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Abstract: Controlling particle size is essential for crystal quality in the chemical and pharmaceutical
industry. Several articles illustrate the potential of ultrasound to tune this particle size during
the crystallization process. This paper investigates how ultrasound can control the particle size
distribution (PSD) of acetaminophen crystals by continuous seed generation in a tubular crystallizer
followed by batch growth. It is demonstrated that the supersaturation ratio at which ultrasound
starts seed generation has a substantial effect on the final PSD while the applied power is insignificant
in the studied conditions. The higher the supersaturation ratio, the smaller the final crystals become
up to a supersaturation ratio of 1.56. Furthermore, it was shown that ultrasound can also impact the
final PSD when applied during the growth phase. Frequencies of 850 kHz or below reduce the final
particle size; the lower the applied frequency, the smaller the crystals become. In conclusion, one
could state that ultrasound is able to control the particle size during seed generation and subsequent
growth until the final particle size.

Keywords: sonocrystallization; particle size control; acoustic cavitation; continuous seeding;
semi-continuous crystallization; process intensification; cooling crystallization

1. Introduction

Particle size control is extremely important during crystallization processes in the chemical and
pharmaceutical industry [1–4]. The particle size distribution (PSD) of the produced crystals affects
downstream processes such as filtration, milling, and formulation [1,5]. Furthermore, the solubility,
disintegration, and dissolution rate of medicines in the human body depend on this parameter [5,6].
The batch processes, often used in industry, suffer from batch-to-batch variabilities in particle size
distributions, growth rates, and crystal habits [1,2,7,8]. In addition, scale up is not straight forward as
large-scale systems create inhomogeneous conditions with a noticeable impact on the product quality.

Continuous crystallization processes, performed in tubular crystallizers, therefore receive more
and more interest. The most important advantages are: more reproducible PSDs, smaller particle
sizes, more robust scale-up, shorter downtimes, and easier control over the supersaturation ratio by
better temperature control [1,2,7,8]. These continuous crystallizers suffer, nevertheless, from clogging
and blocking of their channels by the attachment of crystals to the walls or agglomeration of these
crystals [1,4,5,9]. Furthermore, the total residence time which can be achieved in these crystallizers is
limited by the tube length and flow rate. Lower flow rates increase the residence time but increase the
risk of clogging [1]. Longer tubes increase the pressure drop over the crystallization setup which has
to be handled by the pump. This places a practical limit on the tube length because the pump will
have a maximum pressure drop above which it is unable to operate. The maximum tube length was
for example 27 m for a 2 mm diameter tube in the paper by Eder et al. [4].
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Sonocrystallization, i.e., the application of ultrasound during crystallization, provides possible
solutions to these problems. Multiple papers report that blocking and clogging of a tubular crystallizer
was avoided by the use of ultrasound [4,9–11]. It is hypothesized that ultrasound removes particles
from the walls by using the vibrations and avoids the agglomeration of particles. Furthermore,
lower induction times, smaller Metastable Zone Widths (MZW), the formation of smaller particles,
reduced agglomeration, crystal breakage, and improved crystal habits are commonly reported during
sonocrystallization [12–18]. These observations indicate that ultrasound has the potential to control
the PSD during the crystallization process.

Nevertheless, only a few papers report on the combined use of ultrasound with a continuous
tubular crystallization setup [4,9,11,19,20]. Most of these papers just report on the demonstration of
the principle and the production of smaller crystals in the end. Kudo and Takiyama, for example,
tested a millisegmented flow crystallizer submerged in an ultrasonic cleaning bath during anti-solvent
crystallization of a taurine-water-ethanol system [19]. Significantly smaller crystals of 17.7 µm were
obtained in comparison with the 39.2 µm particles produced by a batch crystallization without
ultrasound irradiation. Furuta et al. used a tubular crystallizer placed in a tank with an ultrasound
probe for a pH-swing crystallization of an active pharmaceutical ingredient (API) [9]. Similarly, small
particle sizes of 1–7 µm were obtained by this method compared to considerable larger particles of
10–30 µm without sonication in the tubular crystallizer. Sonication was applied during both nucleation
and growth in this setup. In contrast, nucleation, slug formation, and crystal growth were decoupled
in the paper by Jiang et al. [11]. First, nucleation was triggered by sonication; next, the slugs were
formed by the injection of air into the channel, and finally growth occurred in the 15.2 m tubing.
An ultrasonic probe positioned against a tubular crystallizer was used in the nucleation section
during the cooling crystallization of L-asparagine monohydrate. This allowed process control over
the individual processes and generation of a larger amount of uniform-sized seed crystals compared
to direct cooling or the use of micromixers. Nucleation was also decoupled from crystal growth
in the paper by Eder et al. [4]. The authors demonstrated a continuously seeded flow-through
crystallization system where an ultrasonic cleaning bath could generate a constant seed quantity and
quality. The ultrasonic cleaning baths used in these studies generate, however, an inhomogeneous
sound field, and are very inefficient and difficult to scale up to an industrial scale [21]. Rossi et al.
investigated the droplet-based cooling crystallization of adipic acid in a microfluidic device under
sonication [20]. Here, a 20 kHz probe was positioned slightly above the microfluidic channel to
introduce acoustic cavitation. The effect of the supersaturation ratio on the PSD and crystal yield was
tested. The supersaturation ratio had an insignificant effect on the PSD but impacted the crystal yield.
The higher the supersaturation ratio, the higher the crystal yield.

