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Abstract: Benzothiazoles are a set of molecules with a broad spectrum of biological applications.
In particular, 2-(4-hydroxy-3-methoxyphenyl)-benzothiazole is a potential breast cancer cell suppressor
whose mechanism of action has been previously reported. In the present work, the title compound
was synthesized, crystallized, and its biological activity on HeLa cells was evaluated. Its molecular
structure was compared to that obtained by molecular modeling. Theoretical calculations suggest that
the syn-rotamer is the most stable form and correlates very well with crystallographic data. The crystal
structure adopts a helical arrangement formed through O13—H13···N3 intermolecular hydrogen
bonding that propagates in the (14 -1 -3) plane. These results suggest that the title compound has
the capacity to interleave into DNA and better explain its biological effects related to the increased
CHIP expression through AhR recruitment. Finally, the biological experiments indicate that the title
compound has the capacity to decrease the viability of HeLa cells with an IC50 = 2.86 µM.
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1. Introduction

Benzothiazoles are a class of bicyclic compounds with a broad spectrum of biological
applications such as neuroprotective effects [1,2], antimicrobial activity [3–6], antioxidant and
radioprotective effects [7], anticonvulsant activity [8,9] and antitumor properties [10,11]. In particular,
2-(4-hydroxy-3-methoxyphenyl)-benzothiazole has been reported to be a tyrosinase inhibitor against
hyperpigmentation [12]. Recent studies showed that this compound and its analogues promote
signaling and nuclear translocation of Aryl hydrocarbon Receptor (AhR) and induce the carboxyl
terminus of Hsp70-interacting protein (CHIP) expression through recruitment of AhR upstream of
the CHIP gene. This mechanism has potential application in the suppression of tumor progression in
breast cancer cells [13–17]. The synthesis of the title compound has been recently improved by using
several catalysts such as LiBr [18], ZnO [19] and CdS [20], silica [21], nanoparticles, clays [22,23], and
transition metals [24,25]. The number of synthetic methods reflects the importance of this compound.
In this paper, 2-(4-hydroxy-3-methoxyphenyl)-benzothiazole was synthetized, crystalized, and its
molecular X-ray structure was compared with that simulated by theoretical calculations. Furthermore,
its activity on cervical cancer cell line (HeLa) was evaluated.
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2. Results and Discussion

2.1. Molecular Structure

The title compound crystallizes in an orthorhombic system, space group P212121, with four
molecules in the unit cell. Its X-ray molecular structure is depicted in Figure 1. The bond distances
values N3—C2 of 1.297(4) Å and N3—C9 of 1.368(4) Å are typical for an N(sp2)—C(sp2) double and
single bond order character, respectively, whereas C2—C10 bond distance of 1.453(4) has a value for a
typical single Csp2—Csp2 bond [26]. Bond lengths values S1—C2 of 1.735(3) Å and S1—C8 of 1.724(3) Å
are characteristic for a single S—Csp2 bond. Phenol and methyl ether C—O distances O13—C13 of
1.337(4) Å and O14—C14 of 1.358(4) Å, respectively, are significantly smaller than the usual values
(Car—O of 1.362(15) in phenols and 1.370(11) in ethers), but similar to the value found in the structure
of 2-(4-hydroxyphenyl)benzothiazole [27]. Both phenyl (Ph) (C10—C15) and benzothiazole (BZT)
(S1/C2/N3/C4—C9) rings are planar. The atoms C12 in the former and C2 in the latter deviate
0.004(4) Å and 0.006(3) Å, respectively, from their corresponding mean planes. The Ph ring is almost
coplanar with the benzothiazole moiety; the torsion angle between the two rings is 4.69(7)◦, which
is more coplanar than the same angle in 2-(4-hydroxyphenyl)benzothiazole (18.49(6)◦). Phenol and
methyl ether moieties are coplanar with a O13—C13—C14—O14 torsion angle value of −1.0(5)◦.
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Figure 1. X-ray crystal structure of 4-(1,3-benzothiazol-2-yl)-2-methoxyphenol with atom labeling
scheme. Ortep view at 30% probability level.

