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Abstract: We experimentally and theoretically investigate the band-gap and transmission properties
of phononic crystal (PC) beams immersed in water. Spectral element method (SEM) is developed
for theoretical analysis in which the hydrodynamic loading is taken into consideration. Influence of
the hydrodynamic loading on band-gap and transmission properties of the PC beams are studied.
To directly detect the displacement transmission of a fully or partially submerged PC beam, a fiber Bragg
grating (FBG) displacement sensing system is set up. Agreement between the experimental results and
theoretical/numerical calculations also indicates the excellent dynamic sensing performance of the FBG
sensing system in the research of the fluid-structure interaction (FSI) problem. Obvious lowering of
the band gaps due to fluid-solid coupling is clearly demonstrated. The results in this work might be
useful in research such as active tuning of the band gap and transmission properties of the PCs through
fluid-solid coupling.

Keywords: fluid-solid interaction (FSI); band gaps; displacement transmission; phononic crystals (PCs);
fiber Bragg gratings (FBGs)

1. Introduction

Phononic crystals (PCs) are periodic structures made up of two or more kinds of materials
(solid-solid or fluid-solid) with different acoustic impedance [1–3]. Due to their ability to forbid
propagation of acoustic or elastic waves through band gaps induced by Bragg scattering or local
resonance, PCs have received significant attention in the applications of wave manipulation, vibration
suppression, wave guiding, and so on [4–6]. Although fluid-solid PCs have been one of the research
focuses in the past years, in most literature fluid only serves as a constituent or a medium through
which acoustic waves propagate [7–11]. Conventionally, accelerometers (e.g., [8,12] for flexural waves)
or ultrasonic immersion transmission technique (e.g., [9,11] for longitudinal waves) are used to detect
the transmission spectra of phononic crystals.The fluid-structure interaction (FSI) on tuning the
band-gap or transmission properties of the PCs are seldom addressed. As a promising method for
the PCs to adapt to different operation conditions, tuning band gaps through solid-fluid coupling
is currently receiving attention. To actively control the localized modes for guiding or filtering
waves, Jin et al. theoretically investigated the dynamics of a phononic crystal plate with hollow and
liquid-filled pillars [7]. Casadei and Bertoldi realized self-regulation of dispersion properties by
coupling incident aerodynamic flow to a slender beam carrying a periodic array of local resonators [12].
In fact, in addition to band gap tuning, knowledge about the influence of fluids coupled to PC beams

Crystals 2017, 7, 366; doi:10.3390/cryst7120366 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
http://dx.doi.org/10.3390/cryst7120366
http://www.mdpi.com/journal/crystals


Crystals 2017, 7, 366 2 of 15

or plates on elastic band-gap and transmission properties is fundamental to a variety of potential
applications for the PCs, from environmental or liquid sensing to structural design or vibration control
in the marine environment.

In fluid-solid coupling, hydrodynamic loadings may contain the contributions of added mass
(i.e., the proportionality constant of the inertial force to the acceleration of the solid) and/or viscous
damping (i.e., the proportionality constant of the viscous force to the velocity of the solid). A wide
range of research on FSI of non-periodic structures submerged in a fluid have laid a foundation for the
study of the fluid-solid coupling on the PCs, particularly vibration characteristics of slender beams
subjected to hydrodynamic loadings. Eysden and Sader presented theoretical analysis of the resonant
frequencies of rectangular cantilever beams immersed in fluid applicable to large Reynolds number [13].
Green and Sader studied the increase of hydrodynamic loading on an infinitely long rigid cylinder
immersed in a viscous fluid undergoing small amplitude oscillations [14]. Naik et al. experimentally
investigated the dynamic response of a resonant cantilever beam in a viscous fluid by considering
the influence of liquid properties and the gap height between the beam and the solid boundary [15].
Generally, in modeling fluid-solid coupling for submerged structures, several challenges and factors
need to be addressed compared with structural modeling performed in vacuo. These factors include
the dimensions or shapes of the structures with respect to fluid damping, amplitude of vibration,
viscosity of the fluid, and the influence of the fluid boundary conditions. Viscosity of the water plays
a dominant role when the submerged structures being considered are of microscopic size. However,
for structures of macroscopic size immersed in fluid, viscous damping can be neglected and the fluid
can be assumed to be inviscid in nature [13].

Although some studies on the FSI problem have provided experimental comparisons on structural
dynamics (e.g., [15–18]), few experimental research focused on the transmission properties of structures
immersed in fluid. In this paper, we investigate the lowering of the flexural wave band gaps of
a PC beam through fluid-solid coupling. First, we present the spectral element method (SEM) to
determine the band structure and displacement transmission of the PC beam, in which the influence
of hydrodynamic loading on the PC beam is considered. Then, we present a fiber Bragg grating
(FBG) displacement sensing system and employ the FBG system to directly detect the displacement
transmission of the PC beam partially or fully immersed in a water tank. Finite element method
(FEM) simulations are also provided for comparisons. To the authors’ best knowledge, this is the first
experimental study on FSI of the PC beam using the point-wise FBG displacement sensing technique.

