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Abstract: Two new two-dimensional (2D) layer coordination polymers—namely, [Cd(L)2]n (1)
and [Co(L)2(H2O)]n (2)—were synthesized by the reaction of corresponding metal salts with
3-(1H-imidazol-4-yl)benzoic acid (HL) incorporating 4-imidazolyl and carboxylate functional groups,
and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy, and powder
X-ray diffraction (PXRD). Complex 1 is a 2D network with (4, 4) topology, while 2 is a typical 63-hcb
topology net. Complex 1 exhibits intense light blue emission in the solid state at room temperature.
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1. Introduction

In the last two decades, coordination polymers have become an expanding research topic in the
fields of synthetic chemistry and materials science, not only because of their charming architectures
and intricate topologies, but also their widely applications in numerous areas in fluorescence, magnetic
properties, electrochemistry, gas adsorption/separation, catalysis, and so on [1–8]. The structure design
methodology and properties of coordination polymers are mainly dependent on the intrinsic organic
linkers [9,10], inorganic metal units, as well as the external synthesis conditions such as reaction
temperatures, pH of the medium, reaction solvents, and counter anions [11–13]. Generally, organic
linkers with N and/or O donors have often been utilized as effective building units in the process of
coordination polymers [14,15]. In our previous studies, we make great efforts to design favourable
organic ligands including imidazolyl- or carboxylate groups. For example, we designed the series of
4-imidazole-containing imidazole ligands and synthesized the porous coordination polymers based
on the 4-imidazolate-metal building units, showing favourable gas selective adsorption property for
CO2 molecules [16,17]. Because of the diversity of the coordination modes of carboxylate groups, we
deliberately design the difunction ligand 4-(1H-imidazol-4-yl)benzoic acid incorporating 4-imidazolyl
and carboxylate functional groups that exhibit the diverse coordination modes because of these
difunctional groups [18]. Two series of Cu(II) and Cd(II) coordination polymers are constructed based
on 4-(1H-imidazol-4-yl)benzoic acid. As an extension of our previous work, we synthesized a new
organic ligand-3-(1H-imidazol-4-yl)benzoic acid. Here, we report the synthesis and crystal structure of
two new coordination polymers of [Cd(L)2]n (1) and [Co(L)2(H2O)]n (2) obtained by the reaction of
3-(1H-imidazol-4-yl)benzoic acid (HL) with corresponding metal salts under hydrothermal condition.
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2. Results and Discussion

2.1. Structural Description of [Cd(L)2]n (1)

The X-ray single-crystal structural analysis reveals that [Cd(L)2]·H2O crystallizes in orthorhombic
Pbcn space group. The asymmetric unit of 1 contains one crystallographically-independent Cd(II)
atom, two L− ligands, and one free lattice water molecule. As shown in Figure 1, the Cd1 centre with
O4N2 binding set is coordinated by two pairs of oxygen atoms (O(1A), O(1B) and O(2A), O(2B)) of
two chelating carboxylate groups from two distinct L− ligands and two nitrogen atoms (N1, N1C)
from other two L− ligands, displaying a highly distorted octahedral coordination sphere. The Cd–O
distances are 2.277(2) and 2.488(3) Å, while the Cd–N one is 2.265(3) Å, and the coordination angles
around Cd(1) are in the range of 54.86(8)–144.02(8)◦ (Table 1). In this complex, each L− ligand acts
as a µ2-bridge to link two Cd(II) atoms while each Cd(II) atom connects four different L− ligands.
In 1, two L− ligands and two Cd(II) ions form a macrocycle through the coordination bonds, where
the lateral Cd···Cd distances are 8.33 Å, and the diagonal Cd···Cd distances are 10.01 and 13.33 Å,
respectively. Thus, the shape of this macrocycle is a rhombus. In 1, each L− links two Cd(II) ions
to form a two-dimensional (2D) (4, 4) net along the ab plane (Figures 2 and 3). And the C–H···O
(C(5)···O(2) 2.773(4) Å, C(5)–H(5)···O(2) 100◦) hydrogen bond exist among the 2D layers highlighted
in red dotted lines; particularly, the non-classic weak interaction (C(9)–H(9)···π, 2.756 Å) also exists
between the two neighbouring 2D layers, which further links the 2D layers into a three-dimensional
(3D) supramolecular polymer (Figure 4).
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Table 1. Selected bond lengths (Å) and bond angles (◦) for 1 and 2.

