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Abstract: To explore the kinetics and morphology of flow induced crystallization of polymers, a 

nucleation-growth evolution model for spherulites and shish-kebabs is built based on Schneider 

rate model and Eder model. The model considers that the spherulites are thermally induced, 

growing like spheres, while the shish-kebabs are flow induced, growing like cylinders, with the first 

normal stress difference of crystallizing system being the driving force for the nucleation of shish-

kebabs. A two-phase suspension model is introduced to describe the crystallizing system, which 

Finitely Extensible Non-linear Elastic-Peterlin (FENE-P) model and rigid dumbbell model are used 

to describe amorphous phase and semi-crystalline phase, respectively. Morphological Monte Carlo 

method is presented to simulate the polymer crystallization in 3D simple shear flow. Roles of shear 

rate, shear time and shear strain on the crystallization kinetics, morphology, and rheology are 

analyzed. Numerical results show that crystallization kinetics, morphology and rheology in shear 

flow are qualitatively in agreement with the theoretical, experimental and other numerical works 

which verifies the validity and effectiveness of our model and algorithm. To our knowledge, this is 

the first time that a model and an algorithm revealing the details of crystal morphology have been 

applied to the flow induced crystallization of polymers.  

Keywords: polymer crystallization; flow induced crystallization; Morphological Monte Carlo 

simulation; shish-kebabs 

 

1. Introduction 

Polymer crystallization is an important factor affecting the microstructure and determining the 

mechanical properties of the products [1,2]. Usually, polymers are processed with techniques such as 

extrusion and injection molding. During the manufacturing processing, polymers experience 

complex flow and thermal condition with the internal chains changing and folding to form different 

types of crystalline structures. Hence, studies related to the crystalline structures forming and the 

kinetics of crystallization under different flow and thermal condition are important. 

Polymer crystallization in the flow field is also called flow induced crystallization (FIC) [2]. The 

experimental studies of FIC show that crystallization occuring in the flow field not only accelerates 

the crystallization rate, but also leads to different types of crystalline structures when compared with 

the quiescent crystallization [2], namely, both spherulite and shish-kebab structures, a typical 

oriented crystalline structure under strain, where the extended molecular chains form the shish and 

remaining molecular chains fold to form the lamellar structure which looks like kebabs, are found in 

FIC while only spherulite structure is found in quiescent crystallization. Based on the experimental 

results, many researchers proposed different analytical models for FIC which are mostly based on 

the Nakamura equation and the Avrami–Kolmogorov equation [3]. For example, Doufas et al. [4], 

Tanner [5], and Ziabicki [6] applied a multiplying factor function of stress, shear rate, and orientation, 
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respectively, to modify the crystallization kinetic constant in the original Nakamura model to take 

into account the effect of flow on crystallization. Eder [1], Kosher and Fulchiron [7], and Zheng and 

Kennedy [8] molded the effect of flow on crystallization by considering nucleation and modified the 

original Avrami–Kolmogorov model. The modified Nakamura model does predict well in FIC, 

however, it has the disadvantage that it cannot reveal the details of crystal morphology. The Avrami–

Kolmogorov model, which is based on the morphology evolution, has the disadvantage of lower 

accuracy at the later stage of polymer crystallization. Eder [1] proposed a mathematical model based 

upon the crystal morphology to consider the effect of flow on crystallization. Through considering 

spherulites as the growing spheres and shish-kebabs as the growing cylinders, they obtained a series 

of differential equations using the Schneider rate equations [9]. Zuidema et al. [10] modified the shear 

rate in the Eder model by recoverable strain as the driving force for flow induced nucleation. Their 

work has taken a huge step in revealing the microstructures of the polymer products. However, they 

did not give the method to capture the details of the nucleation-growth-impingement of crystals. 