2. Modeling of Fluid-Solid Coupling by Spectral Element Method

We investigate a periodic binary straight beam of macroscopic size immersed in water as
illustrated in Figure 1a. Water is assumed to be incompressible and inviscid in nature. Each segment of
the periodic binary straight beam has the same dimension (length a, width b, and height h). The spectral
element method (SEM) [19] is used to analyze the influence of hydrodynamic loadings on the flexural
wave band-gap properties and displacement transmission of the PC beam. The PC beam is located
away from the boundary of the fluid domain and thus the boundary influence on the dynamic of the
PC beam can be neglected.

First, we consider a single beam segment in a unit cell as shown in Figure 1b. The governing
equation of the free bending vibration of a partially or fully submerged Timoshenko beam is
described by

κGS
(

∂2y(x,t)
∂x2 − ∂θ(x,t)

∂x

)
− (ρ + ρF,eff)S

∂2y(x,t)
∂t2 = 0

EI ∂θ2(x,t)
∂2x + κGS

(
∂y(x,t)

∂x − θ(x, t)
)
− ρI ∂2θ(x,t)

∂t2 = 0
, (1)

where y(x, t) is the transverse displacements, θ(x, t) is the slope due to bending, I is the area moment
of inertia about the bending axis, ρ is the mass density of the beam segment, ρF,eff is the effective added
mass density of fluid (relating to the depth of the surrounding fluid), E is the Young’s modulus, G is the
shear modulus, κ is the shear correction factor, and S is the cross-section area [20]. The shear correction



Crystals 2017, 7, 366 3 of 15

factor (also known as shear coefficient) accounts for the variation of the shear stress across the cross
section of the phononic crystal beam and it is dependent on the shape of the cross section. The shear
correction factor is shown to be related to the Poisson’s ratio ν (e.g., for rectangle cross section it is
(6 + 12ν + 6ν2)/(7 + 12ν + 4ν2) and for circle cross section it is (5 + 5ν)/(6 + 5ν) [21]). Note that the
surrounding fluid does not contribute to the rotational inertia of the beam segment. In Equation (1),
the effect of the hydrodynamic loading is taken into account by introducing the effective mass density
of fluid (here the water) to modify the density of the beam segment in air. The consideration of the
added mass and neglection of the viscosity are often used in modeling non-micro Bernoulli-Euler
beam structures fully or partially immersed in fluid [22–24].
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Figure 1. Schematic representation of: (a) a unit cell of the PC beam immersed in water; (b) the force
equilibrium of a submerged beam segment.

The mode shape functions of y(x, t) and θ(x, t) are assumed in the spectral forms as [25]

Y(x) = α1e−ik1x + α2e−ik2x + α3e−ik3x + α4e−ik4x, f or 0 < x < a
Θ(x) = β1α1e−ik1x + β2α2e−ik2x + β3α3e−ik3x + β4α4e−ik4x, f or 0 < x < a

, (2)

where the wavenumbers (i.e., k1, k2, k3, k4) are obtained by solving the dispersion equation of the
beam segment. The four wavenumbers are respectively represented as [20]

k1 = −k2 = 1√
2

kF

√
(η I

S + EI
κGS )kF

2 +
√
(η I

S + EI
κGS )

2
kF

4 + 4(1− η I
S kG

4) ≡ kt

k3 = −k4 = 1√
2

kF

√
(η I

S + EI
κGS )kF

2 −
√
(η I

S + EI
κGS )

2
kF

4 + 4(1− η I
S kG

4) ≡ ke

, (3)

where k1 and k2 respectively represent the rightward and leftward traveling waves,
k3 and k4 respectively represent the rightward and leftward near-field decaying waves,
kF =

(
ω2(ρ + ρF,eff)S/EI

)1/4, kG =
(
ω2(ρ + ρF,eff)/κG

)1/4, and η = ρ
ρ+ρF,eff

. Following the symbol
in [20], we introduce new subscripts t and e for simplification of the symbols for later derivations.

Obviously, the wavenumbers and mode shape functions of the beam segment are influenced by
the added mass of the fluid.

