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Abstract: A Wulff figure—the polar graph of the surface tension of a crystal—with a discontinuity
was calculated by applying the density matrix renormalization group method to the p-RSOS model,
a restricted solid-on-solid model with a point-contact-type step–step attraction. In the step droplet
zone in this model, the surface tension is discontinuous around the (111) surface and continuous
around the (001) surface. The vicinal surface of 4H-SiC crystal in a Si–Cr–C solution is thought to be
in the step droplet zone. The dependence of the vicinal surface growth rate and the macrostep size
〈n〉 on the driving force ∆µ for a typical state in the step droplet zone in non-equilibrium steady state
was calculated using the Monte Carlo method. In contrast to the known step bunching phenomenon,
the size of the macrostep was found to decrease with increasing driving force. The detachment of
elementary steps from a macrostep was investigated, and it was found that 〈n〉 satisfies a scaling
function. Moreover, kinetic roughening was observed for |∆µ| > ∆µR, where ∆µR is the crossover
driving force above which the macrostep disappears.

Keywords: Monte Carlo simulation; crystal growth; surface and interface; density matrix renormalization
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1. Introduction

The faceted macrosteps on a crystal surface are known to degrade the grown crystal [1]. Although
studies have investigated methods of dispersing faceted macrosteps, an effective method has not yet
been established. For example, in the case of solution growth for 4H-SiC, the faceted macrosteps remain
near equilibrium. This formation of faceted macrosteps near equilibrium has been considered to be due
to the effects of anomalous surface tension. To control the dynamics of macrosteps, the fundamentals
of the phenomena with macrosteps must be clarified.

The connection between the surface tension and the instability with respect to macrostep formation
is also scientifically interesting. In 1963, Cabrera and Coleman [2] phenomenologically studied
anomalous surface tension and studied its effect on a vicinal surface near equilibrium. They assumed
several anomalous surface tensions, and then discussed the possible equilibrium crystal shapes (ECSs).
They also declared the instability with respect to the macrostep formation to be the result of anomalous
surface tension [3]. However, at that time, the microscopic model used to determine the anomalous
surface tension was not provided.

Jayaprakash et al. [4] studied the faceting transition of the ECS using a terrace–step–kink (TSK) model
with the long-range step–step interaction expressed by the equation ∑i 6=j ∑ỹ g0/[x̃i(ỹ)− x̃j(ỹ)]2 [5–7],
where g0 is the coupling constant of the elastic repulsion, x̃i is the location of the ith step on a vicinal
surface normal to the mean running direction of steps, and ỹ is the location along the steps. They
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showed that the step–step interaction affects the coefficient of the O(ρ3) term in the surface free energy,
which is given by

f (ρ) = f (0) + γρ + Bρ3 +O(ρ4), (1)

where ρ is the step density, γ is the step tension, and B is step interaction coefficient.
This ρ-expanded form of the free energy excluding the quadratic term with respect to ρ is called
the Gruber–Mullins–Pokrovsky–Talapov (GMPT) [8–11] universal form. It is well known that the ECS
can be obtained using the Landau–Andreev method [12,13] or from the polar graph of the surface
tension using the Wulff theorem [14–17]. When the long-range step–step interaction is attractive,
B becomes negative at low temperatures, and the slope of the surface on the ECS has a jump at the
facet edge. This jump in the surface slope is referred to as a first-order shape transition [4,18] after the
fashion of a phase transition.

The step bunching for Si near equilibrium in ultrahigh vacuum has been studied for Si(111) [19–24]
and Si(113) [25–28]. Williams et al. [19,20] have experimentally demonstrated that the step bunching
of Si(111) is caused by the competition between the polymorphic surface free energies for the Si(111)
(1 × 1) and (7 × 7) structures based on the GMPT surface free energy (Equation (1)). Additionally,
Song et al. obtained the temperature–slope phase diagram for the step bunching on Si(113) by analyzing
the results of X-ray diffraction, and have reported that an anomalous surface free energy caused by
a step–step attraction may explain the step bunching phenomenon. Lössig [29] and Bhattacharjee [30]
have stated that the TSK model with a short-range step–step attraction and with the long-range
step–step repulsion can represent the step bunching phenomenon. By analyzing the scanning tunneling
microscopy results on a vicinal surface of Si(113) tilted toward the [11̄0] direction, van Dijken et al. [27]
demonstrated that there is a step–step attraction to condense steps and a large long-range step–step
repulsion. Shenoy et al. [31,32] have shown that the TSK model with a short-range step–step attraction
and with the long-range step–step repulsion causes the periodic array of the n-merged steps using
a renormalization group method. Einstein et al. [33] introduced the idea of the random matrix
to the terrace width distribution to assist in the determination of the strength of the long-range
step–step repulsion.