Therefore, their work requires using the crystallization kinetics equation. Boutaous et al. [11] used 

the Schneider rate equation to describe the growth of thermally and flow induced nuclei and explored 

the contribution of thermal and flow effects on the global crystallization kinetics under different shear 

flow. They applied Avrami model to describe the kinetics and took the crystal structure induced by 

flow as spherulite. 

In order to avoid using crystallization kinetics model, morphological simulation is needed. In 

the morphological simulation, relative crystallinity is transferred to the volume fraction of crystals 

[12]. Thus far, there have been many studies on the morphological simulation of polymer 

crystallization. Examples include: Raabe [12–14], Lin et al. [15], and Spina et al. [16,17] presented a 

cellular automaton method to simulate the kinetics and topology of spherulite growth for polymer 

crystallization; Liu et al. [18,19] used a level set method to capture the growth and impingement of 

spherulites during the polymer cooling stage; Micheletti and Burge [20] and Ruan et al. [21,22] 

applied a pixel coloring method to model and simulate the crystallization of polymer and short fiber 

reinforced polymer; and Ketdee and Anantawaraskul [23] and Ruan et al. [24] presented the Monte 

Carlo simulation in study of crystallization kinetics and morphology development in polymer 

crystallization. However, we shall mention that these works were mainly concentrated on spherulite 

structure. Our work [24] was an exception. In our previous work [24], we applied a Monte Carlo 

method to capture the evolution of both spherulites and shish-kebabs and calculate the crystallization 

kinetics in polymer crystallization. The work was carried out with parametric study where the effects 

of nucleation density and growth rate of spherulites, nucleation density and length growth rate of 

shish-kebabs on the crystallization were examined. The work was in an ideal case, parameters of both 

spherulites and shish-kebabs were keeping constant to allow the simulation. This was not the case in 

the real manufacturing process.  

In this paper, we focus our attention on the more realistic shear flow which exists universally in 

the manufacturing process and experiments. Based on the Schneider rate model and Eder model, the 

morphology evolution model of both spherulites and shish-kebabs is deduced. By using this model 

and the Monte Carlo method, polymer crystallization in 3D simple shear flow is simulated. Effects of 

shear rate, shear time and shear strain on the crystallization kinetics, crystal morphology, and 

rheology of the system are discussed. 

2. Mathematical Model and Numerical Method 

2.1. Morphology Evolution Model for Spherulites and Shish-Kebabs 

In the flow field, polymers experience the complex thermal and flow condition, and different 

crystalline structures like spherulites and shish-kebabs are presented. Both types of crystals 

contribute to the crystallization kinetics. Like many other work, here we assume the spherulites are 

thermally induced and the shish-kebabs are flow induced. 
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For the spherulite structure, Schneider et al. [9] considered the spherulites as the growing 

spheres and deduced a series of differential equations. These equations, also known as the Schneider 

rate equations, are listed as follows [9]: 
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where 
tottottots VSRN ,, ,

 are the total number, total radius, total surface area and the total volume of 

spherulites, respectively; a  is the nucleation rate; and sG  is the growth rate of spherulites.  

For the shish-kebab structure, Eder [1] considered the shish-kebabs as the growing cylinders and 

obtained a series of differential equations. These equations, known as Eder model, can be described 

as follows [1] 
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where tottottotks VSLN
~

,
~

, ,  are the total number, total length, total surface area and the total volume 

of shish-kebabs, respectively; n  is the temperature dependent relaxation time for the nuclei 

formation; 22

1 / nngR    is a driving force for nucleation of shish-kebabs, with   the shear rate 

and 2/ nng   the fitted parameters; l  is the temperature and shish-length-dependent relaxation 

time for the shish during axial growth; 22

2 / llgR    is a driving force of length growth of shish-

kebabs, with 2/ llg   the fitted parameters; and 
rksG ,

 is the radius growth rate of shish-kebabs.  