The spectral components of the applied transverse shear forces Q(x) and bending moments M(x)
of the submerged beam segment has the relationships to displacement and bending slope as

Q(x) = κGS
(
Y′(x)−Θ(x)

)
, M(x) = EIΘ′(x). (4)
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The spectral beam elements are related to the nodal shear forces and bending moments in the two
ends of the beam segment as

ST(ω)dj =


−Q(0)
−M(0)

Q(a)
M(a)

, (5)

where dj is the nodal displacement of the jth beam segment (i.e., dj =
{

Y(0) Θ(0) Y(a) Θ(a)
}

)
and ST(ω) is the dynamic stiffness matrix, represented as

ST(ω) =

[
ST11 ST12

ST21 ST22

]
, (6)

where the sub-matrix in Equation (6) are respectively

ST11 = EI

[
DT11 DT12

DT21 DT22

]

ST12 = EI

[
DT13 DT14

DT23 DT24

]
= (ST21)

T

ST22 = EI

[
DT33 DT34

DT43 DT44

] , (7)

where
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S kG

4
)−1/2

B = (1/8)
(
(η I

S + EI
κGS )

2
kF

4 + 4
(

1− η I
S kG

4
))1/2

∆T = 8kF
2/i
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2rtre
(
et
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)(

ee
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− 4eeet
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(
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2 + re
2)(et
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ee
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, (8)

with
et = e−ikta, ee = e−ikea,rt =

1
kt

(
kt

2 − kG
4
)

, re =
1
ke

(
ke

2 − kG
4
)

. (9)

Now we consider flexural wave propagation in an infinite submerged PC beam. The Floquet
boundary condition, Yj+1 = eµYj, is applied on a single unit cell (as shown in Figure 1a, where µ is the
wave propagation constant. To obtain the band structure of the infinite PC beam immersed in water,
the spectral element matrix of the two segments in a unit cell is assembled. The equation of motion of
the unit cell coupling with fluid in spectral form can be written as ST11a ST12a 0

ST21a ST22a + ST11p ST12p
0 ST21p ST22p


 ul

um

ur

 =

 fl
0
fr

, (10)
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where ul , um, and ur are respectively the nodal displacement in the left, middle, and right of the unit
cell and fl and fr are respectively the left and right nodal loading forces, namely,

ul =

{
Yl
Θl

}
, um =

{
Ym

Θm

}
, ur =

{
Yr

Θr

}
, fl =

{
Ql
Ml

}
, fr =

{
Qr

Mr

}
. (11)

Note that in Equation (10) we define two kinds of spectral beam elements with the same geometry
but made of two different materials a (stands for aluminum) and p (stands for PMMA). In addition, the
sub-matrix for each material in Equation (10) are again derived based on Equations (6)–(9). The degrees
of freedom (DOFs) in the middle point connecting to the two beam segments can be eliminated by
relating um to ul and ur (i.e., um = −

(
ST22a + ST11p

)−1
(ST21aul + ST21aur) Thus, Equation (10) can be

further reduced as [
Sll Slr
Srl Srr

][
ul
ur

]
=

[
fl
fr

]
, (12)

where
Sll = ST11a − ST12a

(
ST22a + ST11p

)−1ST21a

Slr = Srl
T = −ST12a

(
ST22a + ST11p

)−1ST12p

Srr = Srl
T = ST22p − ST21p

(
ST22a + ST11p

)−1ST12p

. (13)

Applying the Floquet boundary condition, Equation (13) can be reformulated by matrix
transformation as

T

[
ur

fr

]
= eµ

[
ul
fl

]
, (14)

where T is the transmission matrix obtained from spectral beam elements, given by

T =

[
−Slr

−1Sll −Slr
−1

Srl − SrrSlr
−1Sll −SrrSlr

−1

]
. (15)

From the eigenvalue problem of Equation (15), one can calculate propagation constant µ and the
band structure of the submerged PC beam can accordingly be obtained.

For a finite PC beam immersed in water under excitation of harmonic loadings, the global stiffness
matrix of the entire beam is obtained after assembling the spectral stiffness matrix of each spectral
beam elements. The equation of motion of the PC beam coupling with fluid in spectral form is given by

S(ω)d = f(ω), (16)

where d is the nodal displacement vector in the form of
{

Y1 Θ1 · · · YN+1 ΘN+1

}
, f(ω) ={

f1 0 · · · 0 0
}T

is the loading force vector with dimension of (2N + 2)× 1, and the global
dynamic stiffness matrix of the beam is given by

S(ω) =



ST11a ST12a 0 0 . . . 0 0
ST21a ST22a + ST11p ST12p 0 . . . . . . 0

0 ST21p ST22p . . . . . . . . . . . .
0 0 . . . . . . . . . . . . 0

. . . . . . . . . . . . ST11a ST12a 0
0 . . . . . . . . . ST21a ST22a + ST11p ST12p
0 0 . . . . . . 0 ST21p ST22p


(2N+2)∗(2N+2)

. (17)
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Finally, the flexural displacement transmission of the submerged beam can be obtained by the
definition of

T(ω) = 20 log|YN+1(ω)/Y1(ω)|, (18)

where YN+1(ω) and Y1(ω) are respectively the displacement amplitudes on the two ends of the
submerged PC beam.

