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Abstract: Photodetectors based on two-dimensional (2D) nanostructures have led to a high optical
response, and a long photocarrier lifetime because of spatial confinement effects. Since the discovery
of graphene, many different 2D semiconductors have been developed and utilized in the ultrafast
and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency
ranges. This review presents a comprehensive summary of recent breakthroughs in constructing
high-performance photodetectors based on 2D materials. First, we give a general overview of
2D photodetectors based on various single-component materials and their operating wavelength
(ultraviolet to terahertz regime). Then, we summarize the design and controllable synthesis of
heterostructure material systems to promote device photoresponse. Subsequently, special emphasis is
put on the accepted methods in rational engineering of device architectures toward the photoresponse
improvements. Finally, we conclude with our personal viewpoints on the challenges and promising
future directions in this research field.
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1. Introduction

The photodetector, as one of the most important optoelectronic devices in modern society,
has demonstrated the ability to precisely transform light into electrical signals. Such accurate
detections of light in the ultraviolet (UV), visible (vis), infrared (IR) and terahertz (THz) frequency
ranges is contributed by various semiconducting bandgaps, which are of fundamental and practical
importance for applications in industrial, medical and environmental research. With developments in
nanoscience and nanoengineering, numerous nanomaterials based on different semiconductors have
been synthesized for photodetectors [1]. The optoelectronic properties of photodetection systems can
be fine-tuned and modulated by varying individual structural parameters, including shape, size and
surface morphology [2].
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Among various types of nanostructured materials, two-dimensional (2D) materials have been
considered as potential candidates for high-performance photodetectors [3,4], because of their high
crystal quality features and rich physical properties. For instance, simply adjusting the number of
semiconductor layers could lead to a tunable bandgap, which helps to design photodetectors for
an exact working wavelength. Moreover, the thin planar materials with ultra-smooth surfaces are
highly compatible with flexible substrates, which are ideal building blocks for fabrication of flexible
photodetectors. Up to now, various 2D semiconducting materials have already been fabricated with
wide selections of light detection spanning from the UV to THz regime [5–7]. However, an inherent
limitation of 2D semiconductors is that they are still restricted in fulfilling so-called “5S” requirements
(high sensitivity, high signal-to-noise ratio, high spectral selectivity, high speed, and high stability) for
practical applications.

In atomically thin semiconductors, the limited optical absorption cross section leads to weak
photocurrent generation, and thus reverses the photosensitivity. For example, the low level of
optical absorption in conventional graphene phototransistors induces relatively poor responsivity
(~10−2 A W−1) [8]. Consequently, significant efforts have been devoted to investigations of the inherent
properties of 2D materials [9–11], which help to provide guidance for designing and exploring new 2D
nanomaterials with a better light absorptivity and longer carrier diffusion length. Moreover, graphene
as a versatile 2D material has shed new light on developing novel 2D photodetectors. Besides
exploring new materials, heterojunction material systems have provided an alternative platform
to promote photoresponse performance. Such 2D heterojunction photodetectors may benefit from
the combined properties from each individual semiconductor [12–14] and the internal field in the
heterojunctions [15,16], which could induce effective separations of the photo-generated electron/hole
pairs. In addition to artificially modulating these material systems, device structure engineering is
another strategy to reduce contact resistance, which effectively applies the gate voltage or form-effective
Schottky barriers between semiconductors and electrodes.

Material system design and device architecture engineering play the key roles in optimizing
photoresponse performances. To provide a comprehensive design guideline of 2D photodetectors,
this paper reviews the current breakthroughs in the field of high-performance photodetectors based
on 2D materials. We first screen the available 2D photodetectors based on various single-component
materials and present their operating wavelengths, from UV to THz frequency regions. Then, the
state-of-the-art of photodetectors is discussed based on the 2D heterojunction material systems.
Furthermore, a tailored construction of 2D devices and novel nanotechnologies are demonstrated for
photoresponse improvement. Finally, we discuss the possible challenges and opportunities in the
future development of photodetectors.

2. Two-dimensional Photodetectors Made of Single-Component Semiconductors

The performance of photodetectors is determined by the ability to transform optical signals into
electrical signals. This complex process is mainly dependent on the inherent characteristics of the
photodetector’s active materials, such as absorption coefficient, lifetime of electron-hole pair and charge
mobility. Several types of materials are selected and designed to satisfy the specific photoresponse,
including graphene, transition metal dichalcogenides (TMDs) [17] (MoS2, WS2, MoSe2), IIIA–VIA
group [18,19] (GaS, GaSe, InSe, In2Se3), IVA–VIA group compounds [20] (SnS2), black phosphorus and
the recently discovered all-inorganic perovskites [21,22].