These papers indicate that ultrasound is useful to control nucleation and hence tune the PSD of the
final crystals. It is, however, not clear whether sonication during crystal growth makes sense, beyond
the fact that it avoids clogging of the tubular crystallizer. The impact of ultrasound on crystal growth
is believed to be less significant compared to its influence on nucleation [22]. However, Nii et al. claim
that crystal growth can be enhanced by high frequency ultrasound [23]. An ultrasonic frequency of
1.6 MHz was applied during the batch anti-solvent crystallization of glycine in ethanol. Large glycine
crystals of about 160 µm were obtained after 60 min sonication at 28 W ultrasound. Under silent
conditions (i.e., without the application of ultrasound), crystals of only 110 µm were obtained in the
same time frame. The incorporation of microcrystals into larger crystals is hypothesized to cause this
enhancement of crystal growth at the high ultrasonic frequency. This enhanced crystal growth by the
application of a high ultrasonic frequency, to the authors’ best knowledge, has never been tested for
other crystallization reactions.

In this research, acetaminophen seeds were generated in the tubular crystallizer and were
afterwards grown in a batch vessel. The goal was to investigate how ultrasound can influence
the PSD when applied to a tubular crystallizer for seed generation and to a batch vessel for crystal
growth. As acetaminophen is a slow growing crystal, long residence times are needed during crystal
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growth [24]. The batch vessel allowed us to achieve this long residence time in a practical manner. First,
the potential for PSD control by seed generation in a tubular flow setup was investigated. The impact
of the supersaturation ratio, ultrasonic power, and introduction of a 3-way valve on the final PSD were
studied and discussed. Next, ultrasound was applied only during the growth phase and the influence
of the ultrasonic frequency on the final PSD was examined.

2. Materials and Methods

2.1. Experimental Setup

Figure 1 shows the experimental setup with a flow and batch section. The flow section comprises
the upper left part of Figure 1 with a 3 L Erlenmeyer flask, a heating plate (IKA RCT Standard),
a multi-piston pump (LaboCat HPLH 200 PF pump), thermostatic bath 1 (Lauda RE 620), PFA tubing
of 5 mm diameter (thick black lines), and a flow cell. The temperature in the Erlenmeyer flask is kept
constant at 60 ◦C by a Pt100 temperature sensor (T1) placed in the Erlenmeyer flask and connected to
the heating plate. Magnetic stirring at 400 rpm is applied by the same heating plate to ensure that the
solution is well mixed and no hot spots are present in the solution. The multi-piston pump is used to
pump the solution through the flow section at a flow rate of 100 mL/min.
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Figure 1. Experimental setup.

Seven meters of PFA tubing is wound in a spiral and placed in thermostatic bath 1 to act as a
heat exchanger. The other parts of the PFA tubing are kept as short as possible to minimize heat
losses to the environment. The flow cell is custom made by gluing a transducer (Ultrasonics World
MPI-7850D-20_40_60H) to a glass block (80 mm × 80 mm × 16 mm). Figure 2 shows a picture of this
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flow cell which contains three channels of 5 mm diameter bored into a glass block. The two outer
channels are used for temperature control and connected to thermostatic bath 1. This cooling water
is circulated in a counter-current manner compared to the crystallization flow. The center channel
is connected to the PFA tubing and is used for sonication of the solution. The temperature is also
monitored directly before and after the flow cell by two K-type thermocouples (T2 and T3). These are
connected to a temperature logger (Pico USB TC-08). A 3-way valve (Rotalibo® PP/PE with 4 mm
internal diameter) was, during some experiments, placed in the flow section to drain crystals from this
flow setup into the batch vessel.
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Figure 2. Flow cell from borosilicate glass with the crystallization channel (center) and two cooling
channels (outer channels).

The batch section of the experimental setup is visible at the bottom right part of Figure 1.
It contains a cylindrical vessel, an ultrasound transducer, thermostatic bath 2 (Lauda RE415) with
a Pt100 temperature sensor (T4), and an overhead stirrer (Cole Parmer ultra-compact mixer). The vessel
is made of a jacketed glass cylinder with an internal diameter of 53 mm, outer diameter of 83 mm,
and height of 97 mm. The experimental setup of the batch vessel was already described in a previous
paper [25]. The temperature in the batch vessel was controlled by a Pt100 temperature sensor (T4)
connected to thermostatic bath 2. This allowed us to compensate for the heat generated by the
ultrasound field. The overhead stirrer with an axial blade impeller of 30 mm diameter was used to stir
the solution at 400 rpm. This stirring speed of 400 rpm was selected based on experiments previously
described in the literature, in order to avoid sedimentation and particle breakage [13]. The transducer
is placed at the bottom of the vessel and clamped to the cylinder to allow proper sealing of the vessel.
By clamping different transducers to the bottom, each operating at their own resonance frequency,
it is possible to use the same vessel over a wide frequency range. Table 1 provides an overview of the
different ultrasonic frequencies f (kHz), amplitudes A (kHz), and calorimetric powers Pcal (W) used
during the experiments. A waveform generator (Picotest G5100A) and power amplifier (E&I 1020L
RF) were used to drive the transducers. This generator and amplifier were subsequently connected to
the flow cell for nucleation experiments and the batch vessel for growth experiments.

Table 1. Overview of the ultrasound transducers and settings.