2.2. Theoretical Molecular Modeling

The DFT theoretical calculations showed that the optimized structure is similar to the X-ray
experimental structure. The geometric parameters of both the experimental and theoretical calculations
are listed in Table 1. The rotational barrier around the C2—C10 bond was calculated in order to establish
the structure of the most stable rotamer. Starting from the rotamer with the OMe group on the same
side as the heterocyclic nitrogen (syn), the value of the rotational barrier is 7.12 kcal/mol. However,
syn- and anti-rotamers are almost of the same energy with a difference of only 1.51 kcal/mol in favor
of the syn structure. The title compound crystallizes in the most stable form, the syn-rotamer, whose
calculated dipolar moment is smaller (2.6331 D) than the calculated value for the anti form (3.3379 D),
as shown in Figure 2.
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Table 1. Comparison between modeled and crystal geometric structures of 2-(4-hydroxy-3-
methoxyphenyl)-benzothiazole.

Modeled Structure Crystal Structure

Energy (kcal/mol) −717 529.76
EHOMO (kcal/mol) −136.91
ELUMO (kcal/mol) −41.60
GAP (kcal/mol) −178.52

Bond lengths (Å)
N3—C9 1.398 1.368(4)
N3—C2 1.299 1.297(4)
C2—S1 1.877 1.735(3)
S1—C8 1.815 1.724(3)

C2—C10 1.456 1.453(4)
C13—C14 1.409 1.400(5)
O13—C13 1.381 1.337(4)
O14—C14 1.399 1.358(4)

Bond angles (◦)
N3—C2—S1 113.5 115.0(2)

C2—C10—C11 122.7 122.1(3)
C2—C10—C15 118.1 118.7(3)
H—O13—C13 109.4 109

C16—O14—C14 118.9 118.2(3)
Torsion angles (◦)

N3—C2—C10—C11 −179.987 174.7(3)
N3—C2—C10—C15 0.012 −5.0(5)

C16—O14—C14—C13 −179.995 −179.2(3)
S1—C2—C10—C15 −179.985 176.2(2)
S1—C2—C10—C11 0.016 −4.1(4)

O13—C13—C14—O14 0.001 −1.0(5)
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Figure 2. Theoretical calculations for 4-(1,3-benzothiazol-2-yl)-2-methoxyphenol. Molecular structure
of: (A) syn-rotamer and (B) anti-rotamer; (C) rotational barrier plot and (D) dipolar moment plot, both
depending on the torsion angle of N3—C2—C10—C11.
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2.3. Supramolecular Structure

The hydrogen bonding scheme contributes to the full planarity of the title compound. The graph
set notation is used to describe the hydrogen bonding motifs [28]. The phenol hydrogen atom is
properly positioned to form an intramolecular hydrogen bond motif, S(5), with the methoxy oxygen
atom, O13—H13···O14. In addition, it is also engaged with the heterocyclic nitrogen, O13—H13···N3,
forming a three-centered hydrogen bond, O14···H13···N3, as the sum of angles around H13 is 360◦ [29].
The phenol oxygen atom also acts as the acceptor of one aryl hydrogen, C15—H15···O13, that
assembles the seven-membered ring motif R2

2(7), Figure 3A. The propagation of O13—H13···N3
in the (14 -1 -3) plane gives rise to the first dimension (1D) in the form of a helix, Figure 3B. The second
dimension is developed by weak interactions C16—H16A···Ph between the helixes, through the
participation of a methyl hydrogen from the methoxy group, as the donor, and the centroid of the
hydroxymethoxyphenyl ring, as the acceptor. Details of the geometry of the hydrogen bonding are
listed in Table 2.
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Figure 3. Geometry and three-dimensional arrangement of 2-(4-hydroxy-3-methoxyphenyl)-benzothiazole.
(A) Intra and intermolecular hydrogen bonding scheme of the title compound. Intramolecular S(5)
and intermolecular R2

2(7) motifs are observed; (B) helix formed by through O13—H13···N3 hydrogen
bonding in the (14 -1 -3) plane.

Table 2. Hydrogen bonding geometric features of 2-(4-hydroxy-3-methoxyphenyl)-benzothiazole.