As an example, graphene, a single layer of carbon atoms arranged in a hexagonal lattice, is
an appealing material for photonics and electronics [23–25]. Conventional graphene materials can
absorb photons from visible to infrared range [26,27] and exhibit a huge electrical mobility up
to 200,000 cm2 V−1 s−1 for a free sheet for both electrons and holes [28], which promote ultrafast
conversion of photons or plasmons [29] to electrical currents or voltages for photo response. However,
the high dark current arising from the gapless nature of graphene significantly reduces the sensitivity
of photodetection [30,31] and restricts further developments of graphene-based photodetectors. The
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discovery of 2D transition metal dichalcogenides (TMDs) with direct energy gaps in the near-infrared
(NIR) to the visible spectral regions [32,33] has opened up a new window for photodetector
fabrication [34]. Besides TMDs, group IIIA–VIA layered semiconductors have gained interest due to
their anisotropic optical, electronic, and mechanical properties. The multilayer phototransistor based
on IIIA–VIA semiconductors has reached a photoresponsivity value higher than 104 AW−1 and the
photoresponse time is only about 6 ms [35], which is one of the fastest among the reported layered
material photodetectors.

Another class of 2D materials (VA–VIA), topological insulators [36], normally have a very small
band gap (0.15~0.3 eV) in the mid-infrared range [37]. The small band gap of those 2D materials allows
for detections of near-infrared wavelengths and telecommunication band. Being earth-abundant,
the IVA–VIA layered materials are particularly desirable for sustainable optoelectronic devices [38].
As a 2D semiconducting material, the IVA–VIA group materials have unique crystal structures, in
which weak van der Waals forces between adjacent layers contribute to form stacked layers, allowing
formation of stable thin crystals with thickness down to a few atomic layers. Even a monolayered
and bilayered IVA–VIA compound has been successfully fabricated recently [39]. Those high-quality
thin single-crystalline layered materials based on IVA–VIA semiconductors have showed remarkable
performance of high responsivity and fast response rates.

Layered group VII-transition metal dichalcogenides are also a typical class of 2D materials that
exhibit a wide range of new physical phenomena. Unlike other 2D-TMDs, those layer materials have
an extra electron in the d orbital, which leads to significantly different bandgap properties, distinct
quantum confinement effects, and weak interlayer coupling. The corresponding photodetectors exhibit
competitive device performance [40]. Moreover, black phosphorus (BP) with a layer-dependent direct
band gap from monolayer to bulk has become an emerging material for photodetection [41–45], which
exhibits good optoelectronics characteristics over a wide spectrum ranging from UV to NIR. Lately,
one kind of new 2D materials, halide perovskites, has been revealed as a very promising material for
photodetectors [46] due to their fascinating features, such as large light absorption coefficients [47],
broad absorption range, [48] and high carrier mobility [49].

Multi-layered semiconductor materials perform distinct photoelectronic properties, which have
been rapidly established as intriguing building blocks for 2D photodetectors. Table 1 summarizes
their inherent properties, corresponding to the crystals structures and device performance of
single-component semiconductors. Although each type of material has unique characteristics,
efforts are still needed to overcome many intrinsic weaknesses. The approaches, including tailoring
material systems and rationally designing device structures, will be thoroughly discussed in the
following sections.
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Table 1. Basic parameters of two-dimensional (2D) materials for photodetectors. e/h: electron/hole
mobility; TMD: transition metal dichalcogenides; BP: black phosphorus; UV: ultraviolet; IR: infrared;
NIR: near-infrared; vis: visible.