Bond d Bond d

1
Cd(1)–N(1) 2.265(3) Cd(1)–O(2) ii 2.277(2)
Cd(1)–O(1) i 2.488(3)

2
Co(1)–O(1) i 2.0178(12) Co(1)–N(3) ii 2.0667(14)
Co(1)–N(1) 2.1095(15) Co(1)–O(4) 2.1667(12)
Co(1)–O(4) 2.1667(12) Co(1)–O(5) 2.2327(13)

Angle ω Angle ω

1
N(1) iii–Cd(1)–N(1) 96.46(13) N(1) iii–Cd(1)–O(2) iv 124.03(10)
N(1)–Cd(1)–O(2) iv 89.19(9) O(2) iv–Cd(1)–O(2) v 131.67(13)

N(1) iii–Cd(1)–O(1) v 144.02(8) N(1)–Cd(1)–O(1)#3 102.62(10)
O(2) iv–Cd(1)–O(1) v 86.79(9) O(2) v–Cd(1)–O(1) v 54.86(8)
O(1) v–Cd(1)–O(1) iv 79.06(15)

2
O(1) iii–Co(1)–N(3) iv 99.42(6) O(1) iii–Co(1)–N(1) 97.01(5)
N(3) iv–Co(1)–N(1) 92.00(6) O(1) iii–Co(1)–O(4) 152.05(5)
N(3) iv–Co(1)–O(4) 107.27(5) N(1)–Co(1)–O(4) 90.31(5)
O(1) iii–Co(1)–O(3) 92.96(5) N(3) iv–Co(1)–O(3) 167.60(5)

N(1)–Co(1)–O(3) 87.26(5) O(4)–Co(1)–O(3) 60.37(4)
O(1) iii–Co(1)–O(5) 87.23(5) N(3) iv–Co(1)–O(5) 90.26(5)

N(1)–Co(1)–O(5) 174.81(5) O(4)–Co(1)–O(5) 84.55(5)
O(3)–Co(1)–O(5) 89.53(5)

Symmetry codes: (i) −x + 2, y, −z + 1/2; (ii) x + 1/2, y + 1/2, −z + 1/2; (iii) −x + 1, −y + 2, −z + 1; (iv) −x + 2,
y + 1/2, −z + 3/2; (iv) −x + 2, y−1/2, −z + 3/2.
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2.2. Structural Description of [Co(L)2(H2O)]n (2)

When Co(NO3)2·6H2O, instead of Cd(NO3)2·4H2O was used in the reaction, 2 with a different
structure was isolated. Compound 2 crystallizes in the monoclinic space group P21/c. The asymmetric
unit of 2 contains one crystallographically-independent Co(II) atom, two L− ligands, and one
coordinated water molecule. As shown in Figure 5, the Co1 has a distorted octahedral environment in
which the equatorial plane contains O3, O4 atoms of one chelating carboxylate groups from one L−

ligand, and N3B, O1A from other two distinct L− ligands, and the atoms N1 and O5 from L− ligand
and water molecules occupy the axial positions with an N1–Co1–O5 angle of 174.8◦ (Table 1). The two
different L− ligand employ as µ2-bridge to link two Co(II) atoms, but two carboxylate groups adopting
µ1-η1:η◦-monodentate and µ1-η1:η1-chelating coordination mode, respectively. In return, each Co(II)
atom connected other three Co(II) atoms by the L− ligand. Topologically, L− ligands bridge the Co(II)
atoms to form a 2D layer with 63-hcb topology where the Co(II) atom and L− ligand act as 3- and
2-connected nodes, respectively (Figures 6 and 7). It is noteworthy that the NH or N atom of imidazolyl
groups and the carboxylate group from L− can be effective hydrogen bonding donors or acceptors in
the construction of supramolecular structures. It can be clearly seen that the adjacent 2D layers are
further linked by rich N–H···O, C–H···O hydrogen bonds (N(4)···O(2) 2.824(19) Å, N(4)–H(4)···O(2)
143◦; O(5)···O(4) 2.787(18) Å, O(5)–H(5A)···O(4) 172◦) to produce a 3D supramolecular polymer
(Figure 8). Particularly, two benzene rings of the L− ligands between the adjacent 2D layers are nearly
parallel with a dihedral angle of 3.27◦ and are separated by a centroid–centroid distance of 3.58 Å,
indicating the presence of π-π stacking interactions (Figure 8) [19].
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2.3. Thermal Analysis and Powder X-ray Diffraction Analysis