Section Transducer Type f (kHz) A (mVpp) ∆T (◦C) Pcal (W)

Flow
Ultrasonics World MPI-7850D-20_40_60H 68 250 0.56 4
Ultrasonics World MPI-7850D-20_40_60H 68 570 1.21 8
Ultrasonics World MPI-7850D-20_40_60H 68 1200 1.63 11

Batch

Ultrasonics World MPI-7850D-20_40_60H 41 318 - 8
Ultrasonics World MPI-7850D-20_40_60H 97 484 - 8

Meinhardt E/805/T/M 570 175 - 8
Meinhardt E/805/T/M 850 207 - 8
Meinhardt E/805/T/M 1130 172 - 8

Honda Electronics Co., Ltd.-1.6 MHz 1600 183 - 8
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2.2. Calorimetric Power Calibration

The resonance frequencies (f ) of the transducers were defined by an impedance analyzer
(Sine Phase 16,777 K). Next, calorimetric power calibrations were performed to ensure that the power
inside the flow cell and batch vessel was constant for the different ultrasonic sources. The same
procedure as described before in the literature was used for the batch vessel [25,26]. A somewhat
different approach was used to obtain the calorimetric powers in the flow cell. First, ultrapure water
(18.2 MΩ·cm) was pumped at a flow rate of 100 mL/min through the channel in the center of the
flow cell. The cooling bath was turned off so that the heat generated by the ultrasound field was not
removed by the cooling water. Next, a certain amplitude A (mVpp) was applied by the waveform
generator to the amplifier which was connected to the transducer. The temperature directly before and
after the flow cell was measured by thermocouples T2 and T3 and the temperature difference ∆T (K)
over the flow cell was calculated. The calorimetric power Pcal (W) was then calculated by Equation (1).

Pcal =
.

m cp ∆T (1)

with
.

m as the flow rate (1.67 10−3 kg/s) and cp as the heat capacity (4.186 J/kgK). This calorimetric
power calibration technique assumes that all power entering the solution is dissipated as heat [27].
It does not allow us to calibrate the number of cavitation events, but several papers in the literature
state that it allows reliable control of the total amount of power entering the solution [27–30]. Hence,
this technique was used to compensate for the differences in efficiency of the power transfer among the
different ultrasound sources. Table 1 provides the calorimetric powers obtained by the same settings
as used during the experiments.

2.3. Experimental Procedure Nucleation Temperature

The nucleation temperature (Tnucl) in the flow cell was investigated during a first set of
experiments. Only the flow section of the experimental setup was used during these tests.

Prior to the experiments, 3 L of a 30 g/L N-(4-hydroxyphenyl) acetamide (acetaminophen)
(98%, Acros Organics) solution in ultrapure water (18.2 MΩ·cm) was made at 60 ◦C. This solution
was filtered over a 6 µm filter to remove impurities and introduced in the Erlenmeyer flask. Magnetic
stirring was applied at 400 rpm and the temperature in the Erlenmeyer flask was set at 60 ◦C, well above
the solubility temperature (46 ◦C) of the solution [31]. The solution was pumped from this Erlenmeyer
flask to the 7 m long PFA coil, through the flow cell and back into the Erlenmeyer flask at a flow rate of
100 mL/min. Thermostatic bath 1 was also set at 60 ◦C and the solution was circulated for about 2 h at
these settings to ensure that the temperature was above the solubility temperature within the whole loop.

At the start of the experiment, the ultrasound was switched on and thermostatic bath 1 was cooled
at a cooling rate of 0.6 ◦C/min until nucleation was observed. First, a rough estimate of the nucleation
temperature was obtained by the visual detection of nucleation inside the PFA tubing. Nucleation was
considered when the first crystals were observed in the tubing. The temperature at the outlet of the
flow cell (T3) was taken as the nucleation temperature during all experiments. The temperature before
and after the flow cell can differ because of the heat generated by ultrasound inside the flow cell.
This temperature difference reached a maximum of 1.63 ◦C at the maximum amplitude of 1200 mVpp as
shown in Table 1. This heat could dissolve crystals which are generated before the flow cell. Therefore,
the tubing directly before the flow cell was inspected thoroughly for the presence of crystals. Crystals
were never detected before the flow cell when nucleation was observed after the flow cell. Next,
a more precise nucleation temperature was defined. The solution was again heated to 60 ◦C and
afterwards cooled at a cooling rate of 0.6 ◦C/min. The solution was cooled to 5 ◦C above the roughly
estimated nucleation temperature. From this temperature on, samples of about 10 mL were drained
in a small beaker (100 mL) every 0.2 ◦C. Visual detection in the beaker was now used to define the
exact nucleation temperature. This allowed us to observe smaller crystals which could not be detected
inside the tubing. The whole procedure was repeated three times to ensure reproducible results.
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Additionally, the supersaturation ratio S (-) at which nucleation started was calculated with the
following equation.

S =
C
C∗ (2)

Here, C is the concentration used during the experiments (30 g/L) and C* is the solubility
concentration at the nucleation temperature (g/L). This solubility concentration was obtained from the
literature [31].

2.4. Experimental Procedure Seed Generation

The semi-continuous nucleation system consists of a continuous seed generation in flow, followed
by crystal growth in batch. In this way, nucleation was triggered in a flow system, while the long
residence time, needed for crystal growth, was obtained in the batch vessel. The 3-way valve was
introduced in the experimental setup, during some experiments. Table 2 gives an overview of all of
the experiments performed together with the experimental settings and main results.