Step bunching or step faceting near equilibrium occurs without long-range step–step
repulsion [18,34–45]. Rottman and Wortis [18] studied an ECS using a three-dimensional ferromagnetic
Ising model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions.
They calculated ECS using mean-field theory. When the NNN interaction is negative, they showed that
the ECS has the first-order shape transition at the (001) facet edge at low temperatures. Using a lattice
model with a point-contact-type step–step attraction [38–45], Akutsu showed that a faceted macrostep
self-assembles at equilibrium in association with the morphological change resulting from the
discontinuous surface tension. The lattice model was a restricted solid-on-solid (RSOS) model with
point-contact-type step–step attraction (p-RSOS model, Figure 1). The term “restricted” means that
the height difference between NN sites is restricted to {0,±1}. It was considered that the origin of the
point-contact-type step–step attraction is the orbital overlap of the dangling bonds at the meeting point
of the neighboring steps. The energy gained by forming the bonding state is regarded as the attractive
energy between steps. The surface tension of the model was numerically calculated using the density
matrix renormalization group (DMRG) method [46–51], and it was demonstrated that the surface
tension of the vicinal surface tilted toward the 〈111〉 direction is discontinuous at low temperatures
because of the point-contact-type step–step attraction.

This connectivity of the surface tension for the p-RSOS model is directly linked to the faceting
diagram (Figure 2). There are two transition temperatures in the p-RSOS model—Tf ,1 and Tf ,2.
At temperatures of T < Tf ,1, the surface tension around the (111) surface is discontinuous; for T < Tf ,2
(< Tf ,1), the surface tension around the (001) surface is discontinuous. Based on the connectivity
of the surface tension, the temperature region T < Tf ,2 is called the step-faceting zone, the region
Tf ,2 ≤ T < Tf ,1 is called the step droplet zone, and the region Tf ,1 ≤ T is called the GMPT [8,9] zone.
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Moreover, the plot of the roughening transition temperature of the (001) surface divides the step
droplet and GMPT zones into step droplet zones I and II and GMPT zones I and II, respectively [43,44].
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Figure 1. (a) Perspective view of the restricted solid-on-solid (RSOS) model tilted toward the 〈110〉
direction; (b) Top-down view of the RSOS model. Thick blue lines represent surface steps. This figure
was reproduced from Akutsu [45].
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Figure 2. Faceting diagram of the p-RSOS model (RSOS model with point-contact-type step–step
attraction) for a vicinal surface obtained using the density matrix renormalization group (DMRG)
method. Squares: calculated values of Tf ,1. Triangles: calculated values of Tf ,2. Open circles:
calculated roughening transition temperatures of the (001) surface. Solid line: zone boundary line
calculated using the two-dimensional Ising model. For the definitions of and details about the QI
Bose solid, liquid, and gas, please refer to Akutsu [43]. This figure was reproduced from Akutsu [43].
GMPT: Gruber–Mullins–Pokrovsky–Talapov.

In our previous study [45], the height profile of a faceted macrostep at equilibrium was investigated
on the p-RSOS model, and it was demonstrated that the characteristics of the height profile of
a macrostep can be classified by the connectivity of the surface tension. The characteristics of the height
profile of a macrostep are irrelevant to the details of the crystal structure. Hence, the height profile
of a macrostep can be used to determine in which zone the surface exists. For example, the height
profile of the macrostep in the case of 4H-SiC [1] is similar to the profile in the step droplet zone [45].
This suggests that the surface tension of 4H-SiC around the faceted side surface is discontinuous.

In the present work, under a driving force ∆µ, the disassembly of the faceted macrostep in the
step droplet zone to form a kinetically roughened homogeneous surface (Figure 3) in non-equilibrium
steady state was studied using the Monte Carlo method on the p-RSOS model. Step droplet zone I was
the focus of this study; the step-faceting zone will be studied in future work. To focus on the dynamics
affected by the surface tension, surface diffusion [52–55], elastic effects [5–7,20,21], and polymorphic
effects [19,20,28] were excluded.
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Figure 3. (a) Macrostep size. Blue line: 〈n〉 = 1/(z + 2/Nstep) with z = 0.307 + 17.1|∆µ|/ε + 6.85×
103(|∆µ|/ε)2. Pink lines: 〈n〉 = 1.79 + 9.16 × 10−6(|∆µ|/ε)−1.89; (b) Vicinal surface growth rate.
Pink line: v = 0.0855 sign(∆µ)(|∆µ|/ε)1.06, where sign(x) = 1, 0, and −1 for x > 0, x = 0, and x < 0,
respectively. Blue line: v = p1v1 = 0.132p1∆µ/ε with p1 = 0.332 + 15.6|∆µ|/ε + 4.43× 103(|∆µ|/ε)2.
Green line: v = 0.151∆µ/ε. εint/ε = −0.9 and kBT/ε = 0.63 (step droplet zone I). The plotted values
were obtained as averages over 2× 108 Monte Carlo steps per site (MCS/site).

This paper is organized as follows. In §2, the model and the discontinuous surface tension are
briefly explained. In §3, the results obtained using the Monte Carlo method are presented. The process
of detaching the steps from a macrostep is discussed in §4 through the analysis of the results in the
case of small |∆µ|. In §5, the case of large |∆µ| is considered; for this case, the size of a macrostep is
modeled using a scaling function, and a crossover point ∆µR associated with kinetic roughening is
introduced. The implications of the results are discussed in §6, and §7 concludes the paper.