The equivalent differential equations of spherulites can be deduced from Equation (1): 
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From Equation (3), we know that two parameters can define the crystallization of spherulites, namely, 

the nucleation density of spherulites sN  and the growth rate of spherulites sG . Different kinds of 

nucleation models for spherulites were proposed by researchers, which are mostly based on data 

fitting.  

Here, we adopt the model proposed by Koscher and Fulchiron [7] and use the following 

equation to describe the nucleation density of spherulites 

 bTaTN s

~~exp)(   (4) 

In Equation (4), nucleation density is a function of supercooling temperature T  which is defined 

as TTT m  0  with 0

mT  the equilibrium melting temperature, and a~  and b
~

 are the 
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empirical parameters. Equation (4) clearly shows that the nucleation of spherulites is induced by 

thermal condition.  

As reported by researchers [3,25], growth rate of spherulites does not seem to be strongly 

influenced by flow. Here, Hoffman–Lauriten expression [26] is used to describe it, namely, 
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where 0G  and 
gK  are constants, 

*U  is the energy parameter similar to an apparent activation 

energy of motion, 
gR  is the gas constant and °C30gT T    is considered as the temperature at 

which no further molecular displacement is possible.  

The equivalent differential equations of shish-kebabs can be deduced from Equation (2): 
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Under the assumption that l  [10], we obtain the following expressions 
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From Equation (7), we know that three parameters can define the crystallization of shish-kebabs, 

namely, the nucleation density of shish-kebabs ksN  , the length growth rate of shish-kebabs 
lksG ,
 

and the radius growth rate of shish-kebabs 
rksG ,

. According to Eder [1], length growth rate of shish-

kebabs 
lksG ,
 can be written as 

22

2, / lllks gRG  
 (8) 

The radius growth rate of shish-kebabs 
rksG ,

 is often assumed to be equal to the growth rate of 

spherulites sG [10], namely 

srks GG  ,
 (9) 

Due to the fact that the driving force for the nucleation density of shish-kebabs ksN   is not well 

understood, several approaches are found in literatures. We have explained these in the Introduction 

Section. Here, we adopt the model proposed by Koscher and Fulchiron [7], which is  

1CNN ks 
  (10) 

where C  is a constant, 1N  is the first normal stress difference of the system. Equation (10) shows 

that the nucleation of shish-kebabs is induced by flow condition. 
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2.2. Amorphous Phase and Semi-Crystalline Phase Model 

The first normal stress difference appears in Equation (10); hence, it is necessary to give the 

mathematical model of the crystallizing system. Here, we adopt the idea of Zheng and Kennedy [8] 

and use a two-phase suspension model to deal with the crystallizing system. According to Zheng and 

Kennedy [8], the crystallizing system can be treated as a suspension of semi-crystalline phase 

growing and spreading in a matrix of amorphous material. The amorphous phase can be described 

as the FENE-P dumbbell model and the semi-crystalline phase can be described as the rigid dumbbell 

model.  

In the amorphous phase, the matrix can be treated as the elastic dumbbell model, which is two 

beads connected by a spring. This dumbbell model obeys the well-known Fokker–Planck equation. 

There are three kinds of numerical methods to solve the Fokker–Planck equation: deterministic 

method, stochastic method and macroscopic method [27]. In the macroscopic method, through the 

moment operation in Fokker–Planck equation, the relating constitutive equation is obtained. 

However, this constitutive equation never closed and needs the closure approximation. The familiar 

closure approximations are Finitely Extensible Non-linear Elastic-Peterlin (FENE-P), Finitely 

Extensible Non-linear Elastic-Chilcott-Rallison (FENE-CR), Finitely Extensible Non-linear Elastic-

Lielens (FENE-L), Finitely Extensible Non-linear Elastic-Lielens-Simplified (FENE-LS), etc. [27]. Here, 

the FENE-P model is used, which is given by [8,27] 

0]
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where C  is the conformation tensor, )(Ta  is the relaxation time of the fluid, I  is the unit 

tensor, )(tr  is the trace of the tensor, and )()(/ uCCuCC 
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TDtD  is the upper-

convected derivative of C . The relaxation time of the fluid )(Ta  is a function of temperature and 

can be calculated by the shift factor )(TaT  as follows [8] 
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where 
0,a  is the relaxation time at the reference temperature 0T . 

ga RE /  is the constant and can 

be determined by experiment. The stress contributed by amorphous phase can be written as [8,23] 
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with aτ  the stress caused by amorphous phase, n  the number of dumbbells, and k  the 

Boltzmann constant. 