The preparations are identical to the nucleation temperature experiments described in Section 2.3.
The modes of operation correspond to Figures S1 and S2 in the supporting material. The experiment is
started by cooling thermostatic bath 1 at a cooling rate of 0.6 ◦C/min until the desired supersaturation
ratio. The temperature was fixed once this supersaturation ratio was reached and ultrasound was
immediately applied to the flow cell. Nucleation was observed directly after the onset of the ultrasound
field. Next, the solution was transferred to the batch vessel by switching the outlet tube of the
flow cell from the Erlenmeyer flask to the batch vessel. This corresponds to the situation shown
in Figures S3 and S4 in the supporting material. Then 200 mL of the solution was transferred into
this batch vessel, after which the outlet tube was again connected to the Erlenmeyer flask and the
ultrasound field of the flow cell was switched off. Subsequently, the crystals were grown for 2 h in the
batch vessel at the same temperature at which the ultrasound was enabled. Overhead stirring was
applied at 400 rpm during all experiments. At the end of the experiment, the crystals were recovered
by vacuum filtration over a 6 µm filter and dried in an oven at 40 ◦C for 24 h.

Finally, the samples were analyzed for crystal size and shape according to the procedure described
in the following section.

2.5. Analytical Measurements

Particle size measurements were performed on a Malvern 3000 Mastersizer laser diffractometer.
First the equipment was switched on for 30 min before the first measurement to allow the laser to
warm-up. Next, a solution of about 1% lecithin in hexane was prepared by dissolving approximately
3.5 g L-alpha-lecithin (>95%, Acros Organics) in 500 mL hexane (99%, Chem-Lab). Lecithin was added
to prevent the adhesion of acetaminophen particles to the Mastersizer cell window [32]. Before the
measurement was started, a background was measured for 10 s. The settings shown in Table 3
were used during all of the measurements. Then the acetaminophen crystals were added until the
obscuration level was within 10–30%. Five consecutive measurements were performed with a Relative
Standard Deviation (RSD) of less than 5% for D10 and D90 and less than 3% for D50. The average value
of these five measurements is each time given in the results section of this paper. Finally, five cleaning
cycles were performed and the background was checked before a new measurement was started.
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Table 2. Overview of all of the experiments with their settings and main results. fnucl is the frequency applied during the nucleation stage (kHz).

Experiment Name Operation Mode Nucleation Operation Mode Growth fnucl Pcal nucl fgrowth Pcal growth 3-Way Valve Tus in flow S Tnucl D10 D50 D90

kHz W kHz W - ◦C - ◦C µm µm µm
silent batch batch batch - - - - - - 1.81 28.40 190 429 878
silent flow flow batch - - - - no - 1.87 27.33 197 450 825

sonicated flow flow batch 68 8 - - no 60.00 1.32 37.90 59 113 203
silent flow with 3-way valve flow batch - - - - yes - 1.26 39.33 225 410 687

Sonicated flow with 3-way valve flow batch 68 8 - - yes 60.00 1.12 42.89 244 444 746
silent @28 ◦C flow batch - - - - no - 1.83 28.00 197 450 825

US @37 ◦C flow batch 68 8 - - no 37.00 1.36 37.00 59 113 203
US @35 ◦C flow batch 68 8 - - no 35.00 1.45 35.00 32 73 143
US @33 ◦C flow batch 68 8 - - no 33.00 1.55 33.00 23 54 112
US @31 ◦C flow batch 68 8 - - no 31.00 1.66 31.00 25 60 118
US @29 ◦C flow batch 68 8 - - no 29.00 1.77 29.00 21 52 112
Pcal = 4 W flow batch 68 4 - - no 60.00 1.36 37.00 79 154 271
Pcal = 8 W flow batch 68 8 - - no 60.00 1.36 37.00 71 142 282
Pcal = 11 W flow batch 68 11 - - no 60.00 1.36 37.00 99 177 306
start crystals flow batch 68 8 - - yes 60.00 1.12 42.5–43.1 17 94 305

1.6 MHz flow batch 68 8 1600 8 yes 60.00 1.12 42.5–43.1 211 364 588
1.1 MHz flow batch 68 8 1130 8 yes 60.00 1.12 42.5–43.1 205 372 614
850 kHz flow batch 68 8 850 8 yes 60.00 1.12 42.5–43.1 79 144 295
570 kHz flow batch 68 8 570 8 yes 60.00 1.12 42.5–43.1 42 83 170
97 kHz flow batch 68 8 97 8 yes 60.00 1.12 42.5–43.1 23 47 91
41 kHz flow batch 68 8 41 8 yes 60.00 1.12 42.5–43.1 19 39 79

Pcal nucl is the calorimetric power applied during the nucleation stage (W), fgrowth is the frequency applied during the growth stage (kHz), Pcal growth is the calorimetric power applied
during the growth stage (W), and TUS in flow is the temperature at which ultrasound is enabled in the flow vessel (◦C).
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Table 3. Settings for the particle size distribution measurement.

Setting Value Unit

Refractive index particles 1.619 -
Absorption index particles 0.01 -

Density particles 1.34 g/mL
Refractive index dispersant 1.375 -

Lower obscuration limit 10 %
Upper obscuration limit 30 %

Stirring speed 2400 rpm
Duration measurement 10 s

Number of measurements 5 -
Max. allowed RSD D50 3 %

Max. allowed RSD D10 & D90 3 %

The particle shape was studied by a Philips XL 30 FEG scanning electron microscope (SEM).
The particles were first attached to a carbon adhesive tap (G3348N 25 mm Leit Tabs) which was placed
on a SEM specimen stub (25 mm diameter, 3.2 mm × 8 mm pin). Next, compressed air was flushed
over these adhesive taps to remove all loosely-attached particles. These stubs were then placed in
a vacuum oven overnight to remove all gasses and oil from the compressed air stream from the surface.
Subsequently, the SEM samples were sputtered with 5 nm thick platina and palladium layers to make
them conducting. Images were taken based on the secondary electrons with a 50 µm platina diaphragm
and 10 kV acceleration voltage.