3. Experimental and Theoretical Validation and Discussion

First, we compare the band structures of an infinite PC beam in vacuo (i.e., practically in air) and
in water to see the influence of the added mass of fluid on the band-gap properties. Figure 2 shows the
band structures of a PC beam in vacuo (Figure 2a) and in water (Figure 2b) calculated by the SEM, in
which the complete band gaps are shaded and the wavenumbers are normalized for the unit cell (i.e.,
q∗ = q(2a)/π). The PC beam consists of two materials, 6061 aluminum and PMMA. Each of the two
materials (i.e., 6061 aluminum and PMMA) has the size of 0.045 m (length) × 0.015 m (width) × 0.01 m
(height). The elastic constants of the PC beam used in the SEM calculation are ρAl = 2735 kg/m3,
EAl = 7.47× 1010 Pa, ρPMMA = 1142 kg/m3, EPMMA = 4.5× 109 Pa, and κ = 1.2. The Poisson’s ratio
of the two materials is 0.33. In the calculation of the band structures, the PC beam is assumed to be
far away from the boundary of the fluid domain and thus the effective added mass density of fluid
is set as the mass density of water as ρF,eff = ρWATER = 1000 kg/m3 [24]. For the dry PC beam in
air, ρF,eff is set as zero in SEM calculation. Three Bragg-scattering-induced band gaps can be seen in
Figure 2 within 0–15 kHz. From Figure 2 we can see that both the center frequency and the gap widths
decrease when the effect of the surrounding fluid is taken into account as an added mass applied on the
phononic crystal beam. As a result, the effective mass density of the submerged phononic crystal beam
is increased and accordingly the frequency ranges of the pass- and stop-bands decrease. The effect
of the added mass on lowering the pass-bands as well as the stop-bands gets larger as the frequency
increases. Obviously, the band-gap properties can be tuned via interaction with the surrounding fluid.Crystals 2017, 7, 366 7 of 15 
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Figure 2. Band structure of the phononic crystal beam: (a) without coupling with water; (b) coupling
with water (color online).

The relationships between the related band-gap parameters and the dimensions of the PC beam
(i.e., d/D, where d and D are respectively different calculated 3D dimensions and the dimensions
of the submerged PC beam considered in Figure 2) are listed in Table 1. The considered band-gap
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parameters include the band-gap width ∆, the center frequency fc, and the absolute and relative shift
of the center frequency. The relative shift of center frequency is calculated as the percentage of shift of
the center frequency due to fluid-solid coupling related to the center frequency of the dry PC beam
(i.e., in air). The relative size of the band gap, which can be an important design parameter of phononic
crystals, is also calculated in Table 1 as the ratio between band-gap width and the corresponding center
frequency [26,27],

frelative =
fupper − flower

fc
=

∆
fc

(19)

where fupper and flower are respectively the frequencies of upper and lower edge limits of the considered
band gap and fc is the center frequency of the band gap. From Table 1 we can see that, the relative
size of the band gaps and the relative shift of the center frequencies of the submerged PC beam are
influenced or lowered in the same way with almost identical values (compared with the same band
gap) by the fluid-solid coupling. On the other hand, different dimensions of the submerged PC beam
only leads to a different absolute shift of the band gaps and band-gap widths.

Table 1. The relationships between the related band-gap parameters and the dimensions of the
immersed PC beam obtained from the band structure calculated by the SEM. a

Calculation Condition
1st Band Gap 2nd Band Gap

∆1 fc
Shift of fc

(Ratio)
frelative,1

(%) ∆2 fc
Shift of fc

(Ratio)
frelative,2

(%)

Air

d/D = 0.1 4730 13,255 – 35.68 28,400 60,590 – 46.87
d/D = 0.5 912 2649 – 34.42 5643 12,118.5 – 46.56
d/D = 1.0 450 1325 – 33.96 2810 6045 – 46.48
d/D = 1.5 311.1 881.45 – 35.29 1908 4045 – 47.17

Water

d/D = 0.1 4589 10,645.5 2609.5 (19.68%) 43.1 19,910 46,685 139,05 (22.92%) 42.65
d/D = 0.5 882 2140 509 (19.60%) 41.2 3975 9332.5 2786 (22.98%) 42.59
d/D = 1.0 440 1075 250 (18.87%) 40.93 2015 4722 1408 (21.89%) 42.67
d/D = 1.5 303.4 709.9 171.55 (19.46%) 42.74 1323 3111.5 933.5 (23%) 42.52

a Unit: Hz.

Then, an FBG displacement sensing system is employed to directly detect the displacement
transmission of a finite PC beam in air, partially, or fully immersed in water. A fiber Bragg grating (FBG)
is a periodic perturbation of the refractive index in a length of fiber core capable of selectively reflecting
a particular wavelength of light according to Bragg reflection. Unless the cladding of the FBG are
partially removed by side-polishing or hydrofluoric (HF) acid etching, submerged FBGs are intrinsically
insensitive to surrounding fluid because of the well-screened core mode coupling [28]. The FBG,
often used as strain sensors for structural health monitoring [29], has not been used as point-wise
displacement sensors in the applications of the phononic crystals until the work recently published
in [30]. Based on the fiber Bragg grating (FBG) sensing technique proposed in [30], we setup an FBG
displacement sensing system to measure the displacement transmission of the submerged PC beam.
To the authors’ best knowledge, this is the first experimental study of fluid-solid coupling on the PC
beam through displacement transmission using the point-wise FBG displacement sensing technique.