The molecular chains in semi-crystalline phase can be treated as the rigid dumbbell model, i.e., 

two beads connected by a rigid rod. This rigid dumbbell cannot be stretched but can be oriented. 

Through the force analysis, the orientation equation of rigid dumbbell can be obtained. Substitution 

of orientation equation into continuity equation of configurational distribution function leads to the 

well-known Fokker–Planck equation [8,27]. Here, we also use macroscopic method to solve it. By 

moment operation of Fokker–Planck equation, evolution equation of orientation tensor is obtained 

[8]: 
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where  RR  is the second-order orientation tensor, ),( Tsc   is the time constant of the rigid 

dumbbell, and γ  is the shear rate tensor. Time constant of the rigid dumbbell ),( Tsc   is related 

with the relaxation time of fluid )(Ta  by the following empirical form [4,8] 
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where 1,, A  are the empirical parameters. Note that the fourth-order orientation tensor appears 

in Equation (14). In order to find the solution of second-order orientation  RR , the closure 

approximation is needed. Different closure approximations are reported, including Linear, 

Quadratic, Hybrid, Invariant Based Orthotropic Fitted closure (IBOF), Eigenvalue Based Orthotropic 

Fitted closure (EBOF), etc. [28]. Here, we adopt the Quadratic closure approximation which is given 

by 

klijijkl  RRRRRRRR  (16) 

Stress caused by semi-crystalline phase scτ  is written as follows [8] 
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where ),( Tsc   is the viscosity of semi-crystalline phase which has the following relation with the 

viscosity of amorphous phase )(Ta [4,8] 
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Hence, the total stress of the crystallizing system is 

sca τττ   (19) 

which contains the contribution of both amorphous phase and semi-crystalline phase. The first 

normal stress difference in Equation (10) which is considered as the driving force for nucleation of 

shish-kebabs, as calculated by Equation (19). 

2.3. Numerical Method 

Monte Carlo method and finite difference method are used to capture the evolution of crystal 

morphology and to compute the evolution equation of amorphous phase and semi-crystalline phase, 

respectively. 

2.3.1. Monte Carlo Method 

Monte Carlo method is introduced here to capture the nucleation-growth-impingement of 

spherulites and shish-kebabs. We consider the polymer in a small spatial region,

mmmmmm ]1,0[]1,0[]1,0[  . The investigation is carried out under a certain temperature, shear 

rate and shear time. The nucleation density Ns and growth rate of spherulites Gs are given in 

Equations (4) and (5), respectively. The nucleation density of shish-kebabs Ns-k is listed in Equation 

(10). Length growth rate Gs-k,l and radius growth rate of shish-kebabs Gs-k,r are presented in Equations 

(8) and (9), respectively.  
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Figure 1 shows the Monte Carlo method we used in the simulation. To better implement this 

method, we refer to our work [24] for more details. Here, we briefly present the important techniques 

and parameters. Firstly, spatial region is divided into a large array of equally sized cubic cells and in 

our simulation this number is set as 107. Secondly, different crystals are distinguished by different 

colors. Different colors are assigned to the different nuclei and the spatial cells covered by growth are 

assigned to the same color with the corresponding crystal. Thirdly, relative crystallinity   is 

transferred to the volume fraction of crystals, which is calculated by the cells that have been 

transformed to the crystals with the total spatial number. 

The main advantages of Monte Carlo method are that it can avoid the use of crystallization 

kinetics model and it can also capture the detailed morphology evolution. 