The polymorph of the produced crystals was evaluated by a D2 Phaser X-ray diffractometer.

2.6. Experimental Procedure Batch Growth

The setup with the 3-way valve was used during these experiments. The preparations are identical
to the nucleation temperature experiments described in Section 2.3. The experiment is started by
cooling thermostatic bath 1 at a cooling rate of 0.6 ◦C/min and switching on the ultrasound at a
calorimetric power of 8 W. This cooling rate of 0.6 ◦C/min was selected because the literature showed
that ultrasound caused a significant reduction in MZW at cooling rates of 0.5–0.7 ◦C/min, while this
effect was negligible for higher cooling rates of 2 ◦C/min [25,33]. The moment crystals were detected,
the solution was transferred to the batch vessel by switching the 3-way valve towards the batch vessel.
A detailed representation of this mode of operation can be found in the supporting material, Figure S3.
Nucleation was detected within the temperature range from 42.5 to 43.1 ◦C. Then 200 mL of the
solution was transferred into this batch vessel, after which the 3-way valve was again switched to the
Erlenmeyer flask and the ultrasound field of the flow cell was switched off. This mode of operation
corresponds to Figure S1 in the supporting material. Next, ultrasound was applied to the batch vessel
at the desired frequency at a calorimetric power of 8 W. Subsequently, the crystals were grown for
2 h in the batch vessel at a temperature of 36 ◦C so that the crystals could grow to their final size.
Overhead stirring was applied at 400 rpm during all experiments. At the end of the experiment, the
crystals were recovered by vacuum filtration over a 6 µm filter and dried in an oven at 40 ◦C for 24 h.
The same analysis techniques as described in Section 2.5 were applied to these crystals.

2.7. Experimental Procedure Complete Batch Crystallization

As a reference case, a complete batch crystallization with both nucleation and growth in the batch
vessel of Figure 1 was performed. This setup is given in the supporting material, Figure S5. Ultrasound
was not applied during these tests, which will be named as the “silent batch” experiments in this
paper. Two hundred mL of the 30 g/L acetaminophen solution in ultrapure water was made at 60 ◦C.
This solution was filtered over a 6 µm filter to remove impurities and was introduced in the batch
vessel. Thermostatic bath 2 was set at 60 ◦C prior to the experiment and overhead stirring was applied
at 400 rpm during the whole test. The experiment was started by cooling the batch vessel at a cooling
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rate of 0.6 ◦C/min until nucleation was detected visually. Next, the temperature was kept constant at
this nucleation temperature and the solution was stirred for 2 h to let the crystals grow. Afterwards,
the solution was vacuum filtered over a 6 µm filter and dried in an oven at 40 ◦C for 24 h. The same
analyses as described in Section 2.5 were applied to these crystals.

3. Results and Discussion

The semi-continuous sonocrystallization setup was used to investigate different strategies to
control the final particle size. First, it was investigated how the particle size distribution (PSD) could be
impacted during seed generation in the flow section of the experimental setup. The effect of sonication
at different supersaturation ratios and the introduction of a 3-way valve on the PSD was investigated.
Next, the effect of the ultrasonic frequency during the growth phase in the batch section of the setup
was tested.

3.1. Particle Size Control During Seed Generation

Seeds were generated in the tubular flow section of the setup and afterwards grown in the batch
vessel. During seed generation, nucleation occurs followed by growth of the nuclei to a detectable size.
The growth phase is, within this research, defined as the phase after seed generation.

3.1.1. Nucleation in Batch versus Flow

Nucleation temperatures and PSDs were investigated for three setups; namely the setup as
provided in Figure 1, the same setup without the 3-way valve, and a batch setup. The latter was
conducted as a reference case and consists of the same cylindrical vessel as used in the batch section
of Figure 1. Silent experiments, i.e., experiments without sonication, were performed in all setups.
Sonicated tests were conducted, in addition to these silent experiments, in the flow setups. Figure 3
shows the nucleation temperatures and Figure 4 shows the PSD results of these different experiments.
Nucleation was observed at similar temperatures around 28 ◦C in the silent batch and silent flow
experiment. Additionally, the PSD curves of both setups overlap. This indicates that moving from
batch to flow, under silent conditions, has no significant effect on nucleation. This is in contrast with
previously reported results in the literature [3,19,34]. Smaller particle sizes with smaller distributions
in tubular crystallizers compared to batch crystallizers are reported in these papers. Anti-solvent
crystallization or precipitation was, however, used in these papers compared to cooling crystallization
for the results obtained in Figure 4. The T-shaped mixer and tubular design used in these papers result
in different mixing characteristics compared to a batch vessel and hence impact the supersaturation
ratio locally [19,34,35]. These parameters are particularly important for an anti-solvent crystallization
because very high ratios of supersaturation are generated suddenly when the anti-solvent is added.
The degree of mixing, at the moment of addition, will therefore define the local supersaturation ratio
and hence impact the final particle size distribution [34,36]. The change in supersaturation ratio is more
gradual for cooling crystallization, so that mixing is less crucial during this crystallization process.
Additionally, both nucleation and growth are performed in the tubular crystallizer in the papers in
the literature. In Figure 4, however, only nucleation is obtained in the tubular section of the setup
while growth is performed in the batch setup. The tubular design, at the small scales used in these
papers, generates a more uniform temperature profile across the reactor compared to the batch setup.
As a result, crystal growth will be more homogeneous so that more uniformly sized crystals with
a smaller particle size distribution will be produced in the end.
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Figure 3. Nucleation temperatures under silent and sonicated conditions in the flow cell and batch
vessel. The bars represent the average over 3 repetitions and the error bars represent the standard
deviation. The silent batch nucleation experiment was performed only once as a reference case.
S (-) represents the supersaturation ratio at which nucleation occurred.