Figure 3 shows the experimental setup and the corresponding fiber Bragg grating (FBG) displacement
sensing system. There are 10 unit cells in total along the PC beam. The size of the PC beam is the same as
that considered in Figure 2. The PC beam is placed in a water tank and only two points of the PC beam are
rested on two soft rubbers. The bottom surface of the PC beam is 0.1 m away from the bottom of the water
tank. The size of the water tank is 1.2 m (length)× 0.2 m (width)× 0.2 m (height). Note that the size of the
water tank is relatively large compared to the cross-sectional area of the PC beam. Thus, reflected pressure
field from the wall of the water tank is negligible.
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In the FBG sensing system, a C-band amplified spontaneous emission (ASE) light source
(China-Fiber Optics, Shanghai, China) is split into two paths by a coupler and sent to two FBG
sensors (i.e., FBG1 and FBG2) and the corresponding FBG demodulation systems (i.e., FBG filter1 and
FBG filter2). Two 3-port directional optical circulators (OCs) are set up in each demodulation system to
guide the light beam. Photodiodes (PDA10CS, InGaAs amplified detector, Thorlabs, Newton, NJ, USA)
are employed to convert the light to electrical signals and are connected to a dSPACE system (dSPACE
GmbH, Paderborn, Germany) for displacement transmission measurement. The grating lengths of the
FBG sensors and FBG filters are both 10 mm. One end of the FBG sensor is point-wisely glued to the
sensing point (i.e., the extreme end of the PC beam) by epoxy glues. The other end of the FBG sensor is
glued to a vertical translated stage. By careful matching the initial Bragg wavelength of the FBG sensor
and the corresponding FBG filter, the Bragg wavelength shift of the FBG sensor during vibration of the
PC beam can be linearly demodulated. In the experimental setup shown in Figure 3, FBG1 serves as
an input sensor and FBG2 an output sensor.

To obtain the displacement transmission, white noise random signals are generated by the
dSPACE DS1104 system and sent to a piezoelectric multilayered actuator (AE0505D16, Thorlabs,
Newton, NJ, USA) to excite flexural wave propagation in the PC beam. To prevent electric leakage,
the wires of the piezoelectric multilayered actuator are carefully wrapped with an insulating
layer of epoxy glues. The responses of FBG1 and FBG2 within 20 s are recorded in the dSPACE
DS1104 system. The displacement transmission is then obtained from calculating the relationship
Td(ω) = 20 log10

∣∣Syu(jω)/Suu(jω)
∣∣, where Suu(jω) is the auto-spectral density function of the input

random displacement (detected by the FBG1) and Syu(jω) is the cross-spectral density function
between the input random and transmitted displacements (obtained by FBG2).

The identified displacement transmissions when the PC beam is respectively excited in air and
in a water tank full of water are shown in Figure 4, compared with the results obtained by the SEM
(i.e., using Equation (18)) and FEM performed by the COMSOL Multiphysics® software (Comsol
Inc., Stockholm, Sweden). In SEM simulations, the coupling of the water is considered as an added
mass applied on the dry PC beam. In FEM analysis, instead of simply applying the added mass, the
acoustic-solid interaction module is selected in which the water is set as a pressure acoustic model and
the space of the water is set the same as the experimental condition. The acoustic-solid interaction
module first calculates the frequency response and mode shapes of the linear PC beam and then feeds
the information of the dynamics of the solid back to the acoustic domain. The acoustic pressure field
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is calculated by solving the frequency-domain Helmholtz equation for sound pressure in water [31].
A normal acceleration boundary condition is then considered to feed back the frequency response
of the PC beam to the acoustic field. Note that the structural damping, which can be considered in
the modeling of the PC beam by introducing a complex Young’s modulus that leads to decaying
wave propagation, is neglected in both SEM and FEM simulations. The structural damping mainly
reduces the vibration amplitudes near the resonant frequencies and has no influence on the band-gap
locations [32]. Despite the neglection of the structural damping in SEM/FEM simulations, good
agreement can be obtained in Figure 4 between the experimental, theoretical, and numerical results
both in air and water.
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The results shown in Figure 4 clearly indicate that the FBG sensors immersed in water are indeed
intrinsically insensitive to surrounding fluid and can possess good point-wise displacement sensing
performance even in water. In addition, the lowering of the band gaps and decreasing of the band-gap
widths can still be observed in the experimental, SEM, and FEM results for the finite PC beam. Strong
damping of the resonant peaks is observed when the PC beam is immersed in water. As the frequency
gets higher, discrepancy between the SEM, FEM, or experimental results can be observed. Without the
coupling of the water (i.e., Figure 4a) and when the wavelength in the PC beam is not small compared
to the beam thickness, the frequency responses calculated by the SEM can be regarded as accurate due
to the fact it uses exact dynamic stiffness matrices [20]. However, structural modeling using SEM is
limited to simple geometry, loads, and boundary conditions. On the other hand, FEM can be applied
to structures of complicated geometry or boundary conditions but the accuracy of FEM is based on
the finite element discretization [32]. Thus, increasing element numbers in FEM analysis can reduce
the high-frequency (i.e., small wavelength) discrepancy. In the presence of water, good agreements
between SEM, FEM, and FBG experimental results especially at low frequencies indicates that both the
added mass in SEM and the acoustic-solid interaction module in FEM are capable of analyzing the
considered fluid-solid coupling problem for low-order band gaps.