D—H···A D—H (Å) H···A (Å) D···A (Å) D—H···A (◦)

O13—H13···O14 0.84 2.24 2.669(4) 112
O13—H13···N3 i 0.84 2.05 2.844(4) 157

C15—H15···O13 ii 0.95 2.40 3.339(4) 169
C16—H16A···Ph iii 0.95 2.77 3.571(4) 140

Symmetry codes: (i) 1 − x, 1/2 + y, 3/2 − z; (ii) 1 − x, −1/2 + y, 3/2 − z; (iii) 1 + x, y, z.
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2.4. In Vitro Citotoxicity Assay on HeLa Cells

The in vitro assay was performed in order to know the effect of the title compound on a great
interest cell line such as the HeLa line. This cell line is derived from cervical cancer and is well
established to explore of the effects of the novel drugs such as the title compound on cancer cells. Our
results showed a clear effect on the HeLa cells by MTT assay with IC50 = 2.86 µM, determined after
48 h of exposure, Figure 4. This value is consistent with the activity found against MDA-MB-231 cell
line, a highly aggressive breast cancer cell line (IC50 = 4.02 µM, determined in an assay after 96 h of
exposure) [17]. These results show a similar behavior to other cell lines because we did not observe a
total death of the cells, despite increasing the concentration of the compound. However, the potency of
the compound was higher in HeLa cells than in MDA-MB-231 cells, because our assay lasted half the
time that was reported for breast cancer cells. Likewise, our results are consistent with the antitumor
effect for other benzothiazole-containing compounds such as fluorinated 2-phenylbenzothiazole
derivatives with IC50 values between 50 to 0.0001 µM [10], as well as 2-(4-Amino-3-methylphenyl)
benzothiazole derivatives showed IC50 values between 100 nM to 100 µM [13,14]. According to these
data, the relative potency of this type of compound depends on the origin of the cancer cell line. For
this reason, we suggest exploring the activity and mechanism action of benzothiazole-containing
compounds in greater detail on HeLa cells and other cancer cell lines.
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Figure 4. Cytotoxicity of 2-(4-hydroxy-3-methoxyphenyl)-benzothiazole on HeLa cell line. After 48 h
of exposure, an MTT assay was performed and IC50 = 2.86 µM was calculated. Camptothecin 1 µM
was used as a positive control.

3. Materials and Methods

3.1. Instrumental

The uncorrected melting point was measured in open-ended capillary tubes in an Electrothermal
9300 digital apparatus. 1H (300.01 MHz) and 13C NMR (75.46 MHz) spectra were recorded on a
Varian Mercury-300 spectrometer using DMSO-d6 as a solvent and TMS as an internal reference.
Chemical shift values (δ) are in parts per million (ppm) and coupling constants (J values) are in Hertz
(Hz), ESI-MS were recorded on a Bruker micrOTOF-Q II, infrared spectra (IR) was obtained with
an ATR/FTIR PerkinElmer Spectrum v10.04.00 and UV/Vis with a Beckman Coulter spectrometer
DU 650.

3.2. Chemical Synthesis and Crystallization

The compound 2-(4-hydroxy-3-methoxyphenyl)-benzothiazole was synthesized following a
reported procedure with modification [30]. All chemicals and solvents were reagent grade and
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used as received. The reaction mixture consisted of 0.259 g (1.98 mmol) of 2-aminobenzenethiol, 0.319 g
(2.1 mmol) of 4-hydroxy-3-methoxybenzaldehyde and 0.398 g (2.1 mmol) of Na2S2O5 dissolved in
5 mL of anhydrous DMSO, and was stirred at 393 K for 45 min. The reaction progress was monitored
by TLC (using ethyl acetate:hexane in 1:1 proportion as eluent). The resulting mixture was cooled
to room temperature, cold water was added, and the resulting precipitate was collected by filtration.
The product was washed with water and left to dry at RT. The gray powder was dissolved in CH2Cl2
and washed three times with brine. The product was recrystallized three times in CH2Cl2 solution
to obtain 0.443 g of colorless block-like crystals suitable for X-ray in 87% yield, m.p. = 162–163 ◦C;
UV (EtOH) λmax(log ε) 332.6 (4.41); IR (ATR/FTIR, cm−1): ν 3400–3096, 1277, 1255 (Ar-OH); 1604,
1585 (Ar-o-disubst.); 1524 (C = N); 1191, 1011 (Ar-O-CH3); 1H NMR δ: 10.0 (br, 1H, OH), 8.03 (d, 1H,
3J = 8.8, H-4), 7.96 (d, 1H, 3J = 7.7, H-7), 7.62 (d, 1H, 4J = 1.7, H-15), 7.48 (dd, 1H, 3J = 8.2, 4J = 1.7, H-11),
7.47 (dd, 3J = 8.2, 7.7, 1H, H-6), 7.38 (dd, 1H, 3J = 8.2, 8.8, H-5), 6.91 (d, 1H, 3J = 8.2, H-12), 3.87 (s, 3H,
OCH3); 13C NMR δ: 168.0 (C-2), 154.1 (C-9), 150.5 (C13), 148.5 (C-14), 134.6 (C-8), 126.9 (C-6), 125.4
(C-5), 124.8 (C-10), 122.7 (C-7), 122.5 (C-4), 121.7 (C-11), 116.2 (C-12), 110.4 (C-15), 56.1 (CH3); m/z (ESI)
258.05 [M+].