A comparable setup as given in Figure 1 was used by Méndez del Río et al. during cooling
crystallizations of acetaminophen in methanol and ethanol [37,38]. Smaller chord lengths were obtained
by Focused Beam Reflectance Measurements (FBRM) in a tubular crystallization setup compared to a
batch setup. Very high cooling rates between 0.9 ◦C/min and 666 ◦C/min, depending on the position
in the tube, could be achieved in the tubular setup [38]. These cooling rates are significantly higher than
the 0.15 ◦C/min to 0.50 ◦C/min achieved in the batch setup. The authors assume that the Metastable
Zone Width (MZW) was widened because of these high cooling rates so that higher supersaturation
ratios and smaller final crystals could be achieved. It was already observed before that higher cooling
rates increase the MZW [36,39]. These high cooling rates and corresponding supersaturation ratios
were not obtained in this research. The temperature was constantly lowered until nucleation was
observed in the tubular section. From that moment on, the temperature was kept constant. As a result,
the supersaturation ratio increased slowly until nucleation was observed. The supersaturation ratio
was therefore comparable to the one obtained during batch crystallization. As a result, the driving
force and consequently the amount of nuclei generated are comparable so that similar sized crystals
are produced in the end. Furthermore, water was used as a solvent in the research presented here
compared to methanol and ethanol in the paper of Méndez del Río et al. [37]. In the same paper, it was
already shown, without further explanation, that the difference in the nucleation rate between the batch
and tubular crystallization was significantly higher for the acetaminophen-methanol system compared
to the acetaminophen-ethanol system [38]. The relative nucleation rates (nucleation rate in the tubular
crystallizer divided by the nucleation rate in batch) were up to 1.8 for the acetaminophen-ethanol
system compared to 2.0 to 7.6 for the acetaminophen-methanol system. It is therefore also possible
that this relative nucleation rate will become even smaller for an acetaminophen-water system.
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The introduction of ultrasound in the flow setup resulted in an increase in nucleation temperature
of more than 10 ◦C and a significantly smaller particle size. This corresponds to the results previously
published in the literature, where nucleation at higher temperatures, smaller metastable zone widths,
and reduced particle sizes are commonly reported upon sonication [16,22,25,30]. The exact mechanism
of these observations is unknown; only some hypotheses are formulated in the literature. Most of
them agree that ultrasound enhances primary nucleation and therefore yields more nuclei which grow
into smaller crystals in the end. The three most commonly reported hypotheses are the bubble as
the nucleation center, the segregation theory, and the flow induced nucleation. The latter assumes
that ultrasound generates flow streams in the solution which enhance the collisions of molecules and
therefore increases the creation of clusters of molecules [40,41]. As a result, more nuclei are formed and
the nucleation rate is increased. The hypothesis of the bubble as a nucleation center considers cavitation
bubbles as heterogeneous particles which lower the work needed for nucleation and hence introduce
heterogeneous nucleation [16,30,42]. Finally, the segregation theory states that when a cavitation
bubble collapses, the inward motion of the liquid is stopped violently by the gas recompression
in the bubble. Consequently, a huge outward acceleration of the liquid is created. Molecules with
different densities will not be accelerated to the same extent. Compound clusters, denser than the
surrounding solvent molecules, will accelerate slower and are therefore segregated from the solvent
molecules. As a result, these clusters become supersaturated near the bubble wall for a very short time
(ca. 1 ns) and their direct collisions are promoted and nucleation is enhanced [17,43]. In addition to
these hypotheses which focus on primary nucleation, secondary nucleation was also observed in the
literature upon sonication [44]. The fragmentation of crystals by sonication leads to the production of
new nucleation sites which create secondary nucleation [44,45]. It therefore remains possible that some
nuclei, which are not yet grown to a detectable size, enter the flow cell where they are fragmented
by the shear forces or shockwaves induced by the ultrasonic cavitation. These fragments can induce
secondary nucleation which can be detected visually.
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3.1.2. Introduction of a 3-Way Valve

The introduction of a 3-way valve in the same flow setup resulted in a somewhat higher nucleation
temperature of 39 ◦C and slightly smaller particle size as observed in Figure 4. These observations
could indicate that nucleation occurs at a higher temperature because of the 3-way valve but that
the amount of nuclei generated is not significantly higher compared to the flow setup without the
3-way valve. The reason for these observations is, however, unclear. It is hypothesized that the valve
changes the flow pattern or introduces heterogeneous nucleation. The inner diameter of the valve is
1 mm smaller than the 5 mm diameter of the PFA tube which can create disturbances in the flow pattern.
As a result, flow induced nucleation can occur as explained before. In addition, the surface roughness
of the walls of the PP/PE valve can differ compared to that of the smooth PFA tubing. This difference in
roughness can introduce heterogeneous nucleation which lowers the work needed for nucleation [36].