2D Materials Structure
Properties

Absorption
Region Mobility cm2 V−1 s−1

Graphene Hexagonal vis-IR [26,27] 200,000 (e/h) [28]

TMDs: MX2, M = Ti, Zr, Hf,
V, Nb or Ta, Mo, W and so
on, X = S, Se or Te [50]

Hexagonal vis-NIR
[32–34,51–53]

MoS2 200–500 (e) [54]

MoSe2
0.02 (e) [51]

0.01 (h) [51]

WSe2 350 (h) [55]

TiS3 2.6 (e) [56]

WS2(1−x)Se2x 46 (h) [57]

MoS2(1−x)Se2x 0.4 (e) [58]

IIIA-VIA semiconductors:
MX, M = Ga and In, X = S,
Se, and Te

Hexagonal UV

GaS 0.1 (e) [59]

GaSe 0.6 (e) [59]

InSe 0.1 (e) [60]

GaTe 4.6 (h) [35]

VA-VIA semiconductors Rhombohedral NIR
Bi2Te3 –

Sb2Te3 –

IVA-VIA semiconductors Hexagonal UV

SnSe2 10 (e) [61]

SnS2 50 (e) [62]

SnO2 23–106 (e) [63]

VIIB-VIA semiconductors Triclinic vis
ReS2 5.9 (e)

ReSe2 9.78 (e)

BP Orthorhombic UV-NIR 104 (h) [64]

Perovskite Cubic UV-vis 20 (e) [65]

3. Heterojunction Material Systems for High Performance 2D Photodetectors

Other than single junction photodetectors, the heterojunction 2D structured materials can be
fabricated through van der Waals interactions [66,67]. Heterojunction material systems can not only
combine advantages from each material [68,69], but also allow for the modulation of band structures
for photoresponse improvements [12]. Two-dimensional heterostructures can be classified into two
main species (graphene-based and hybrid semiconductor materials) based on the material composition
and physical principles.

3.1. Graphene-Based Heterojunctions

Researchers have found that responsivity of graphene-based photodetectors is greatly increased
due to their extraordinary electrical and optical properties. However, the gapless nature of intrinsic
graphene and the limited light absorption in each atomic layer prevent efficient photocarrier separation
in graphene photodetectors. To overcome this shortcoming, the integration of graphene with other
materials appears to be a promising approach [70,71], such as quantum dots/graphene [72,73],
MoS2/graphene [12], WSe2/graphene [71] and Bi2Te3/graphene [74] heterojunctions. One easy
and functional approach for fabrication of these heterojunctions is by reattaching the different
films onto each other [12]. This multiple transferring procedure may bring contaminations to the
interfaces, which would limit the practical applications. Epitaxial growth of 2D material directly
onto other material layers is an alternate approach for fabricating such heterostructures [75,76],
which enables a guarantee of the quality of the material systems. Photodetectors based on those
2D graphene-based heterojunctions have achieved unprecedented high responsivity and sensitivity
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because of the synergistic effects. In those systems, the graphene layers are applicable for broadband,
ultrafast technologies, whereas the other semiconductors are suitable for applications requiring strong
light absorption and electroluminescence.

A novel hybrid graphene-quantum dot phototransistor has been fabricated by Gerasimos
Konstantatos et al. [77], as shown in Figure 1a. Because of the strongly light-absorbing and
spectrally tunable colloidal quantum dots, the responsivity of this hybrid photodetector is as high
as ~5 × 107 AW−1 at low excitation power and the photocurrent response obviously follows the
absorption of the PbS quantum dots (Figure 1b). This work demonstrates that efficient electronic
coupling of graphene with other technologies such as light absorbing materials will open pathways
for high performance photodetectors.
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Figure 1. (a) Schematic of the graphene-quantum dot hybrid phototransistor. (b) Spectral responsivity
of the hybrid photodetector.

As a typical TMD material, MoS2 has shown reasonably high photoresponsivity ranging from
7.5 mA W−1 to 780 A W−1 under ambient conditions. The bandgap of MoS2 can be tuned by varying
the number of layers in crystal structure. A tunable direct band gap would provide great flexibility for
designing devices with a wide spectrum response. Figure 2a shows a schematic view of a photodetector
based on a graphene-on-MoS2 heterostructure, proposed by Wenjing Zhang et al. [12]. It is worth
noting that the photoresponsivity of this device reaches 1.2 × 107 A W−1 (at Vg = −10 V; Vds = 1 V;
light power density ~0.01 W m−2) as shown in Figure 2b. The dependence of photoresponsivity of the
graphene/MoS2 heterojunction on the wavelength of light at room temperature is shown in Figure 2c,
which implies photoresponsivity is induced when the excitation energy is higher than the absorption
band gap of MoS2 (1.8 eV), which is consistent with the optical absorption feature of MoS2 layer
(Figure 2c inset). It suggests that the photocurrent, generated in this system, originates from light
absorption in MoS2. This novel 2D heterostructure material exceeds the capacities of its constituents,
providing a valuable reference for optoelectronic applications based on various heterostructural
2D materials.
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Another class of 2D materials, topological insulators, mainly Bi2Te3, Bi2Se3, Sb2Te3, are utilized to
fabricate heterostructure materials with graphene. For example, Hong Qiao et al. has presented an
effective broadband (from vis to IR) photodetector based on a graphene-Bi2Te3 heterostructure [74].
Similar to graphene-based materials, the crystal structure of Bi2Te3 is comprised of typical layered
materials via van der Waals interactions with a hexagonal unit cell. Hence, large area epitaxial growth
of Bi2Te3 nanocrystals on graphene templates is feasible. The schematic and optical images of such
heterostructure phototransistor devices are illustrated in Figure 3a,b. For comparison, photocurrent
results of two different devices based on monolayer graphene and heterostructure materials without
applying the gate bias are presented in Figure 3c. It is obvious that the photocurrent of the
heterostructure device is about 10 times higher than that of the pure graphene device. From Figure 3d,
different wavelengths show high photoresponsivity which proves such heterostructured devices are
capable of broadband photodetection from visible to NIR regime. The highest photoresponsivity is
shown at the visible region (532 nm) (about 35 A W−1 at an excitation power of 1.28 µW).

