 with normal vector field n. Furthermore, ∂S denotes the boundary
curve with normal vector field ν (which is tangential to the surface). Moreover, let X be a vector field
X : R3 → R3 which is defined in a surrounding of S. The normal vector field n is likewise supposed to
be extended to a unit vector field in a neighborhood of S. Moreover, let κ be the mean curvature function on the
surface S. With these notations, the following equality holds:∫

S
div XdS =

∫
∂S

X · νds +
∫

S
(∇nX · n− 2X · nκ) dS (31)

Proof. This is a simple corollary to the surface divergence theorem found in [21], upon realizing that
the divergence relates to the surface divergence divS through

divX = divSX +∇nX · n. (32)

The above-cited surface divergence theorem states that∫
S

divSXdS =
∫

∂S
X · νds−

∫
S

2X · nκdS, (33)

which finishes the proof.

In order to employ Theorem 1, we first transform the integrand of (30) in divergence form by the
product rule,

− (Xα − χα) ρα
ji∂jvαni = −∂j

[
(Xα − χα) ρα

jiv
αni

]
+ vα∂j

[
(Xα − χα) ρα

jini

]
. (34)

The first term on the right side of the last equation is a divergence, and we may thus apply
Theorem 1. Note here that the integral in (30) is performed over the boundary ∂Ω, which is a closed
surface without boundary. Therefore, the first term on the right side of (33) vanishes in this case. We
thence find

∫
∂Ω−∂j

[
(Xα − χα) ρα

jiv
αni

]
dA =

∫
∂Ω

{
−nk∂k

[
(Xα − χα) ρα

jiv
αni

]
nj − 2nj

[
(Xα − χα) ρα

jiv
αni

]
κ
}

dA. (35)

By employing the product rule once more to the first term in the integral on the right side,
we isolate the normal derivative of the velocity. Moreover, we introduce the short-hand notations
∆Λα = Λα − λα, ∆Ξα

j = Ξα
j − ξα

j , ∆Xα = Xα − χα, and ∆Xα
j = Xα

j − ∂jχ
α. Using this notation,

we summarize the just-derived reformulation of (30) through

−
∫

∂Ω ∆Xαρα
ji∂jvαnidA =

∫
∂Ω

{
ṽα
[
∂j

(
∆Xαρα

jini

)
− nk∂k

(
∆Xαρα

jini

)
nj − 2κ∆Xαρα

jinjni

]
−

nk∂k ṽα∆Xαρα
jinjni

}
dA

(36)

Collecting terms for the integral (30), we arrive at the following micro traction condition as
a reformulation of (29)

0 =
∫

∂Ω ∑α

{
vα
[
Παραbα −∆Λαρα

j εikjnα
k ni −∆Ξα

j ραεijknα
k ni −∆Xαqα

i ni + ∂j

(
∆Xαρα

jini

)
−

nk∂k

(
∆Xαρα

jini

)
nj − 2κ∆Xαρα

jinjni −∆Xα
j ρα

jini

]
− nk∂k ṽα∆Xαρα

jinjni

}
dA.

(37)
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For these integrals to vanish identically for any variational velocity ṽα, we obtain the following
two microtraction conditions:

0 = Πα −∆Λα
ρα

j
ραbα εikjnα

k ni −∆Ξα
j

1
bα εijknα

k ni −∆Xα qα
i

ραbα ni +
1

ραbα ∂j

(
∆Xαρα

jini

)
−

1
ραbα nk∂k

(
∆Xαρα

jini

)
nj − 2κ∆Xα

ρα
ji

ραbα njni −∆Xα
j

ρα
ji

ραbα ni

(38)

0 = ∆Xαρα
jinjni. (39)

If ∆Xα 6= 0, the second equation demands that there be no total dislocation density perpendicular
to the surface, as ρα

jinjni is interpreted as the total dislocation density in the direction of n (cf. [11])
on slip system α. This seems to be an unreasonable requirement, and we conclude that ∆Xα = 0
should be enforced. Alternatively, one might restrict variations to dislocation speeds with vanishing
normal derivative nk∂k ṽα = 0. We note that when transferred to a boundary condition for the actual
dislocation velocity, setting the normal derivative of the velocity to zero becomes another way to
model open boundary conditions. This has been employed for CDD in that the computational domain
contains a layer around the actual crystal where the dislocation flux quantities are duplicated from the
last layer of the bulk [22].