2. Restricted Solid-on-Solid Model with Point-Contact-Type Step–Step Attraction

2.1. Restricted Solid-on-Solid Model with Point-Contact-Type Step–Step Attraction

The microscopic model considered in this study is the p-RSOS model (Figure 1). The Hamiltonian
of the (001) surface can be written as

Hp−RSOS = N εsurf + ∑
n,m

ε[|h(n + 1, m)− h(n, m)|+ |h(n, m + 1)− h(n, m)|]

+ ∑
n,m

εint[δ(|h(n + 1, m + 1)− h(n, m)|, 2) + δ(|h(n + 1, m− 1)− h(n, m)|, 2)], (2)

where N is the total number of lattice points, εsurf is the surface energy per unit cell on the planar
(001) surface, ε is the microscopic step energy, δ(a, b) is the Kronecker delta, and εint is the microscopic
step–step interaction energy. The summation with respect to (n, m) is taken over all sites on the square
lattice. The RSOS condition is required implicitly. When εint is negative, the step–step interaction
becomes attractive (sticky steps).

It should be noted that the p-RSOS model (Equation (2)) automatically includes the “entropic
step–step repulsion”. Since the p-RSOS model is an RSOS model, the overhang structures with respect
to the height of the surface are inhibited by the geometrical restriction. This is the microscopic origin
of the entropic step–step repulsion.



Crystals 2017, 7, 42 5 of 17

2.2. Discontinuous Surface Tension

The polar graphs of the surface tension and the surface free energy were calculated using the
DMRG method [46–51], and are shown in Figure 4. In low-dimensional cases, more precision
is required than can be provided by a mean field calculation of the partition function [56].
Hence, to obtain reliable results, the DMRG method—which was developed for one-dimensional (1D)
quantum spin systems [46]—was adopted. The transfer matrix version of the DMRG method—known
as the product wave function renormalization group (PWFRG) method [49–51]—was used in this
study. Details of the calculation method for the surface tension and the surface free energy are given in
Appendix A. In Figure 4, the angle θ is the tilt angle from the (001) surface toward the 〈111〉 direction.
The surface gradient p is related to θ as |p| = ± tan θ. The surface tension was calculated from the
surface free energy f (p) as

γsurf(px, py) =
f (px, py)√
1 + p2

x + p2
y

. (3)

The calculated surface tension and the surface free energy at kBT/ε = 0.63 and εint/ε = −0.9 are
shown in Figure 4.
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Figure 4. (a) Polar graph of the surface tension (Wulff figure) and Andreev free energy (equilibrium
crystal shape, ECS) calculated using the DMRG method. This figure was reproduced from Akutsu [45];
(b) Surface free energy. kBT/ε = 0.63, εint/ε = −0.9 (step droplet zone I). Red lines: Z(R) calculated
using the DMRG method. Blue lines and squares: polar plots of (a) the surface tension γsurf(θ)/ε

(−54.74◦ < θ < 54.74◦), where θ is the tilt angle of the vicinal surface from the (001) surface toward the
〈111〉 direction; and (b) the surface free energy. Pale blue lines: values for the metastable surfaces for
(a) the surface tension; and (b) the surface free energy. End points of the pale blue lines (p∗ and −p∗):
approximate spinodal points. Point O: Wulff point. εsurf was assumed to equal ε. An enlarged figure
of the ECS near the facet edges is shown in Appendix A.

The surface tension contains discontinuities near the (001) and (111) surfaces in the case of
εint/ε = −0.9, kBT f ,2/ε = 0.613± 0.02, and kBT f ,1/ε = 0.709± 0.02. At kBT/ε = 0.63, the surface is
in the step droplet zone (Figure 2), where the surface tension is continuous around the (001) surface
but discontinuous around the (111) surface.

The ECS calculated using the DMRG method (Appendix A) is plotted in red in Figure 4a. This ECS
result agrees well with the ECS obtained using the Wulff theorem [14–17]. In step droplet zone I,
the (001) surface meets the curved area without a discontinuity in its slope point P in Figure A1)
(The Gauss curvature, which is the determinant of the curvature tensor, jumps at the facet edge of the
(001) surface), whereas the (111) surfaces meet the curved areas with a discontinuity in their slopes
(point Q in Figure A1).
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At the zone boundary lines in Figure 2, the following conditions are satisfied [40,43]:

f (111)(q) = f (111)(0) + γq,1(T)|q|+ Cq,eff(T)|q|4 +O(|q|5),
Bq,eff(T) = 0, Cq,eff(T) > 0, (at T = Tf ,1) (4)

γq,1(T) = lim
n→∞

γq,n(T)/n (at T = Tf ,2), (5)

where q(T) is the surface gradient on the vicinal surface near the (111) surface, f (111)(q) is the
surface free energy of the vicinal surface near the (111) surface, γq,n(T) is the step tension of
an n-merged (negative) step [43], and Bq,eff(T) and Cq,eff(T) are coefficients. In GMPT zones I and II,
since Bq,eff(T) > 0, the surface free energy f (111)(q) has a form similar to Equation (1). As the
temperature decreases, Bq,eff(T) decreases and Cq,eff(T) increases. For T < Tf ,1, where the vicinal
surface exists in the step droplet zone, Bq,eff(T) becomes negative and the first-order transition occurs.
Hence, the upper zone boundary line of T = Tf ,1 is a critical curve.