In these graphene-hybridized semiconductor systems, the light absorption mainly depends on the
semiconductors, where graphene functions only as a carrier transporting layer. Hence, the broadband
absorption characteristics of graphene have not been fully utilized in these heterojunctions. In order to
overcome the disadvantages, graphene nanoribbons (GNRs) have been adopted to engineer the band
structure of hybrid graphene photodetectors [78]. The absorption of GNR-based phototransistors is
broadband and determined by the pertinent bandgap opening in the GNR, which can be controlled
by the nanoribbon width. For example, a novel photodetector has been fabricated by Xuechao Yu
et al. which is composed of GNRs with fullerene (C60) film (Figure 4a) [79]. The photoresponse of
this GNR-C60 hybrid phototransistor under global irradiation is ∼0.4 A W−1, as shown in Figure 4b,
which is about one order higher than the bare GNR phototransistor.
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3.2. Hybrid Semiconductor Materials with p-n Junctions

Besides graphene-based heterojuctions, p-n junctions provide another platform to improve
photoresponse [80]. As we know, p-n junctions are the basic building blocks of many optoelectronic
devices, which have been utilized for rational control of their fundamental parameters, such as the
bandgap, mobility and effective mass of charge carriers. Therefore, vertical p-n heterojunctions
based on distinct layered materials have been widely used. For example, a heterojunction p-n
diode based on phosphorene/monolayer MoS2 has been fabricated by van der Waals forces [81],
which exhibits excellent current-rectifying characteristics and high Ilight/Idark ratio, up to 3 × 103.
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In addition, graphene p-n junctions [82–84], TMD p-n junctions [85] and BP p-n junctions [86,87] have
been constructed and exhibited high responsivity, due to effective separations of photo-generated
electron/hole pairs by internal electric fields.

As shown in Figure 5a, Wei Feng et al. have fabricated a lateral thin-film InSe/CuInSe2 p-n
hereojunction by a simple chemical doping procedure [88]. This lateral diode exhibits a broadband
photoresponse ranging from 254 nm to 850 nm, because of the small band gaps of InSe and CuInSe2

(Figure 5b). Meanwhile, a large responsivity of 4.2 A W−1 is obtained at a wavelength of 700 nm with
illumination power of 0.29 mW cm−2 and bias voltage of Vds = −10 V (Figure 5c). Such excellent
performance of this p-n diode is attributed to bandgap engineering by selecting desired materials and
high optical absorption by increasing channel thickness.
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4. Device Structure Engineering for High Performance 2D Photodetectors

In addition to tailoring the material compositions, device structure engineering is an alternative
route to improve sensitivity and response speed. Typical 2D layered semiconductors usually have
their own distinct band gaps. The contact resistance at the electrode/semiconductor interface is
often a dominating factor in the case of optoelectronic devices [89–91]. Meanwhile, the local electric
field enhancements in devices can improve photoresponse. Hence, various device architectures were
rationally designed to reduce the contact resistance or increase the local field of material systems (such
as forming plasmonic Schottky contact), which are reviewed in detail in this section.