In order to reduce complexity, we assume in the following that the effective chemical potential
for dislocation curvature vanishes; i.e., ∆Xα = 0 such that the normal derivative does not need to be
specified. Then, the microtraction condition reduces to

0 = Πα −∆Λα
ρα

j

ραbα
εikjnα

k ni −∆Ξα
j

1
bα

εijknα
k ni −∆Xα

j

ρα
ji

ραbα
ni. (40)

4. Constitutive Theory

4.1. Energy Imbalance

In a purely mechanical theory, the second law of thermodynamics requires that the temporal
increase of energy in any part Ω is less than or equal to the power expended on Ω. If ψ denotes the
free energy density per unit volume, this is expressed by the inequality

∫
Ω

ψ̇dV ≤ W (Ω) = I (Ω) =
∫

Ω

[
σij ε̇

e
ij + ∑

α

(παγ̇α + λαρ̇α + ξα
i ρ̇α

i + χα q̇α)

]
dV. (41)

Because the subvolume Ω is arbitrary, we obtain the pointwise inequality

ψ̇−
[

σij ε̇
e
ij + ∑

α

(παγ̇α + λαρ̇α + ξα
i ρ̇α

i + χα q̇α)

]
≤ 0. (42)

4.2. Dissipation Inequality

We assume the free energy density to be of the form

ψ =
1
2

εe
ijCijklε

e
kl + ∑

α

ψα (ρα, ρα, qα) , (43)

which is also obtained from the local density approximation by Zaiser [16]. The time evolution of the
free energy consequently reads

ψ̇ = εe
ijCijkl ε̇

e
kl + ∑

α

(
∂ψα

∂ρα
ρ̇α +

∂ψα

∂ρα
j

ρ̇α
j +

∂ψα

∂qα
q̇α

)
. (44)
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Employing this, we reformulate the free-energy inequality in terms of dissipation as

(
σij − Cijklε

e
kl

)
ε̇e

ij + ∑
α

[(
λα − ∂ψα

∂ρα

)
ρ̇α +

(
ξα

j −
∂ψα

∂ρα
j

)
ρ̇α

j +

(
χα − ∂ψα

∂qα

)
q̇α

]
+ παγ̇α ≥ 0. (45)

This inequality must hold for all deformation and dislocation states and all choices of ε̇e
ij, ρ̇α, ρ̇α

j , q̇α,
and γ̇α. Consequently, one obtains the constitutive relations

σij = Cijklε
e
kl , (46)

λα =
∂ψα

∂ρα
, (47)

ξα
j =

∂ψα

∂ρα
j

, (48)

χα =
∂ψα

∂qα
. (49)

The dissipation inequality consequently reduces to the familiar form

παγ̇α ≥ 0. (50)

The dislocation densities ρα and the length of the Burgers vectors bα are positive, such that due to
the Orowan equation the dissipation inequality is tantamount to

παvα ≥ 0. (51)

Assuming the dislocation velocity vα to be a function of the microscopic force πα, this may for
example be fulfilled in the form

vα = M (πα, ρα)πα, (52)

with a non-negative mobility function M (πα, ρα) as introduced in [15]. With the above constitutive
relations, we find that the microscopic force balance yields

πα = τnet, (53)

with the net shear stress defined in the just-named paper from a phase-field type derivation,

τnet = τα −
ρα

j

ραb
εikjnα

k ∂i
∂ψα

∂ρα
− qα

ραb
∂ψα

∂ρα
− 1

b
εijknα

k ∂i
∂ψα

∂ρα
j
− 2

qα
i

ραb
∂i

∂ψα

∂qα
−

ρα
ji

ραb
∂j∂i

∂ψα

∂qα
. (54)

4.3. Surface Constitutive Theory

The free energy inequality fixes the constitutive theory for the stress tensor and the micro stresses.
We note that the micro stresses have the appearance of chemical potentials in that they are the change of
energy associated with a change in the according density variable. The micro-free boundary condition
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is hence fulfilled if what has been called chemical potentials at the surface are actually the (bulk)
chemical potentials of the density variables; i.e., if