The key points to obtain Equations (4) and (5) are the meeting of neighboring steps and the
inhomogeneity of the vicinal surface [40,43]. For the vicinal surface tilting toward the 〈111〉 direction,
two neighboring steps can occupy one site at the same time, and no more than three steps can occupy
one site at a time because of the geometrical restrictions of the RSOS model. Hence, the surface
cannot be mapped to a 1D fermion model [57–59]. The double occupancy of a site gives rise to the
point-contact-type step–step interaction. When the interaction is repulsive, the term Cq,eff(T)|q|4
is present [43,60,61], whereas in the case of attractive interaction, the vicinal surface becomes
inhomogeneous and can be expressed as a mixture of the various n-merged steps (macrosteps) [40].
Since the population of the n-merged steps depends on the surface slope, Bq,eff(T)|q|3 is affected by
the point-contact-type step–step attraction through the slope dependence of the size of the macrosteps.

3. Monte Carlo Results

3.1. Monte Carlo Method

To study the non-equilibrium steady state with macrosteps, the vicinal surface of the following
Hamiltonian with a fixed number Nstep of steps was investigated using the Monte Carlo method with
the Metropolis algorithm:

Hnoneq = Hp−RSOS − ∆µ ∑
n,m

[h(n, m, t + 1)− h(n, m, t)], (6)

where ∆µ = µambient − µcrystal is the driving force, µcrystal is the chemical potential of the bulk crystal,
and µambient is the chemical potential of the ambient phase. The explicit form of ∆µ is given in
Markov [62]. When ∆µ > 0, the crystal grows because its chemical potential is lower than that of the
ambient phase, whereas when ∆µ < 0, the crystal recedes (evaporate, dissociates, or melts).

The explicit procedure of the application of the Monte Carlo method in this study is as follows.
At the initial time, the steps are positioned at equal distances. Then, the lattice site to be updated is
randomly selected. The surface structure is updated non-conservatively using the Monte Carlo method
with the Metropolis algorithm. With the RSOS restriction taken into consideration, the structure
is updated with probability 1 when ∆E ≤ 0 and with probability exp(−∆E/kBT) when ∆E > 0,
where ∆E = E f − Ei, Ei is the energy of the present configuration and E f is the energy of the updated
configuration. The energy is calculated from the Hamiltonian (Equation (6)). A periodic boundary
condition was imposed in the direction parallel to the steps. In the direction normal to the steps,
the lowest side of the structure was connected to the uppermost side by adding a height with a number
Nstep of steps.

Snapshots of the simulated surfaces after 2× 108 Monte Carlo steps per site (MCS/site) are shown
in Figure 5. The height profiles of the surfaces for the cross section along the bottom of the top-down
views are also shown as side views.



Crystals 2017, 7, 42 7 of 17

Top- 

down 

view

Side

view

(a) (b) (c)

(d) (e) (f)

Figure 5. Snapshots at 2× 108 MCS/site. ∆µ/ε = (a) 0; (b) 0.0005; (c) 0.003; (d) 0.004; and (e) 0.006.
kBT/ε = 0.63, Nstep = 240, system size: 240

√
2× 240

√
2; (f) ∆µ/ε = 0.015, system size: 40

√
2× 40

√
2,

Nstep = 40, εint/ε = −0.9. The surface height is represented by brightness with 10 gradations,
with brighter regions indicating a larger height. The darkest areas next to the brightest ones represent
terraces that are actually higher by a value of unity, because of the finite gradation. The height profiles
for the cross section along the bottom of each surface map are shown below each map.

3.2. Macrostep Size and Surface Growth Rate

At equilibrium (∆µ = 0), the vicinal surface showed a homogeneous stepped surface for a small
mean surface slope p̄ (| p̄| < p1,eq, Figure 4b) because the surface tension around the (001) surface is
continuous in the step droplet zone. In contrast, when the mean surface slope satisfies p1,eq < p̄ <

√
2,

homogeneous stepped surfaces are thermodynamically unstable [40]. Then, the surface is realized
through two-surface coexistence; the two surfaces are the surface with a slope equal to p1,eq and the
(111) surface [40–45]. This is illustrated in Figure 5a. Because the (111) surface is smooth (which means
a small number of kinks exist on it), it hardly moves. From the time-dependent Ginzburg–Landau
equation of the surface [63,64], the smooth surface does not move because the surface stiffness is
divergent [65]. The reason the faceted macrosteps move at equilibrium is the finiteness of the system
size [45].

For ∆µ > 0, the size of a single macrostep decreases as ∆µ increases, as shown in Figure 5.
Furthermore, for ∆µ/ε ' 0.006, the macrostep disassembles to form a homogeneous rough surface.
Because the temperature was the same for all cases shown in Figure 5, the surfaces with ∆µ/ε ' 0.006
roughen kinetically. Interestingly, the change in the size of macrostep is symmetric in the case of ∆µ < 0,
where the steps are receding. The patterns obtained in the case of ∆µ < 0 (e.g., ∆µ/ε = −0.003) is
quite similar to the patterns obtained in the case of |∆µ| (e.g., ∆µ/ε = 0.003).