 

Figure 1. Flow chart for the Monte Carlo method in the simulation. 

2.3.2. Finite Difference Method 

Finite difference method is introduced to compute the equations in amorphous phase and semi-

crystalline phase. Evolution of conformation tensor Equation (11) and orientation tensor Equation 

(14) are discretized by the first-order forward in time: 

Growth

Process

Radius of spherulites Rs = Gs t j+1

Radius of shish-kebabs Rs-k = Gs-k,r t j+1

Length of shish-kebabs Ls-k = 2 Gs-k,l t j+1

tj+1= tj+ Δt

Nucleation

Process

Calculate Ns，Gs，Ns-k，Gs-k,r，Gs-k,l

Produce the random new nuclei center with Ns(tj+1) − Ns(tj) of spherulites

Produce the random new nuclei center with Ns-k(tj+1) − Ns-k(tj) of shish-kebabs

Assume each nucleation occupies one unit cell

If the random point falls within the range of radius or 

length of several crystals, it is changed to a crystalline cell 

and assumed to be occupied by the crystal which having 

the minimal time to reach it.

Calculate the relative crystallinity α

α=1？

End

N

Y

Calculate T,  and N1

Produce a large number of random points restricted to the center of cells.

If it falls within the range of radius of one spherulite, it is changed to a crystalline 

cell and considered to be occupied by that spherulite;

If it falls with the range of radius and length of one shish-kebab, it is changed to a 

crystalline cell and considered to be occupied by that shish-kebab.
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with the initial condition 
3

0 I
C  , 

3

0 I
RR  .  

3. Results and Discussion 

3.1. Parameters 

The polymer we used here is the polyethylene. Material data and the parameters are listed in 

Table 1. Parameters for crystal morphology can be found in [7,10], and the parameters in amorphous 

phase and the semi-crystalline phase can be found in [8,29]. 

Table 1. Material data and input parameters. 

Variables Definition Values Variables Definition Values 

a~  Equation (4) 11056.1   0,a  Equation (12) 24.00 10 s  

b
~

 Equation (4) 11051.1   0T  Equation (12) 476.15K  

0G  Equation (5) 22.83 10 m/s  ga RE /  Equation (12) 35.602 10 K  

gRU /*
 Equation (5) 755 K  b  

Equations 

(11) and (13) 
5  

gK  Equation (5) 5 25.5 10 K  n  Equation (13) 26 31.26 10 / m  

0

mT  Equation (5) 483 K  k  Equation (13) 231038.1   

gT  Equation (5) 269 K    
Equations 

(15) and (18) 
2.9  

2
/ llg   Equation (8) 81069.2   1  

Equations 

(15) and (18) 
05.0  

C  
Equation 

(10) 
6 1 1 110 Pa s m     A  

Equations 

(15) and (18) 
44.0  

3.2. Validity of the Simulation 

To show the validity of our algorithm, results of relative crystallinity simulated by Monte Carlo 

method are compared with the data predicted by the Avrami model which are descripted in Figure 

2. Here, we assume the nucleation of spherulites and shish-kebabs occur instantaneously with the 

density 12 310 / msN   and 12 310 / ms kN   , respectively, spherulites growing with the rate 

610 m/ssG   and shish-kebabs growing with the length rate 5

, 10 m/ss k lG 

   and radius rate 

6

, 10 m/ss k rG 

  , respectively. As can be seen in Figure 2, the simulation data show agreement with 

the Avrami model. Hence, the Monte Carlo method used is efficient and reliable. 
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Figure 2. Comparison of simulation result with Avrami model. 

We now show the reliability of our model. Simulations are carried out in 3D simple shear flow. 

Figure 3 displays the shear rate with the half crystallization time when the polymer suffers a constant 

shear time of 10 s. Results are compared with the experimental data obtained by Koscher and 

Fulchiron [7]. Our model predictions are in qualitative agreement with the experimental results. 