Λα =
∂ψα

∂ρα
, (55)

Ξα
j =

∂ψα

∂ρα
j

, (56)

Xα =
∂ψα

∂qα
, (57)

Xα
j = ∂j

∂ψα

∂qα
, (58)

and additionally Πα = 0. If the surface is impenetrable for dislocations (e.g., due to surface treatment
or because the crystal is tied to a plastically non-deformable body), it seems appropriate to assume
that no dislocation may move through the surface, enforcing the micro hard boundary condition.
The microtraction condition provides freedom to chose the surface chemical potential which yields
the definition of the micro tractions. This case yields no guidance on choosing the surface chemical
potentials. This is reasonable because these quantities are dependent on details of the surface structure,
which are largely independent of the bulk constitutive theory. In order to evoke parallels to the micro
traction conditions presented by [6,7], we will from now on set all the surface chemical potentials to
zero, such that only the bulk chemical potentials remain in (40); that is,

0 = Πα − λα
ρα

j

ραbα
εikjnα

k ni + ξα
j

1
bα

εijknα
k ni + ∂jχ

α
ρα

ji

ραbα
ni. (59)

5. Discussion

In this discussion, we focus on parallels and differences of the current theory to the
phenomenological theories presented in [6,7]. In order to reveal the parallels, we realize that the strain
gradient theory of Gurtin and co-workers involves the slip rates and—implicitly—the dislocation
density vector, which contributes to the Kröner–Nye tensor which is considered as the microstructural
variable by Gurtin. Because the total dislocation density and the curvature density are absent, we may
only expect to find direct parallels regarding the terms which involve the micro stress ξα, which is
work conjugate to the rate of the dislocation density vector ρ̇α and which was found to be given as a
chemical potential through (48). We deliberately denoted the micro stress conjugate to the dislocation
density vector as ξα, which is the same symbol used by Gurtin and Needleman for the micro stress
conjugate to the gradient of the plastic shear rate on the slip system. In [6,7], the authors assume that
the energy is given terms of the dislocation density tensor. From the work of Zaiser [16], we rather
assume the energetic dependency to be given additively from terms formulated on the slip system
level in terms of the slip gradients, where only the gradient within the slip plane actually matters.
With this energetic assumption, the micro stress of Gurtin and co-workers is a vector, tangent to the
slip plane, given by

ξα,GN
i =

∂ψ

∂ (∂iγα)
. (60)

Between the dislocation density vector and the slip gradient, there is the following relation:

ρα
i = −1

b
∂jγ

αεikjnα
k , (61)

which easily yields that

ξα,GN
i =

∂ψ

∂ρα
j

∂ρα
j

∂ (∂iγα)
= −1

b
εikjnα

k ξα
j . (62)
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With this stipulation, we see that for the case that the energy would be independent of the total
dislocation density and the curvature density, we reproduce both the bulk microscopic stress balance
of Gurtin,

πα = τα + divξα,GN (63)

and the micro traction boundary condition of Gurtin and Needleman, which reads in the
current notation

Πα = ξα,GN · n (64)

Recent numerical investigations [23] revealed unconventional and apparently as-of-yet unresolved
behavior of phenomenological gradient theories employing the micro-free (Πα = 0) boundary
condition in simulations of micro bending. It will be an interesting question for future research
to investigate how the additional terms, due to the further density variables in the micro traction
condition of CDD (59), will modify the behavior at micro traction-free boundaries.

In the current work, we achieved two things. What is actually new is the consequent treatment
of boundary conditions for CDD, which leads to different types of admissible boundary conditions,
including entirely open boundary conditions, hard and micro-hard boundary conditions, as well
as a generalization of the micro traction boundary conditions derived by Gurtin and Needleman
for phenomenological theories accounting for the dislocation density tensor. Besides the boundary
conditions, we also regard the derivation of the constitutive law in analogy to the work of Gurtin and
Needleman as a new result of this paper. We very much hope that the incorporation of CDD theory
into the framework of rational thermodynamics helps lower the barrier to understanding between
researchers educated in materials science and those rooted in modern continuum mechanics—for the
better of common research on a dislocation-based continuum theory of crystal plasticity.
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