To study the characteristics of the vicinal surface on a mesoscopic scale (approximately 10 nm
to 1 µm) in detail, the size of the macrosteps and the growth rate of the surface were measured during
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the Monte Carlo simulation. To evaluate the size of a macrostep, the number n of elementary steps in
a locally merged step [40] was introduced. The average size of the locally merged steps is obtained as

〈n〉 = ∑n Nnn
∑n Nn

, (7)

where Nn is the number of n-merged steps on the vicinal surface.
The time evolutions of 〈n〉 at different values of ∆µ/ε are shown in Figure 6a. As shown in

Figure 6a, for |∆µ| ≥ 0.003, 〈n〉 is constant near 2× 108 MCS/site. Hence, surfaces with |∆µ| ≥ 0.003
are in non-equilibrium steady state. The time evolutions of 〈n〉 in non-equilibrium steady state
were also obtained for |∆µ| = 0.001 and 0.002, the results of which are not shown in Figure 5.
The ∆µ-dependence of 〈n〉 at 2× 108 MCS/site is shown in Figure 3a. For small |∆µ|, 〈n〉 decreases
linearly as |∆µ| increases.

To estimate the growth rate v, the average surface height h̄(t) was calculated as h̄(t) =

(1/N )∑n,m h(n, m). The time evolutions of h̄(t) at different values of ∆µ/ε are shown in Figure 6b.
As shown in the figure, h̄(t) increases or decreases linearly with increasing t. Hence, v is defined as

v =
h̄(t)− h̄(0)

t
. (8)

The ∆µ-dependence of v is shown in Figure 3b. |v| increases as |∆µ| increases.
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Figure 6. (a) Time evolution of the average number 〈n〉 of steps in a merged step; (b) Time evolution of
the average surface height h̄. kBT/ε = 0.63. Dark blue lines: ∆µ = 0. Light blue lines: ∆µ/ε = ±0.0005.
Green lines ∆µ/ε = ±0.003. Purple lines: ∆µ/ε = ±0.004. Coral lines: ∆µ/ε = ±0.006. Pink lines:
∆µ/ε = ±0.01. System size: 240

√
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√
2, Nstep = 240, εint/ε = −0.9.

4. Detachment of Steps from Macrosteps

4.1. Size of a Macrostep

As shown in Figure 5b,c, for sufficiently small |∆µ|, 〈n〉 can be approximated as

〈n〉 ≈ N1 + nmNm

N1 + Nm
=

Nstep

N1 + Nm

=
1

z + Nm/Nstep
, (9)

N1 = zNstep

= p1Nstepζ

[
1− (1− z)√

2ζ

]
, ζ =

L
aNstep

=
1
p̄

, (10)

where nm is number of elementary steps contained in the most dominant size of the macrosteps,
Nm is the number of nm-merged steps, N1 is the number of elementary steps outside of the macrostep,
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z is the ratio N1/Nstep, and p1 is the slope of the “terrace” surface that is in contact with the (111)
surface. From the snapshots, it was assumed that Nm = 2.

From the definitions of z and Equation (9), z can be calculated from 〈n〉 as

z =
1
〈n〉 −

2
Nstep

. (11)

Thus, the curve of best fit was obtained as z = 0.307 + 17.1|∆µ|/ε + 6.86× 103(|∆µ|/ε)2 by
applying the method of least squares to the values of z, which was estimated from 〈n〉 using
Equation (11) on a system of size 240

√
2 × 240

√
2. The values of 〈n〉 reproduced by the best fit

equations are plotted as blue lines in Figure 3a. The lines agree well with the values of 〈n〉 for small
|∆µ|. The best fit equation reveals the following. In the case of p̄ = 0.707, 69.0% of all Nstep steps
self-assemble to form a macrostep in the limit of |∆µ| → 0. For small |∆µ|, 〈n〉 decreases linearly as
|∆µ| increases. This indicates that 〈n〉 has a cusp singularity at |∆µ| = 0, because the slope of the line
in Figure 3 in the limit of ∆µ→ +0 (from the right-hand side) is different from the slope of the line in
the limit of ∆µ→ −0 (from the left-hand side).

4.2. Growth Rate

Next, the growth rate was investigated. Here, the following model for the time evolution of 〈n〉
was considered:

∂〈n〉
∂t

= n+ − n−, (12)

where n+ is the rate at which elementary steps join the macrostep, and n− is the rate at which
elementary steps detach from the macrostep. In the growth condition (∆µ > 0), when n+ < n−,
the macrostep dissociates. In this case, n+ limits the surface growth rate. In contrast, when n+ > n−,
〈n〉 increases up to Nstep, and n− limits the surface growth rate. When the surface is in steady state,
n+ = n−.