Therefore, the model we built is valid. 

 

Figure 3. Comparison of simulation result with the experimental result [7]. 

3.3. Effects of Shear Rate 

In this section, we show the effects of shear rate on the crystallization and rheology. Here, we 

set the shear time as 10 sst   and the temperature as Tc = 140 °C. 

3.3.1. Effects of Shear Rate on Crystallization 

Figure 4 gives the number of shish-kebabs with the shear rate 0 / s,1/ s,2 / s,5 / s,10 / s  . 

The case 0 / s   represents the quiescent case. It is clear that the number of shish-kebabs increases 

rapidly with the increase of shear rate. After the cessation of shear, the number of shish-kebabs keeps 

constant. 
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Figure 4. Number of shish-kebabs with different shear rates. 

Figure 5 shows the relative crystallinity with the different shear rates. It is evident that 

crystallization rate is quicker in the case of considering the shearing effect. This accelerating effect is 

mainly contributed by the shear induced shish-kebabs. Due to the shear effect in the flow field, the 

nucleation and the length growth rate of shish-kebabs are provided. These promise the growth of 

shish-kebabs and contribute to the acceleration of crystallization process. As can be seen in Figure 5, 

increase of shear rate significantly increases the crystallization rate. This trend is consistent with the 

simulation results of Zheng et al. [8], Boutaous et al. [11] and Rong et al. [30]. 

 

Figure 5. Relative crystallinity comparison with different shear rates. 

Figure 6 plots the predicted crystal morphology with the shear rate 0 / s,5 / s,10 / s   when 

5.0 . In the quiescent case ( 0 / s  ), the crystal structure is spherulite, while in the shearing 

case ( 5 / s,10 / s  ), the crystal structures are spherulite and shish-kebab. As we can see, with the 

increase of shear rate, the global number of crystals increases obviously. In the 5 / s  case, the 

shish-kebab structure is not notable. However, in the 10 / s   case, shish-kebab structure is 

apparent. Thus, we can conclude that the increase of shear rate will lead to a higher anisotropy of the 

shish-kebab structure and also more impact of shish-kebab on the global crystal morphology. 
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(a)  

(b)  

(c)  

Figure 6. Morphology comparison with different shear rates ( 5.0 ). (a) 
10 s  ; (b) 

15 s 

; and (c) 
110 s  . 

3.3.2. Effects of Shear Rate on Rheology 

Figure 7 shows the evolution of viscosity in the system with different shear rates. It is obvious 

that the viscosity increases slowly with time before it reaches the critical value; however, when it 

reaches the critical value, the viscosity increases dramatically. This is caused by the crystallization. 

As is shown in Equation (18), the viscosity of semi-crystalline phase is calculated as 
  )/1/()()/(),( 1 ATAT asc  ; As A , sc . Thus, the viscosity of system 

changes dramatically as A . Besides, the higher shear rate leads to an earlier sudden increase 

in viscosity. This is also in agreement with the work by Zheng et al. [8]. 
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Figure 7. Evolution of viscosity with different shear rate. 

3.4. Effects of Shear Time 

In this section, we discuss the effects of shear time on the crystallization and rheology. The shear 

rate is set as 10 / s   and the temperature is set as Tc = 140 °C. 

3.4.1. Effects of Shear Time on Crystallization 

Relative crystallinity with shear time 0 s,1s,2 s,5 s,10 sst   is shown in Figure 8. 

Crystallization rate in the shear flow increases more noticeably than in the quiescent condition (shear 

time 0 sst  ). Additionally, crystallization rate increases rapidly with the increase of shear time. 

This acceleration effect is also caused by the flow induced shish-kebabs. As can be seen in Figure 8, 

the contribution of relative crystallinity induced by flow increases as the shear time increases. Results 

here are also in consist with the work by Zheng et al. [8], Boutaous et al. [11] and Rong et al. [30]. 