4.1. Graphene (Gr)-Semiconductor-Gr-Structured Devices

Contact resistance between semiconducting channels and electrodes plays an important
role in device performance [92]. The common device structure for photodetector fabrication is
metal–semiconductor–metal-based. One challenge in this field for high-quality photodetectors is
optimizing metal contacts without damage or introduction of Fermi level at the interface of metal
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and semiconductor. To date, substantial research has been carried out on investigating the contact
properties between semiconductor materials and different metal electrodes [93].

Besides different metal electrodes, graphene (Gr) as a promising electrode has been utilized to
construct high performance 2D photoresponse devices. Unlike bulk metals, graphene is chemically
inert and thus acts as an ideal contact in absence of diffusion and reaction with semiconductor crystals.
Because of the finite density states of graphene, the graphene’s Fermi level can be tuned to obtain low
contact resistance [94,95] or even a barrier-free contact with a semiconductor [96].

Haijie Tan et al., for example, fabricated Gr-WS2-Gr photodetectors through a simple chemical
vapor deposition (CVD) grown process (Figure 6a) [97]. In this device, graphene layers are employed as
work-function tunable electrodes, while WS2 is utilized as a photoactive material, which displays strong
light–matter interaction and photon absorption. The greatest photoresponsivity of this Gr-WS2-Gr
photodetector is 3.5 A W−1 under illumination power densities of 2.5 × 107 mW cm−2 (Figure 6b).
Figure 6c shows the time-resolved photoresponse with 200-nm channel length and a corresponding
on/off ratio of 54. Similarly, M. Massicotte et al. constructed a high-quality photodetector based
on G/WSe2/G van der Waals heterostructures [71]. Figure 7a shows the schematic image of the
heterostructure. The value of photoresponse time was calculated from time-resolved photocurrent
measurements on with different layer thicknesses (Figure 7b). The shortest photoresponse time is 5.5 ps.
Incorporating graphene electrodes in other semiconductors is an efficient approach for high performing
ultrathin photodetectors and would provide insights on the contact engineering in 2D optoelectronics.
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4.2. Top-Gated Architecture Devices

In general, researchers always apply additional gate bias (Vg) and large drain-source bias (Vsd) for
obtaining high photosensitivity. Some traditional dielectric materials (SiO [9], HfO2 [31] and Al2O3 [10])
are usually selected as gate dielectrics in the photoresponse devices. Despite the rapid progress that
has been made on those dielectric materials, there is keen interest in the science community to utilize
new dielectrics for exploring new physics and functionalities [98–102]. For example, using polymer
electrolytes as the gate material is an efficient strategy to tune the carrier density and improve the
photoresponse of the device [103]. Among promising candidates, ferroelectric is another unique
option because of the ultrahigh dielectric constants and nonlinear, hysteretic dielectric response to an
electric field [104]. Recently, poly(vinylidene fluoride-trifluoroethylene) (P (VDF-TrFE)) ferroelectric
polymer films have been used as the new gate dielectric materials [105] and coated on the top
of the semiconductors (MoS2) [106]. As shown in Figure 8a,b, Xudong Wang et al. fabricated a
ferroelectric polarization gating MoS2 photodetector. The ferroelectric film can help to tune the
transport properties of the channel, because its stable remnant polarization enables to offer an ultrahigh
local electrostatic field (≈109 V m−1 within a several nanometer scale) in the semiconductor channel.
Compared with the traditional MoS2 field effect transistor (FET) photodetectors, this device shows
outstanding photodetection capabilities. Figure 8c illustrates that the device exhibits a maximum
attainable photoresponsivity and high detectivity of 2.2 × 1012 Jones. Furthermore, the stability
of the photodetectors is also excellent and the signals remain nearly unchanged after 90,000 cycles
of operation (as shown in Figure 8d). Hence, developing the device structure by utilization of the
improved gate dielectric materials is an attractive research field for next-generation high performance
2D electronic/optoelectronic devices.



Crystals 2017, 7, 149 11 of 18

Crystals 2017, 7, 149  10 of 17 

 

 
Figure 8. Optical (a) and 3D schematic (b) view of the device. (c) Photoresponsivity and detectivity of 
the device under various incident power. (d) Photocurrent response during 90,000 cycles of 
operation. 

4.3. Designed Plasmonic Nanostructures in Devices  

Enhancing the local field on thin layers is an efficient strategy to boost the currently limited 
absorption of 2D material and provide wavelength selectivity. Plasmonics as a kind of hybrid 
electromagnetic wave can rise from collective oscillations of the free electron gas within the metal 
surfaces [107,108]. Hence, the formation of plasmonics would help in increasing the local field to 
increase the photosensitivity [109]. Thanks to the tremendous progress in nanotechnologies, various 
metallic structures have been rationally designed and fabricated in recent years [110]. 