Because a surface with a slope of p1 shows step flow growth, n+ is considered to be p1v1 for small
|∆µ|, where v1 is the growth rate of a single step. Hence, the growth rate in steady state is expressed as

v = n+ = p1v1. (13)

p1 is obtained from Equation (10) as

p1 =
z

ζ − (1− z)/
√

2
. (14)

At equilibrium, the terrace surface with a slope of p1,eq = 0.3532, which was calculated using
the DMRG method, coexists with the (111) surface, which forms the side surface of the macrostep.
For |∆µ| > 0, p1 can be obtained from Equation (14) using the value of z. In the same manner as
for z, the curve of best fit was obtained for p1 on a system of size 240

√
2× 240

√
2 as p1 = 0.332 +

15.6|∆µ|/ε + 4.43× 103(|∆µ|/ε)2. In this manner, it was found that p1 increases linearly with |∆µ| for
small |∆µ|. Equation (13) with v1 = 0.132∆µ is plotted in Figure 3b as blue lines.

Since n+ = n− in steady state, the equation for n− may be used. To model the mechanism of the
detachment of an elementary step from a macrostep, the two-dimensional (2D) nucleation mode was
considered. In this case, v should be proportional to exp(−const./|∆µ|) [66]. However, the Monte Carlo
data could not be fit by this equation. The 2D multi-nucleation mode was also considered. In this case,
v should be proportional to |∆µ|2/3 exp(−const./|∆µ|) [62,66]. However, the Monte Carlo data could
not be fit by this equation either. From this, the detachment of an elementary step from a macrostep
was considered to be caused by the “noise” of the attachment and detachment of atoms (“Atoms” in
the model correspond to unit cells) from the ambient phase in association with thermal fluctuations.
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5. Kinetic Roughening

As shown in Figure 5, macrosteps do not form at large |∆µ| (|∆µ|/ε ' 0.006). This means that the
vicinal surface is kinetically roughened [67–69].

Analysis of the results obtained by the Monte Carlo calculations for 〈n〉 yielded the
scaling function Y(x) for 〈n〉, and the power law behavior for v (Figure 7). The scaling function
Y(x) = L−0.375 ln[〈n〉 − 〈n〉∞], where 〈n〉∞ = 1.79 is 〈n〉 at |∆µ| → ∞, is expressed as

Y(x) =

{
0.037 x → −∞

−0.242x− 1.49 x > xR, (xR = −5.3 in Figure 7),
(15)

where x = ln |∆µ|/ε. xR is determined as the point of intersection of the blue and the pink lines in
Figure 7b. The value of xR corresponds to ∆µR/ε = 0.005. This yields

〈n〉 = 〈n〉∞ + exp
{

L0.38Y
(

ln[
|∆µ|

ε
]

)}
. (16)

This means that 〈n〉 − 〈n〉∞ shows power law behavior, with the power depending on the system
size. The lines based on the power law equation for a system size of 240

√
2× 240

√
2 are shown as pink

lines in Figure 3a. The values obtained using the Monte Carlo method agree well with the power law
functions for large |∆µ|.

v also shows power law behavior. ln |v| (Figure 7b) increases linearly with increasing ln |∆µ|/ε

for |∆µ| > ∆µR. Thus, v can be expressed as

|v| ≈ |∆µ|β, β = 1.06± 0.06. (17)

Here, the choice of β as the symbol for the exponent is in accordance with Reference [70].
The power law equation given by Equation (17) is plotted as pink lines in Figure 3b. The values
obtained using the Monte Carlo method agree well with the lines for large |∆µ|.

0

−0.2

−0.4

−8

−10

−8 −6 −4−6 −4

(a) (b)

ln( |∆µ/ε|) ln( |∆µ/ε|)

Y

ln
(|
v
|)

  80  2 x 80  2
160  2 x 160  2
240  2 x 240  2
 80  2 x 80  2

(ε   = 0)int

  80  2 x 80  2
160  2 x 160  2
240  2 x 240  2

Figure 7. (a) Scaling function for 〈n〉. Y = L−0.38 ln[〈n〉∆µ − 〈n〉∞]. Pink line: Y = −0.242 ln(|∆µ|/ε)−
1.49; (b) ln(|v|) plotted against ln(|∆µ|/ε). Pink line: ln(|v|) = 1.06(|∆µ|/ε)− 2.46. Blue line: ln(|v|) =
p1v1 = 0.132p1|∆µ|/ε with p1 = 0.332 + 15.6|∆µ|/ε + 4.43× 103(|∆µ|/ε)2. Green line: ln(|v|) =

0.996(|∆µ|/ε)− 1.92. All data are averaged over 2× 108 MCS/site.

As shown in Figure 7, ∆µR is not a roughening transition point in the Kosterlitz–Thouless
universality class [71–74], but a crossover point from the two-surface coexistence state to
a homogeneous rough surface. To clearly observe this crossover, the case with εint/ε = −1.3 and
kBT/ε = 0.83—which is also in step droplet zone I—was calculated (Figure 8). In this case, 〈n〉 and
v showed behaviors quite similar to the case of εint/ε = −0.9 and kBT/ε = 0.63. In the case of
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εint/ε = −1.3, ∆µR = 0.0045 was obtained. The shift from the power law behavior for v at small |∆µ|
in the case of εint/ε = −1.3 was more evident than in the case of εint/ε = −0.9.