Complexes 1 and 2 were subjected to thermogravimetric analysis (TGA) to ascertain the stability
of supramolecular architecture, and the result is shown in Figure 9. No obvious weight loss was found
for 1 before the decomposition of the framework occurred at about 405 ◦C, which is in good agreement
with the results of the crystal structure. The first weight loss of 3.92% around 200 ◦C indicates the
exclusion of coordinated water molecules (calc. 3.98%), and the decomposition of the residue occurred
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at 370 ◦C for 2. A powder XRD experiment was carried out to confirm the phase purity of bulk
sample, and the experimental pattern of the as-synthesized sample can be considered comparable to
the corresponding simulated one, indicating the phase purity of the sample (Figure 10). Furthermore,
the thermal stability of 1 and 2 and the PXRD patterns under different temperatures were examined
(Figure 10). The results imply that complexes 1 and 2 are stable up to 280 ◦C and 240 ◦C, respectively.
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Figure 10. Powder X-ray diffraction patterns of complexes 1 and 2 at varied temperature. Complex 1:
1. Simulated; 2. As-synthesized; 3. Experimental at 200 ◦C; 4. Experimental at 260 ◦C; 5. Experimental
at 280 ◦C; Complex 2: 1. Simulated; 2. As-synthesized; 3. Experimental at 150 ◦C; 4. Experimental at
210 ◦C; 5. Experimental at 240 ◦C.

2.4. Photoluminescent Property

Inorganic–organic hybrid complexes—especially comprising the d10 closed-shell metal centre and
aromatic-containing system—have been intensively investigated for attractive fluorescence properties
and potential applications, such as chemical sensors and photochemistry [20–23]. In this paper, the
solid-state photoluminescent property of complex 1 has been investigated in the solid state at room
temperature. Complex 1 exhibits light blue emission with maximum at 419 nm upon excitation
at 320 nm as depicted in Figure 11, indicating that it may be a potential hybrid inorganic–organic
photoactive material.
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3. Experimental Section

3.1. Materials and Instrumentation

All the commercially available chemicals and solvents were of reagent grade and used as
received without further purification. Elemental analyses were performed on a Perkin-Elmer
240C Elemental Analyzer. IR spectra were recorded on a Bruker Vector 22 Fourier transform
infrared (FT-IR) spectrophotometer (Bruker Instrument Inc., Karlsruhe, Germany) using KBr pellets.
Thermogravimetric analyses (TGA) were performed on a simultaneous SDT 2960 thermal analyser
(Thermal Analysis Instrument Inc., New Castle, DE, USA) under nitrogen with a heating rate of
10 ◦C·min−1. Power X-ray diffraction (PXRD) patterns were measured on a Shimadzu XRD-6000
X-ray diffractometer (Shimadzu Corporation, Kyoto, Japan) with CuKα (λ = 1.5418 Å) radiation at
room temperature. The fluorescent spectra were measured using a Perkin Elmer LS-55B fluorescence
spectrometer (PerkinElmer, Billerica, MA, USA).

3.2. Synthesis of [Cd(L)2]n (1)

A mixture of HL (0.021 g, 0.1 mmol), Cd(NO3)2·4H2O (0.0308 g, 0.1 mmol), and NaOH (0.004 g,
0.1 mmol) in 10 mL H2O was sealed in a 20 mL Teflon-lined stainless steel container and heated at
120 ◦C for 72 h. Colourless block crystals of 1 were collected with a yield of 52% by filtration and
washed with water and ethanol several times. Anal. Calcd. (%) for C20H14N4O4Cd: C, 49.35; H, 2.90;
N, 11.51. Found (%): C, 49.53; H, 2.76; N, 11.39. IR(KBr): 3680–2750 (m), 1615 (s), 1535 (s), 1399 (s), 1188
(w), 1128 (m), 1094 (s), 950 (m), 853 (m), 785 (m), 701 (w), 650 (m), 506 (m) cm−1.