Application of ultrasound in the same setup resulted in a small increase in the nucleation
temperature from 39 ◦C to 43 ◦C. This increase is, however, considerably smaller compared to the
setup without the 3-way valve. The PSD curves of the flow setup with the 3-way valve under silent
and sonicated conditions overlap. This is rather unexpected as sonication in the flow setup without
the 3-way valve resulted in significantly smaller crystals. The reason for this observation is unknown
and needs further investigation. These results indicate that the PSD and nucleation temperature can
predominantly be impacted by sonication in a flow setup without the 3-way valve. Introduction of
the 3-way valve initiates nucleation already at a rather low supersaturation ratio which impedes the
possibility for further particle size control.

3.1.3. Influence of the Supersaturation Ratio

In the previous section, it was assumed that the supersaturation ratio at which nucleation
was enabled could impact the final PSD. This hypothesis was further investigated by inducing
nucleation at different supersaturation ratios in the flow setup without the 3-way valve. The silent
and sonicated nucleation temperatures are defined therefore by, respectively, the minimum and
maximum temperatures at which nucleation can be triggered. Figure 3 provides the nucleation
temperatures under silent and sonicated conditions together with the corresponding supersaturation
ratios. A significant difference of 10 ◦C in nucleation temperature can be observed. This corresponds
to nucleation at a supersaturation ratio of 1.87 under silent conditions and 1.32 under sonication.
A safety margin was applied to these supersaturation limits so that ultrasound was applied in the
flow cell between supersaturation ratios of 1.36 and 1.78. Afterwards, all crystals are grown in the
batch vessel under silent conditions. Figure 5 shows the final PSD of these crystals. A clear difference
in PSD can be observed between the silent and sonicated experiments. The largest crystals were
obtained without the use of ultrasound (silent conditions) at a supersaturation ratio of 1.83. Applying
ultrasound at a supersaturation ratio of 1.36 yielded significantly smaller crystals. A further decrease
of the sonication temperature, and thus increase of the supersaturation ratio, led to even smaller
crystals. This trend is more obvious in Figure 6 where the D10, D50, and D90 of the PSDs are shown
as a function of the supersaturation ratio at which sonication was started. A clear decrease in the
particle sizes is visible with increasing supersaturation ratios. This effect is, however, limited as no
significant effect on the particle size can be observed from a supersaturation ratio of 1.56 onwards.
It seems that a kind of threshold in the particle size exists below which the particle size cannot be
reduced by increasing the supersaturation ratio further. This can indicate that at a supersaturation
ratio of 1.56, the maximum amount of nuclei is generated. A further increase in the supersaturation
ratio will not lead to significantly more nuclei, so that the final crystals will all have a similar size.
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Figure 6. D10, D50, and D90 in the function of the supersaturation ratio at which the ultrasound was
enabled in the flow cell. The calorimetric power was constant at 8 W. The markers indicate the average
value and the error bars are the standard deviation over five measurements.

These results are comparable with the ones obtained by Wohlgemuth et al. [16]. A cooling
crystallization of adipic acid was performed in a 1.2 L batch vessel with sonication at different initial
supersaturation ratios. The higher the initial supersaturation ratio, the more the second peak of the
bimodal distribution was shifted to smaller sizes. The results of Figures 5 and 6 indicate that also in
a tubular crystallizer, the supersaturation ratio at which nucleation starts has a significant effect on the
final PSD.
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3.1.4. Influence of the Power Level

Furthermore, the ultrasonic power applied to the flow cell was changed so that calorimetric
powers of 4 W, 8 W, and 11 W were tested. Figure 7 shows the PSDs of the final particles. All curves
more or less overlap and one can therefore conclude that the calorimetric power level applied during
nucleation has an insignificant effect on the final PSD.

These results are in agreement with the ones of Dennehy et al. [46]. An insignificant effect of the
ultrasonic power between 10 W and 25 W was observed on the final PSD during a batch crystallization
of a commercial drug substance [46]. In contrast, several other papers in the literature claim smaller
particle sizes upon higher power levels [22,47–49]. However, these articles applied ultrasound for
a long time during the whole crystallization process. Ultrasound was applied during both nucleation
and crystal growth while ultrasound was only applied throughout a very short time during the
nucleation stage in Figure 7. It was already shown that a short burst of ultrasound produces larger
particles compared to continuous sonication [50]. Furthermore, ultrasonic probes were used in these
papers compared to a bolt-clamped Langevin ultrasonic transducer in Figure 7. It is also shown in the
literature that these probes can create different effects with respect to the power compared to ultrasonic
transducers [13,23].
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Furthermore, the XRD patterns of crystals produced at different supersaturations and power
levels are given in Figure 8. Due to practical limitations, it was not possible to achieve XRD patterns for
more experiments. All patterns overlap and show peaks at the same locations of the reference peaks for
monoclinic acetaminophen, indicating that the same polymorph, namely monoclinic acetaminophen,
is formed in all of the experiments [51]. Three polymorphic forms of acetaminophen exist, namely the
monoclinic form I, the orthorhombic form II, and the unstable polymorphic form III [51,52]. Form I
is thermodynamically stable at ambient temperature and pressure but shows poor technological
and biopharmaceutical properties such as flowability, compactability, tabletability, wettability, and
dissolution rate. Form II shows better properties but is harder to obtain because under normal
conditions only form I can be generated. Furthermore, form II transforms within 6 h at 0 ◦C to
form I in solution [52]. The crystals produced here were grown for 2 h at 27 ◦C to 43 ◦C, which is
considerable higher than the 0 ◦C mentioned by Bhangu et al. Therefore, the transition of form II to
form I will occur faster, which can explain why only form I can be expected in Figure 8. The detection
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of only polymorphic form I via Powder X-ray Diffraction (PXRD) during the sonocrystallization of
acetaminophen was also observed by Bučar et al. [51]. Bhangu et al., in contrast, were able to detect
form II via microscopic images and state that higher supersaturation ratios and higher ultrasonic
powers favor the nucleation of the more energetic metastable orthorhombic form II [52]. These authors
explain that the detection of form II is difficult using PXRD due to the large difference in mass fractions
of the two polymorphs which renders the peak corresponding to form II undetectable [52]. This is an
additional reason why only form I is detected in Figure 8.
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In conclusion, one could state that the final PSD of crystals can be impacted by changing the
supersaturation ratio at which ultrasound is enabled during nucleation. The higher the supersaturation
ratio, the higher the driving force, the more nuclei generated and the smaller the final crystals become.
This effect was visible up to a supersaturation ratio of 1.56. A further increase of the supersaturation
ratio did not result in smaller particles. The power applied by an ultrasonic transducer to the flow cell,
in contrast, seemed less important for the final PSD.