It should be noted that the surface structure contains locally merged steps to some extent,
though the surface is homogeneous at the thermodynamic limit (L→ ∞). For |∆µ| > ∆µR, the power
of v is similar to that in the case of the original RSOS model (εint = 0, Figure 7). In spite of this,
the growth rate remained lower than that in the original RSOS model at large |∆µ| (Figure 3b). To see
the structure at a more microscopic scale, the surface was simulated with a small system size, as shown
in Figure 5f. Though the surface appeared homogeneous for a system size of 240

√
2 × 240

√
2,

several locally merged steps were observed at a system size of 40
√

2× 40
√

2. These locally merged
steps cause the kink density of the surface to decrease. Hence, the growth rate in this case was lower
than that for the original RSOS model.

6

4

2

0 0.1 0.2

0.01

0.005

0

0 0.1 0.2

<
n
>

|∆µ/ε|

v

|∆µ/ε|

(a) (b)

Figure 8. (a) ∆µ-dependence of 〈n〉. Light blue line: 〈n〉 = 1/(z + 2/Nstep) with z = 0.154 +

4.71|∆µ|/ε + 55.0(|∆µ|/ε)2. Pink line: 〈n〉 = 1.79 + 0.0288(|∆µ|/ε)−0.85; (b) ∆µ-dependence of v.
Light blue line: v = p1v1 = 0.141p1|∆µ|/ε with p1 = 0.188 + 5.13|∆µ|/ε + 22.5(|∆µ|/ε)2. Pink line:
v = 0.0663(|∆µ|/ε)1.05. εint/ε = −1.3. kBT/ε = 0.83 (step droplet zone I). Circles: system size of
80
√

2× 80
√

2, averaged over 2× 108 MCS/site.

6. Discussion

At equilibrium, planar surfaces such as the (001) surface are smooth at temperatures less than the
roughening transition temperature TR. The height–height correlation function G(r) = 〈(h(r)− 〈h〉)2〉
of the planar surface is constant for any r on a smooth surface. In contrast, for T ≥ TR, planar surfaces
are rough, and G(r) is logarithmically divergent with respect to |r| [11,71–74]. For the vicinal surface,
G(r) is logarithmically divergent with respect to |r|, though the terrace is smooth [71,72]. Hence, in the
present case, the height–height correlation function of the surface with a slope of p1,eq is logarithmically
divergent, whereas that of the (111) surface—which is the side surface of the macrostep—is constant
(non-divergent) at equilibrium.

For 0 < |∆µ|, the height–height correlation function for a surface with a slope of p1 is considered
to be logarithmically divergent with respect to |r|. This is also supported by the exponent β introduced
in §5. The growth rate of the rough surface is known to increase linearly as ∆µ increases [66,75].
The exponent β being close to 1 is consistent with the results obtained through calculations using the
discrete Gaussian model [75].

The kinetically roughened state for |∆µ|/ε > ∆µR is somewhat different from the state in step
droplet zone II [43,44]. In step droplet zone II, the (001) surface is rough because the temperature is
higher than its roughening transition temperature. Hence, the correlation length ξ for G(r) on the
(001) surface is divergent. Furthermore, 〈n〉 depends on the surface slope p as 〈n〉 = n0 + Cp2 +O(p3)

in the limit p → 0, where n0 and C are constants. In contrast, the correlation length ξ for the
(001) surface in step droplet zone I is considered to be finite. 〈n〉 varies with the surface slope p as
〈n〉 = n0 + Cp +O(p2) in the limit p→ 0. The locally merged steps remain to some extent (Figure 5f).
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The relaxation time required to reach steady state increases as |∆µ| decreases (Figure 6a). The time
to relax to steady state is associated with the power law behavior of the surface [55,69,76–78].

The focus of the present study was the dynamics affected by the surface tension. As indicated
in the cases of 4H-SiC [1] and Si(113) [21,25–33], elastic step–step repulsion expressed by the formula
∑i 6=j ∑ỹ g0/[x̃i(ỹ) − x̃j(ỹ)]2 [5–7] is important in real systems near equilibrium. The elastic effects
are considered to weaken the step–step attraction in the present study. In the step droplet zone,
the elastic step–step repulsion produces two effects: the shift of the zone boundary lines [43,45] and
the formation of a regular array of n-merged macrosteps [31,32]. Since the elastic step–step repulsion
causes Bq,eff(T) (Equation (4)) and γq,n(T) (Equation (5)) to increase, the zone boundary lines shift to
lower temperatures. In the short range, the step–step attraction dominates and sticks steps together,
whereas in the long range, the step–step repulsion dominates and separates n∗-merged macrosteps,
where n∗ is the size of the macrostep with the lowest surface free energy. Thus, the following guidelines
were obtained to disperse macrosteps: (1) the temperature should be raised; (2) the elastic step–step
repulsion should be increased; and (3) the absolute value of the driving force should be increased.