The normal velocity of the fluid is equal to that of the structure at the fluid-structure interface.
The vibration modes in vacuo are assumed to be preserved when the PC beam is immersed in
water and each mode shape generates corresponding surface pressure distributions (e.g., see [33,34]).
To demonstrate the coupling of the water to the dynamics of the PC beam, we select representative
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frequencies in Figure 4 to show the corresponding steady-state vibration profiles of the PC beam and
the acoustic pressure field by COMSOL. The frequencies of the selected vibration profiles are marked
as A to F in Figure 4, including resonant peaks in pass bands (i.e., A = 481 Hz, D = 2481 Hz), lower
edge of the first band gap (i.e., B = 801 Hz, E = 3781 Hz), and center of the band gaps (i.e., C = 981 Hz,
F = 4541 Hz). The results are shown in Figure 5. We can see clear correspondence, such as the nodal
points, between the vibration profiles and the interacted acoustic field in the water at these frequencies.
Inside the band gaps, the acoustic pressure field decays along the PC beam. In addition, even for the
resonant frequencies at pass bands (i.e., “A” and “D”), the intensity of the acoustic pressure field also
gets stronger close to the excitation point. Thus, the energy of the acoustic pressure is decayed away
from the excitation point instead of uniformly distributed along the PC beam. The correspondences
in Figure 5 also suggest that employing the acoustic-solid interaction module in FEM is equivalent
to considering the added mass of fluid on the PC beam. Despite the correspondence between the
vibration modes and acoustic pressure field, we note that the vibration of the submerged PC beam is
mainly considered and the absorption of structure-borne sound in water and their influence on the
vibrations is neglected in our work. In addition, the influence of the wall of the water tank can be
neglected at the considered frequency ranges.

Crystals 2017, 7, 366 10 of 15 

 

band-gap widths can still be observed in the experimental, SEM, and FEM results for the finite PC 
beam. Strong damping of the resonant peaks is observed when the PC beam is immersed in water. 
As the frequency gets higher, discrepancy between the SEM, FEM, or experimental results can be 
observed. Without the coupling of the water (i.e., Figure 4a) and when the wavelength in the PC beam 
is not small compared to the beam thickness, the frequency responses calculated by the SEM can be 
regarded as accurate due to the fact it uses exact dynamic stiffness matrices [20]. However, structural 
modeling using SEM is limited to simple geometry, loads, and boundary conditions. On the other 
hand, FEM can be applied to structures of complicated geometry or boundary conditions but the 
accuracy of FEM is based on the finite element discretization [32]. Thus, increasing element numbers 
in FEM analysis can reduce the high-frequency (i.e., small wavelength) discrepancy. In the presence 
of water, good agreements between SEM, FEM, and FBG experimental results especially at low 
frequencies indicates that both the added mass in SEM and the acoustic-solid interaction module in 
FEM are capable of analyzing the considered fluid-solid coupling problem for low-order band gaps.  

The normal velocity of the fluid is equal to that of the structure at the fluid-structure interface. 
The vibration modes in vacuo are assumed to be preserved when the PC beam is immersed in water 
and each mode shape generates corresponding surface pressure distributions (e.g., see [33,34]).  
To demonstrate the coupling of the water to the dynamics of the PC beam, we select representative 
frequencies in Figure 4 to show the corresponding steady-state vibration profiles of the PC beam and 
the acoustic pressure field by COMSOL. The frequencies of the selected vibration profiles are marked 
as A to F in Figure 4, including resonant peaks in pass bands (i.e., A = 481 Hz, D = 2481 Hz), lower 
edge of the first band gap (i.e., B = 801 Hz, E = 3781 Hz), and center of the band gaps (i.e., C = 981 Hz, 
F = 4541 Hz). The results are shown in Figure 5. We can see clear correspondence, such as the nodal 
points, between the vibration profiles and the interacted acoustic field in the water at these 
frequencies. Inside the band gaps, the acoustic pressure field decays along the PC beam. In addition, 
even for the resonant frequencies at pass bands (i.e., “A” and “D”), the intensity of the acoustic 
pressure field also gets stronger close to the excitation point. Thus, the energy of the acoustic pressure 
is decayed away from the excitation point instead of uniformly distributed along the PC beam.  
The correspondences in Figure 5 also suggest that employing the acoustic-solid interaction module 
in FEM is equivalent to considering the added mass of fluid on the PC beam. Despite the 
correspondence between the vibration modes and acoustic pressure field, we note that the vibration 
of the submerged PC beam is mainly considered and the absorption of structure-borne sound in 
water and their influence on the vibrations is neglected in our work. In addition, the influence of the 
wall of the water tank can be neglected at the considered frequency ranges. 