3.3. Synthesis of [Co(L)2(H2O)]n (2)

Complex 2 was obtained by the same procedure used for the preparation of 1 except that the
Cd(NO3)2·4H2O was replaced by Co(NO3)2·6H2O (0.029 g, 0.1 mmol). Purple block crystals of 2 were
collected in 83% yield. Anal. Calcd. (%) for C20H16N4O5Co: C, 53.23; H, 3.57; N, 12.41. Found (%): C,
53.01; H, 3.62; N, 12.16. IR(KBr): 3650–2350 (m), 1598 (s), 1549 (s), 1371 (s), 1303 (w), 1225 (m), 1173 (m),
1072 (m), 975 (m), 837 (m), 781 (s), 712 (m), 627 (m), 587 (m), 518 (w) cm−1.

3.4. Crystal Structure Determination

The single crystal data of [Cd(L)2]n (1) and [Co(L)2(H2O)]n (2) were collected on a Bruker Smart
APEX CCD diffractometer (Bruker, Billerica, MA, USA) with graphite-monochromated MoKα radiation
(λ = 0.71073 Å) at 293(2) K. The structure was solved by direct method and refined by full-matrix least
squares on F2 using the SHELX-97 program [24]. The crystallographic data and structural refinement
are listed in Table 2.
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Table 2. Crystallographic data and structure refinement for 1 and 2.

Empirical Formula C20H14N4O4Cd C20H16N4O5Co

Formula weight 486.75 451.30
Temperature/K 296(2) 296(2) K
Crystal system Orthorhombic Monoclinic

Space group Pbcn P21/c
a/Å 10.008(6) 14.201(2)
b/Å 13.330(8) A 19.000(3)
c/Å 14.580(9) 7.1599(11)
α/◦ 90 90
β/◦ 90 94.201(3)
γ/◦ 90 90

Volume/Å3 1945(2) 1926.7(5)
Z 4 4

ρcalc mg/mm3 1.662 1.556
µ/mm−1 1.157 0.932

S 1.026 1.029
F(000) 968 924

Index ranges −13 ≤ h ≤ 13, −18 ≤ h ≤ 10,
−17 ≤ k ≤ 17, −24 ≤ k ≤ 24,
−18 ≤ l ≤ 18 −9 ≤ l ≤ 9

Reflections collected 19,008 13,088
Independent reflections 2244 4440

Data/restraints/parameters 2244/0/132 4440/0/276
Goodness-of-fit on F2 1.026 1.029

Final R indexes (I ≥ 2σ (I)) R1 = 0.0397, wR2 = 0.1217 R1 = 0.0300, wR2 = 0.0723
Final R indexes (all data) R1 = 0.0440, wR2 = 0.1309 R1 = 0.0365, wR2 = 0.0757

Largest diff. peak/hole/e·Å−3 1.301/−0.731 0.404/−0.242

4. Conclusions

In summary, we successfully obtained two new coordination polymers [Cd(L)2]n (1) and
[Co(L)2(H2O)]n (2) by the reaction of corresponding metal salts with 3-(1H-imidazol-4-yl)benzoic
acid incorporating 4-imidazolyl and carboxylate functional groups. Both complexes show 2D layer
structures, and 1 is a (4, 4) topology net while 2 is a typical 63-hcb topology network. Furthermore,
complex 1 exhibits blue photoluminescence emission at 419 nm upon excitation at 320 nm.

Supplementary Materials: Crystallographic data for the structure reported in this paper has been deposited with
the Cambridge Crystallographic Data Centre as supplementary publication Nos. CCDC 1531060 for 1 and 1531061
for 2. Copy of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2
1EZ, UK (Fax: +44-1223-336-033; E-Mail: deposit@ccdc.cam.ac.uk).
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