Sidong Lei et al. has achieved plasmonic enhancements for the photosensitivity by patterning 
arrays of Al nanodisks onto an InSe layer [111]. As shown in Figure 9a,b, plasmonic Al disk 
nanoantennas were fabricated onto the device. With the help of patterned Al disks, the absorption of 
the device is enhanced and the device photoresponse is also obviously enhanced in the 650– 750 nm 
range shown in Figure 9c, which is attributed to electron emission from the Fermi level of Al 
nanodisks into InSe. Meanwhile, the presence of Al nanodisks brings plasmonic enhancement 
collectively and therefore helps to improve the external quantum efficiency (Figure 9d).  

 

Figure 8. Optical (a) and 3D schematic (b) view of the device. (c) Photoresponsivity and detectivity of
the device under various incident power. (d) Photocurrent response during 90,000 cycles of operation.

4.3. Designed Plasmonic Nanostructures in Devices

Enhancing the local field on thin layers is an efficient strategy to boost the currently limited
absorption of 2D material and provide wavelength selectivity. Plasmonics as a kind of hybrid
electromagnetic wave can rise from collective oscillations of the free electron gas within the metal
surfaces [107,108]. Hence, the formation of plasmonics would help in increasing the local field to
increase the photosensitivity [109]. Thanks to the tremendous progress in nanotechnologies, various
metallic structures have been rationally designed and fabricated in recent years [110].

Sidong Lei et al. has achieved plasmonic enhancements for the photosensitivity by patterning
arrays of Al nanodisks onto an InSe layer [111]. As shown in Figure 9a,b, plasmonic Al disk
nanoantennas were fabricated onto the device. With the help of patterned Al disks, the absorption of
the device is enhanced and the device photoresponse is also obviously enhanced in the 650– 750 nm
range shown in Figure 9c, which is attributed to electron emission from the Fermi level of Al nanodisks
into InSe. Meanwhile, the presence of Al nanodisks brings plasmonic enhancement collectively and
therefore helps to improve the external quantum efficiency (Figure 9d).
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5. Conclusions

This review provides an overview of recent advances in the rapidly developing field of 2D
photodetectors. Continuous progress in this field has been witnessed by precisely controlling the
components of the desired 2D materials, as well as rational engineering of device architectures. We first
introduced the 2D photodetectors based on single-component materials and their inherent properties
(such as operating wavelength, crystals and photoresponsivity). Then, we tried to summarize the
accepted methods in rational tailoring 2D material systems for improved photoresponse. After that,
device architecture engineering was demonstrated to provide another platform for high sensitivity
and response of the photodetectors.

Although many breakthroughs have been achieved, some limitations are still present in the field
of 2D photodetectors. Here, we list a few examples. First, the responses of some 2D devices are not
fast enough for the real detector functions. Second, low-frequency (1/f) noise should be achieved
and investigated for various 2D photodetectors, because it is considered as an important metric for
evaluating the performance and benchmarking of such devices [112,113]. Third, sometimes current
saturation occurs fast in some 2D materials, which will influence the photoconductivity and therefore
detector performance.

Hence, there is a long way to go for the study of this field. First, a deeper understanding is required
of the synergistic effects among each component, which will provide the direction for the heterojunction
material design. Before that, more efforts should be directed to the fabrication and modification of 2D
semiconductors with more excellent optoelectronic properties. Meanwhile, increasing fundamental
research shall be carried out to investigate the structure-property relationships in 2D semiconductor
systems. Furthermore, an effective large scale and hierarchical assembly process should be developed
to meet the requirements of device architecture engineering for functional applications.

Of course, those challenges faced by the researchers will bring many opportunities as well;
and some new characterizations are important [114–116]. After solving the riddles, more advances
can be explored in the 2D material systems and device fabrication technologies, which will lead to
exciting discoveries and opportunities in the further development of 2D photodetectors. For example,
first, novel concepts in the materials epitaxy are attractive for constructing 2D heterojunctions and
avoiding contaminations to the interfaces, bringing improved optoelectronic properties. Second,
plasmonic nanostructures in the device fabrications remain largely unexplored, which could
enhance the absorption of 2D materials and provide wavelength selectivity. It looks promising
that many achievements in 2D photodetectors will be further attained to meet the demands of
various applications.
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