 

Figure 8. Relative crystallinity comparison with different shear time. 

Crystal morphology when 5.0  with the shear time 5 s,10 s,15 sst   is plotted in Figure 

9. As expected, shish-kebab structure is more apparent in the case with longer shear time. The 

morphology obtained here is similar to the experimental results by Koscher and Fulchiron [7].  
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(a) (b) (c) 

Figure 9. Morphology comparison with different shear time ( 5.0 ): (a) 5 sst  ; (b) 10 sst  ; 

and (c) 15 sst  . 

3.4.2. Effects of Shear Time on Rheology 

In Figure 10, the evolution of viscosity with different shear time is given. The viscosity of the 

system changes slowly at first, but becomes suddenly very large when time reaches a certain critical 

value. Besides, the longer the shear time, the earlier occurring of the sudden increase in viscosity. 

This is also caused by the crystallization process, which we explained in Section 3.3.2. 

 

Figure 10. Evolution of viscosity with different shear time. 

3.5. Effects of Shear Strain 

In this section, we discuss the effects of shear strain. We set the temperature as Tc = 140 °C. 

3.5.1. Effects of Shear Strain on Crystallization 

Figure 11 plots the evolution of relative crystallinity with time at the total shear strain equal to 

50 in three cases: shear rate 
12 s   and shear time 25 sst  , shear rate 

15 s   and shear time 

sts 10 , and shear rate 
-110 s   and shear time 5 sst  . As shown in Figure 11, the case with 

higher shear rate and shorter shear time (
110 s  , 5 sst  ) obtains the quickest crystallization rate. 

This is mainly due to the following two reasons: (1) as seen in Figure 11, the number of shish-kebabs 

in this case is the largest; and (2) the length of shish-kebabs ksL   is the product of the length growth 

rate 
lksG ,
 and the growing time t

~
 (begin with the nucleation of the shish-kebab and end with 
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the shear time), which can be approximated with 
slks tG ,
. With the help of Equation (8), we know 

that ksL   is a function of 
st

2 ; when we keep the shear stain 
st   as constant, the length of 

shish-kebabs ksL   is larger in the case with higher shear rate  . Thus, in the higher shear rate and 

short shear time case (
110 s  , 5 sst  ), the contribution of shish-kebabs is larger. This also agrees 

with the numerical work by Zheng et al. [8]. 

 

Figure 11. Relative crystallinity comparison with same shear strain but different shear rate and shear 

time. 

3.5.2. Effects of Shear Strain on Rheology 

Figure 12 shows the evolution of viscosity at three different conditions. As expected, the case 

with higher shear rate and short shear time (
110 s  , 5 sst  ) has the earliest occurring sudden 

increase. 

 

Figure 12. Evolution of viscosity with same shear strain but different shear rate and shear time. 

4. Conclusions 

A morphological Monte Carlo simulation is carried out to calculate the crystallization kinetics 

and capture the crystal morphology in 3D simple shear flow. Effects of shear rate, shear time and the 

shear strain on crystallization kinetics, crystal morphology and rheology of the system are discussed. 

The conclusions are drawn as follows. 
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(1) The evolution model and Monte Carlo method established are effective and reliable. With 

the evolution model and Monte Carlo algorithm, we obtain reliable crystallization kinetics 

and detailed crystal morphology. 

(2) Effects of shear rate, shear time and shear strain on crystallization and rheology obtained 

here is in agreement with other numerical work and experimental results. We show the great 

influence of shear rate and shear time on the crystallization kinetics, crystal morphology and 

rheology of the system. In a higher shear rate or longer shear time case, the contribution of 

shish-kebabs to both crystallization kinetics and morphology becomes more significant and 

the sudden increase of viscosity occurs earlier. Under the same shear strain, the case with 

higher shear rate and shorter shear time can lead to a quicker crystallization rate and an 

earlier occurrence of sudden increase of viscosity. 
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