In real systems, other effects, such as surface diffusion [52–55] and polymorphic effects [19,20],
should also be taken into consideration. The combination of these effects and the effect of the
discontinuous surface tension will be considered in future work.

7. Conclusions

The effect of the driving force ∆µ on the size of a faceted macrostep and the growth rate of
the vicinal surface in non-equilibrium steady state were investigated using the Monte Carlo model.
Step droplet zone I for the p-RSOS model was the focus of this study.

• As |∆µ| increases, the size of the macrostep 〈n〉 decreases, whereas the growth rate |v| increases.
• At small |∆µ|, the ∆µ-dependence of 〈n〉 and v can be explained by the attachment and

detachment of elementary steps to and from the macrostep.
• When |∆µ| ≥ ∆µR, the macrostep disassembles, and the surface roughens kinetically.

∆µR/ε = 0.005 is the crossover point from the two-surface coexistent state to the rough
surface state.

• A scaling function Y(x) was obtained with x = ln(|∆µ|/ε) and 〈n〉 = 〈n〉∞ + exp[L0.38Y(x)].
• For |∆µ| > ∆µR, 〈n〉 and |v| both show power law behavior.

Acknowledgments: This work was supported by the Japan Society for Promotion of Science (JSPS) KAKENHI
Grant Number JP25400413.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; the collection, analysis, or interpretation of data; the writing of the manuscript; or the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

ECS Equilibrium crystal shape
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GMPT Gruber–Mullins–Pokrovsky–Talapov
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p-RSOS Restricted solid-on-solid with a point-contact-type step–step attraction
NN Nearest-neighbor
NNN Next-nearest-neighbor
DMRG Density matrix renormalization group
1D One-dimensional
PWFRG Product wave function renormalization group
MCS Monte Carlo steps
2D Two-dimensional
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Appendix A. Anomalous Surface Tension: Density Matrix Renormalization Group Calculation

The surface tension is the amount of surface free energy per unit normal area. To evaluate the
surface free energy of the vicinal surface, the terms related to the Andreev field [13] were added:
η = (ηx, ηy). The Hamiltonian for the grand canonical ensemble with respect to the number of
steps is [79].

Hvicinal = Hp−RSOS − ηx ∑
n,m

[h(n + 1, m)− h(n, m)]− ηy ∑
n,m

[h(n, m + 1)− h(n, m)]. (A1)

The Andreev field behaves like a chemical potential with respect to a single step.
The Legendre-transformed surface free energy introduced by Bhattacharjee [30] corresponds to the
Andreev free energy [11,13].

From a statistical mechanics perspective, the grand partition function Z is calculated as
Z = ∑{h(m,n)} exp[−βHvicinal], where β = 1/kBT. The summation with respect to {h(m, n)} is
taken over all possible values of h(m, n). The Andreev free energy f̃ (η) [13] is the thermodynamic
grand potential and is calculated from the grand partition function Z as [79]

f̃ (η) = f̃ (ηx, ηy) = − lim
N→∞

1
N kBT lnZ , (A2)

where N is the number of lattice points on the square lattice. The Andreev free energy calculated
using the DMRG method is shown in Figure A1a as a function of (ηx/ε, ηy/ε) for ηx = ηy. It should
be noted that the profile of the Andreev free energy f̃ (ηx, ηy) is similar to the ECS z = z(x, y),
where f̃ (ηx, ηy) = λz(x, y), (ηx, ηy) = −λ(x, y), and λ represents the Lagrange multiplier related to
the crystal volume.

1

0.98

0.80.76
0.80.76

1.5

1

0.5

0

P
Q

[110][110]
- -

Z

R

(a) (b)

R

p

P

Q

p
1,eq

Figure A1. (a) Profile of the Andreev free energy, which is equivalent to the profile of the ECS.
This figure was reproduced from Akutsu [45]; (b) p = |p| plotted against R. p = tan θ, where θ is the tilt
angle of the vicinal surface toward the 〈111〉 direction. kBT/ε = 0.63. εint/ε = −0.9. Z = f̃ (ηx, ηy)/ε =

(λ/ε)z(x, y), R = ±
√

X2 + Y2 with X = Y and (X, Y) = (ηx/ε, ηy/ε) = −(λx/ε, λy/ε), where
z = z(x, y) is the ECS and λ is the Lagrange multiplier related to the crystal volume. Pink lines:
Andreev free energy calculated using the DMRG method. Blue lines: surface slope p calculated using
the DMRG method. The pale pink line near point Q in (a) represents a metastable surface; The pale
blue line in (b) represents the surface slope of the metastable surface. The end points of the pale lines
show the approximate spinodal points. It is assumed that εsurf equals ε. Points P and Q indicate the
(001) and (111) facet edges, respectively.
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The surface gradient p was also calculated using the DMRG method as p = 〈(h(m + 1, n) −
h(m, n), h(m, n + 1)− h(m, n))〉. The calculated p with px = py is shown in Figure A1b.

Using the inverse Legendre transform with respect to f̃ (η),

f (p) = f̃ (η) + η · p, (A3)

we obtained the surface free energy f (p) per unit xy area. A plot of f (p) is shown in Figure 4b.
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