3.2. Particle Size Control in the Growth Section

Nucleation was performed in the flow section with the 3-way valve for practical reasons.
The results provided in Section 3.1 already showed that the valve minimizes the impact of other
parameters which could influence the final PSD. Four repetitions of the silent experiment were
conducted to ensure the reproducibility of the obtained PSDs. All PSD curves of the final crystals
overlapped, indicating that the procedure was reproducible.
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The crystals generated in the flow section were drained by the 3-way valve into the batch
vessel where ultrasound was applied while the crystals grew to their final size. Different ultrasonic
frequencies were tested, all with the same calorimetric power of 8 W. Figure 9 shows the PSDs of
these tests. The largest crystals are obtained under silent conditions and under sonication with
frequencies of 1.1 MHz or above. The application of ultrasound with frequencies of 850 kHz or below
resulted in significantly smaller crystals. The lower the frequency, the smaller the final particles
become. Particle breakage, disaggregation, or secondary nucleation can explain these observations.
Lower ultrasonic frequencies create larger cavitation bubbles which collapse more violently and
consequently generate higher crystal breakage rates. These results are in agreement with previously
reported results of our research group about the effect of the ultrasonic frequency on the crystal
breakage rate (sonofragmentation) [13]. In this paper, the same setup and similar frequencies were
used to investigate the effect of ultrasound on existing acetaminophen crystals in a saturated solution.
A reduction of the crystal size over time was observed at frequencies of 570 kHz or below. In Figure 9,
a similar trend was observed although a particle size reduction is already visible at a frequency of
850 kHz. A supersaturated solution was, however, used during these experiments compared to
a saturated solution in the paper previously published in the literature. The breakage of existing
particles can therefore induce secondary nucleation. Consequently, more nuclei can be produced which
grow into smaller crystals in the end. Another possible explanation for the smaller particle sizes is
disaggregation of the crystals during the growth phase. This effect was found to be present during the
precipitation of calcium carbonate when exposed to ultrasound [53]. The shear induced by implosion
of the cavitation bubbles prevented particles from aggregating together.
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contrast to the paper of Nii et al. Anti-solvent crystallization was, however, used in the paper of Nii et al. 

Figure 9. Volume-based particle size distribution for different ultrasonic frequencies. Ultrasound was
only applied during both the nucleation and growth stages of the crystallization process.

The transducer used to generate the frequency of 1.6 MHz is similar to the one used in the
paper of Nii et al. [23]. In this paper, glycine was crystallized under sonication at 40 kHz and
1.6 MHz. Larger crystals, compared to silent conditions, were obtained at the frequency of 1.6 MHz.
The incorporation of microcrystals into the growing crystal was given as a possible explanation for
this observation. This could not be observed in Figure 9 as the peaks of the silent experiment and
1.6 MHz overlap. Monoclinic acetaminophen crystals can be observed on all SEM images of Figure 10.
No microcrystals or changes in the crystal shape could be observed among the different frequencies,
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in contrast to the paper of Nii et al. Anti-solvent crystallization was, however, used in the paper of
Nii et al. compared to a cooling crystallization in Figures 8 and 9, and glycine was used instead of
acetaminophen. The creation of microcrystals and ultrasound enhanced crystal growth can therefore
depend on the used component or type of crystallization process.

It can be concluded that the particle size can be influenced during crystal growth by the ultrasonic
frequency. The lower the frequency, the smaller the final crystal size becomes.
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4. Conclusions

This paper showed that the particle size can be controlled by the application of ultrasound during
both the nucleation and growth phase. Seeds were generated in a continuous tubular crystallizer and
grown further in a batch vessel. Ultrasound allowed us to trigger nucleation at different supersaturation
ratios. The supersaturation ratio at which ultrasound was enabled, during seed generation, significantly
impacted the final particle size. The higher the supersaturation, the smaller the final crystals became
up to a supersaturation ratio of 1.56. Above this level, a further rise in the supersaturation ratio did
not impact the final particle size anymore. The ultrasonic power applied during seed generation, in
contrast, had an insignificant effect on the final particle size. The introduction of a 3-way valve in the
tubular setup used in this paper impeded the possibility of further particle size control.

The ultrasonic frequency applied during crystal growth in the batch vessel significantly impacted
the final PSD. Frequencies from 41 kHz to 850 kHz reduced the final particle size compared to silent
conditions; the lower the applied frequency in this range, the smaller the final particles became.
Frequencies of 1.1 MHz or 1.6 MHz did not result in a change in the final PSD compared to the
silent conditions.
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