 
Figure 5. Comparison of the steady-state vibration profiles of the PC beam and the relating acoustic 
pressure fields (“a” stands for acoustic pressure field and “m” stands for steady-state vibration modes) 
(color online). 

Figure 5. Comparison of the steady-state vibration profiles of the PC beam and the relating acoustic
pressure fields (“a” stands for acoustic pressure field and “m” stands for steady-state vibration modes)
(color online).

In Table 2, we compare the first and the second band-gap widths (i.e., denoted as “∆1” and “∆2”),
the center frequencies in the band gaps, and shift of the center frequencies obtained in Figure 2 (i.e.,
band structure, denoted in Table 2 as “BS”) and Figure 4 (i.e., displacement transmissions). The results
show that the discrepancies between the FEM and experimental results for center frequencies are less
than 5%, indicating that the proposed FBG displacement sensing system is suitable to be applied in
fluid-solid coupling problem. The center frequencies and their shifts in the band gaps of the band
structure and the displacement transmission obtained by the SEM calculations are closely related
as shown in Table 2. Larger inconsistency is found for the band-gap widths in the first band gap.
We observe that a practical finite PC beam possesses larger band-gap widths than the ideal infinite
PC beam. For the first band gap, the relative size of the band gap frelative is larger in the presence
of water for the band structure, SEM, FEM, and FBG experimental results. For many applications,
the larger relative size of the band gap is preferable [26,27]. However, it is interesting to note that
while decreasing the band-gap width and the center frequency, the relative size of the band gap also
decreases for the second band gap when there is fluid-solid coupling.
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Table 2. Widths of the band gaps, center frequencies, percentage of shift of the center frequency, and
relative size of the band gap in the displacement transmission of the PC beam. a

Operation Condition
1st Band Gap 2nd Band Gap

∆1 fc
Shift of fc

(Ratio)
frelative,1(%) ∆2 fc

Shift of fc
(Ratio)

frelative,2(%)

BS
Air 450 1325 – 33.96 2810 6045 – 46.48

Water 440 1075 250 (18.87%) 40.93 2015 4722 1353 (21.89%) 42.67

SEM
Air 600 1296 – 46.96 2980 6021 – 49.49

Water 540 1044 252 (19.44%) 51.72 2160 4690 1331 (22.11%) 46.06

FEM
Air 600 1307 – 45.91 2840 5990 – 47.41

Water 560 995 312 (23.87%) 56.22 2000 4599 1391 (23.22%) 43.49

EXP
Air 591 1353 – 43.68 2948 6098 – 48.34

Water 501 989 364 (26.90%) 50.66 2030 4531 1567 (25.70%) 44.80
a Unit: Hz.

Next, to clearly demonstrate the influence of the coupling of the water on the displacement
transmission and the band gaps, we detect the displacement transmissions of the PC beam with
different immersed depths. Figure 6 shows the experimental results performed in different operation
conditions (i.e., in air, fully, or partially immersed in water). During the experiments, the water is
first filled to the bottom surface of the PC beam, then the water depth is increased with an increment
of 2 mm until the top surface of the PC beam is immersed with a layer of water. Then, the water is
filled to the lower edge of the fiber grating and finally the water tank is full of water. We obtain the
displacement transmission at these operation conditions. The experimental results performed in air
and fully immersed in water have been plotted in Figure 4 and we plot them again in Figure 6 for the
purpose of comparisons. There are nine displacement transmissions, in which W-1 is the result when
the water just touches the bottom surface of the PC beam, W-2 to W-6 are the results of the PC beam
immersed with different water depths, W-7 is the result when the lower edge of the grating section
touches the water surface, and W-8 is the result when the water tank is full of water. Except for the
results in air, each result shown in Figure 6 is shifted 10 dB for clearer observation. The shift of 10 dB is
illustrated in the case of W-1, in which the 0 dB lines (i.e., blue dashed line for the case in air and green
dashed line for the case in W-1) are shifted 10 dB downward.Crystals 2017, 7, 366 12 of 15 
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The band-gap widths, center frequencies, and percentage of shifts of the center frequencies for
different operation conditions are listed in Table 3. The water depths listed in Table 3 are measured
from the bottom surface of the PC beam. In addition, 0 mm in Table 3 means the bottom surface of the
PC beam is just wet. From Figure 6 and Table 3 we can see that, the resonant peaks and band gaps shift
to lower frequencies as more surface area of the PC beam immersed in water. From Table 3 we can also
see that the percentage of shift of the center frequencies are very close but the absolute shifts of the
center frequencies gets larger for higher-order band gaps. First, from the results of W-2, W-3, W-4, and
W-5 (i.e., partially immersed in water with different water depths), we can see that the variations of the
displacement properties are not much compared to those properties when the bottom surface of the
PC beam just touches the water (i.e., W-1). However, significant shifts of the center frequencies can be
found by comparing the dry PC beam and the case of W-1. When the PC beam is partially immersed
in water, the submerged part of the PC beam has larger effective density due to the added mass than
the density of the dry part of the PC beam [23]. The increasing of the effective density decreases the
pass bands and the band gaps. After the top surface of the PC beam touches the water (i.e., in the case
of W-6 and the top surface of the PC beam is wet), larger shifts of the band gaps as well as resonant
peaks can again be observed due to additional fluid-interaction of pressure field from the top surface
of the PC beam.