3.3. X-ray Diffraction Methods

Single-crystal X-ray diffraction data was recorded on a D8 Quest CMOS (Bruker, Karlsruhe,
Germany) area detector diffractometer with Mo K α radiation, λ = 0.71073 Å. The structure was
solved by direct methods using SHELXS97 [31] program of WinGX package [32]. The final refinement
was performed by the full-matrix least-squares methods on F2 with SHELXL97 program. H atoms
on C were geometrically positioned and treated as riding atoms, with C-H = 0.93–0.98 Å, and
with Uiso(H) = 1.2Ueq(C). The program Mercury was used for visualization, molecular graphics
and analysis of crystal structures [33]. The software used to prepare material for publication was
PLATON [34]. Crystallographic data has been deposited with the Cambridge Crystallographic
Data Centre (CCDC) as supplementary publication CCDC number 1539167. Copies of the data
can be obtained free of charge upon application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK,
(Fax: +44-01223-336033 or E-Mail: deposit@ccdc.cam.ac.uk).

Crystal Data for C14H11NO26S (M = 257.30 g/mol): orthorhombic, space group P212121 (No. 19),
a = 5.4526(10) Å, b = 10.993(3) Å, c = 19.668(5) Å, α = β = γ = 90◦, V = 1178.9(5) Å3, Z = 4, T = 100(2) K,
Dcalc = 1.450 g/cm3, 24929 reflections measured (2.1◦ ≤ 2Θ ≤ 26.1◦), 2324 unique (Rint = 0.0733,
Rsigma = 0.0287) which were used in all calculations. The final R1 was 0.045 (I > 2σ(I)) and wR2 was
0.097 (all data), GooF = 1.072 and Abs. coefficient = 0.266.

3.4. Molecular Modeling

Gaussian 09 software [35] with B3LYP/6-311G(d,p) basis set was used to structure the optimization
and vibrational frequencies calculations. Energy calculations of the rotamers around the C2—C10
bond were performed under same basis set.

3.5. In Vitro Cytotoxicity Assay on HeLa Cells

HeLa cells (1 × 103 cells/well) in 100 µL of DMEM supplemented with 10% Fetal Bovine Serum
were seeded in 96-well culture plates. After 24 h, the cells were treated with fresh medium containing
different concentrations or not (negative control) of the title compound (1, 3, 5, 7, and 10 µM) for the
following 48 h; camptothecin 1 µM was used as positive control. The plates were analyzed for cell
survival using the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
dye reduction assay, as described elsewhere [36]. The cytotoxic effect of each treatment was expressed
as the percentage of cell survival relative to the untreated control cells, and the concentration of the
compound that inhibited 50% of HeLa cell proliferation (IC50) was determined by fitting the data to a
typical sigmoidal dose-response curve.
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4. Conclusions

In summary, 2-(4-hydroxy-3-methoxyphenyl)-benzothiazole, a potent inhibitor of the growth and
invasiveness of breast cancer cells, was crystallized, modulated, and its cytotoxic effect on HeLa cells
line was investigated by an in vitro assay. The title compound model is consistent with the obtained
crystalline structure, whose conformation leads to the formation of a helix in the crystal lattice.
In accordance with previous reports of this structure and other analogues in relation to its mechanism
of anticancer action, it is suggested that the conformation found in its crystalline arrangement can
directly interact with DNA and provoke damage and cell cycle arrest in cancer cells, in addition to
CHIP expression through the recruitment of AhR, as previously demonstrated. Finally, the in vitro
experiments showed that the title compound has a cytotoxic effect on HeLa cell line, therefore we
suggest that the biological applications of this type of molecule, such as their anticancer effects and
their interaction on nucleic acids, continue to be explored in future studies.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/2073-
4352/7/6/171/s1. The ckeckcif.
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