Table 3. Widths of the band gaps, center frequencies, and percentage of shift of the center frequency in
the displacement transmission of the PC beam operated in different experimental conditions. a

Experimental
Condition (Depth)

1st Band Gap 2nd Band Gap

∆1 fc
Shift of fc

(Ratio) ∆2 fc Shift of fc (Ratio)

Air (–) 591 1353 – 2948 6098 –
W-1 (0 mm) 581 1146 207 (15.30%) 2566 5140 958 (15.71%)
W-2 (2 mm) 575 1125 228 (16.85%) 2533 5081 1017 (16.68%)
W-3 (4 mm) 566 1119 234 (17.29%) 2518 5064 1034 (16.96%)
W-4 (6 mm) 561 1116 237 (17.52%) 2486 5051 1047 (17.17%)
W-5 (8 mm) 561 1110 243 (17.96%) 2509 5035 1063 (17.43%)
W-6 (10 mm) 511 1065 288 (21.29%) 2324 4838 1260 (20.66%)
W-7 (34 mm) 507 993 360 (26.61%) 2035 4540 1558 (25.55%)
W-8 (90 mm) 501 989 364 (26.90%) 2030 4531 1567 (25.70%)

a Unit: Hz.

From the results of W-7 (i.e., the water just reaches the lower edge of the grating) and W-8 (i.e., the
water tank is full of water), we can again validate that the FBG displacement sensors are very suitable
to detect dynamic responses of the submerged PCs. In fact, the reflected light spectrum of the FBG
sensors almost remains unchanged for the FBG sensors immersed in water or not. Thus, the differences
in W-7 and W-8 are not attributed to the coupling of the water to the light in fiber but to the added
mass of the water on the PC beam for different water depths. Finally, as the water depth increases, the
structural damping interacted with water gets stronger and the amplitudes of the resonant peaks at
pass bands are decreased. In fact, some modes are merged during fluid-solid interaction [33,34].

4. Conclusions

In this work, we investigated the band-gap and transmission properties of a PC beam partially or
fully immersed in water. Using SEM, the band structures of the infinite PC beams and displacement
transmission of the finite PC beam in vacuo and in water are obtained. A fiber Bragg grating (FBG)
displacement sensing system is set up to detect the displacement transmission. Due to the well-screened
core mode coupling, submerged FBGs are intrinsically insensitive to surrounding fluid and this makes
the FBGs suitable candidates in sensing dynamic vibrations of submerged PCs. Then, we vary the
depth of the water and investigate the influence of the fluid-solid coupling on the lowering of the
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band gaps as well as the resonant frequencies. When the PC beam is partially immersed in water,
the submerged part of the PC beam has larger effective density due to the added mass which decreases
the pass bands and the band gaps. Larger shifts of the band gaps and resonant peaks can be observed
due to additional fluid-interaction of pressure field even when the top surface of the PC beam is only
covered by a layer of water. Furthermore, we experimentally observed that as the water depth increases,
the structural damping interacting with water gets stronger and the amplitudes of the resonant peaks
at pass bands decrease as some modes merge during the fluid-solid interaction. We also showed
the correspondence between the steady-state vibration profiles of the PC beam and the surrounding
acoustic pressure field pattern. Inside the band gaps, the acoustic pressure field decays along the
PC beam. The energy of the acoustic pressure is decayed away from the excitation point instead of
uniformly distributed along the PC beam. This work indicates the feasibility of tuning band gaps
through fluid-solid coupling and the results might be useful in the research of the FSI problem for
periodic structures such as phononic crystals or metamaterials. Our future work includes investigating
the influence of the fluid-solid coupling on local-resonance-induced band gaps.
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