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Abstract: This paper develops a framework to obtain the flow stress of nickel-based superalloys
as a function of γ-γ′ morphology. The yield strength is a major factor in the design of these
alloys. This work provides additional effects of γ′ morphology in the design scope that has
been adopted for the model developed by authors. In general, the two-phase γ-γ′ morphology
in nickel-based superalloys can be divided into three variables including γ′ shape, γ′ volume
fraction and γ′ size in the sub-grain microstructure. In order to obtain the flow stress, non-Schmid
crystal plasticity constitutive models at two length scales are employed and bridged through a
homogenized multi-scale framework. The multi-scale framework includes two sub-grain and
homogenized grain scales. For the sub-grain scale, a size-dependent, dislocation-density-based
finite element model (FEM) of the representative volume element (RVE) with explicit depiction
of the γ-γ′ morphology is developed as a building block for the homogenization. For the next
scale, an activation-energy-based crystal plasticity model is developed for the homogenized single
crystal of Ni-based superalloys. The constitutive models address the thermo-mechanical behavior
of nickel-based superalloys for a large temperature range and include orientation dependencies
and tension-compression asymmetry. This homogenized model is used to obtain the morphology
dependence on the flow stress in nickel-based superalloys and can significantly expedite crystal
plasticity FE simulations in polycrystalline microstructures, as well as higher scale FE models in order
to cast and design superalloys.

Keywords: flow stress; morphology; Ni-based superalloys; homogenization; crystal plasticity

1. Introduction

Some of the major materials used in turbine engines are nickel-based superalloys. There has
been enormous investments in improving nickel superalloys in order to reach the desired mechanical
properties. To make this process efficient, computational tools are needed to predict the mechanical
behaviors of these alloys with consequences for the microstructural design. Flow stress is one of the
main aspects of designing these alloys, which has impacts on the other mechanical properties of these
alloys, such as fatigue and creep responses. The study is mainly focused on the behavior of single
crystals of these alloys in service duties where the morphology of the microstructures can significantly
change the mechanical behavior of these materials [1,2]. The morphology of the two-phase nickel
superalloys is directly connected to the heat treatment processes. Different heat treatments [3] result
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in different γ-γ′ arrangements including different shapes, volume fractions and sizes of precipitates.
In general, these alloys have a two-phase γ-γ′microstructure as shown in Figure 1a. The channel γ phase
(white) is mainly nickel, while the precipitate γ-γ′ phase (black) is an ordered L12 crystal structure.
The ordered structure γ′ phase is a strengthening constituent with special thermo-mechanical properties
in the overall nickel superalloy. The crystal structures of γ-γ′ are shown in Figure 1b,c. The material
in the channel has a regular FCC crystal structure, while in the Ni3Al crystal, the corner sites are
occupied by the minority (Al) atoms, and the face-centered sites are occupied by the majority (Ni) atoms.
The precipitates act as obstacles to the motion of dislocations, which either loop around or shear the
precipitates depending on the temperature and stress level. A full dislocation or super-dislocation in
L12 crystal is 〈110〉, as opposed to 1

2 〈110〉 in regular FCC crystals for a full dislocation. There is a big
difference in the micro-mechanical deformation mechanisms of Ni3Al ordered structure from those of
a regular FCC structure. The length of the Burgers vector for a full dislocation in the Ni3Al ordered
structure is different from a regular FCC structure.

	   	   	  (a) (b) (c)

Figure 1. Two-phase nickel superalloys: (a) morphology of the two-phase γ-γ′ sub-grain microstructure
of Rene 88-DT [4]; (b) crystal structure of the γ phase; and (c) crystal structure of the γ′ phase.

The mechanical properties, including the dislocation mechanisms under various loading and
temperature conditions, have been studied extensively both for single-crystal [5] and polycrystalline [6]
Ni-based superalloys. At lower temperatures, octahedral slip systems are mainly active, and slip
occurs on these slip systems in both phases. According to the experimental reports, the flow stress in
nickel-based superalloys increases when the temperature is elevated up to 1000 K. In this temperature
range, most of the dislocations in the intermetallic γ′ phase become immobile screw dislocations
that are locked in a Kear–Wilsdorf (or KW) configuration due to cross-slip [7]. Therefore, they act as
barriers for further dislocation motions and result in increasing the flow stress. A 3D configuration
of the cross-slip and lock formation is shown in Figure 2. Above 1000 K, cube planes, which are not
primary slip systems in FCC materials, can be activated, which has negative impacts on the flow stress;
therefore, the flow stress begins to decrease above 1000 K. Above this temperature, edge and screw
dislocations on cube planes occur without any cross-slip [8].

The mechanical behavior including creep and fatigue responses must be improved for the
next generation of these alloys. This requires studying the lower scales of these materials to get
macroscopic scale properties in terms of microstructural data. Hence, it is necessary to incorporate
small length scale microstructural mechanisms including dislocation activities. The lower scales
in nickel superalloys can be divided into sub-grain and grain scales, where in the sub-grain scale,
the study includes the investigation of the dislocation mechanisms by explicit consideration of the
γ-γ′ morphology. In the grain scale, there will be a homogenized grain without explicit representation
of the γ-γ′ morphology. Therefore, the aim of this work is to develop a morphology-dependent
flow stress from the sub-grain scale and bridge the homogenized scale through a multi-scale
constitutive model that includes different dislocation activities at different temperatures. The methods
yield a significant efficiency advantage, particularly for simulating polycrystals [9–11], since the
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microstructural RVE problem need not be solved anymore. In general, this multi-scale method can be
applied to three scales; however, in this work, we will focus on just the sub-grain and homogenized
single-crystal scales.

	   Figure 2. 3D configuration of the Kear–Wilsdorf lock.

Crystal plasticity finite element models [12,13] are applied to gather the information hierarchically
at each scale to build constitutive models that can be implemented for microstructure-property relations,
as well as microstructure design. Meso-scale analyses of superalloys, incorporating precipitate
distributions, as well as the grain structure, have been conducted using phenomenological viscoplastic
constitutive laws in [14,15]. Hardening parameters in many of the constitutive models have been
expressed as assumed functions of the average precipitate size. Analytical models have been proposed
using simplifying assumptions for dislocation distributions under uniaxial and monotonic loads
in [16]. Crystal plasticity models with implicit dependencies on the grain size and precipitate
size and volume fraction have been postulated for a random distribution of precipitates in [17].
Dislocation-density-based hierarchical crystal plasticity models of creep and fatigue have been
proposed in [18,19], where the dependence of mechanical properties on microstructural characteristics
like average γ′ precipitate size and volume fraction are accommodated by parameters obtained by
fitting with experimental data.

This paper is aimed at developing a functional form for the flow stress in nickel-based superalloys
using a temperature- and orientation-dependent homogenized grain-scale crystal plasticity model
with parametric representations of the sub-grain morphology in its evolution laws. The multi-scale
approach, which is applied to develop the functional form of the yield stress, is fully presented
in [8], and we have adopted that model to provide additional effects of the γ′ morphology in
this manuscript. This multi-scale approach incorporated in the current study, ranging from the
sub-grain scale to the meso-scale polycrystalline ensemble, is shown in Figure 3. The cycle starts at
the first step with the development of a crystal plasticity finite element or CPFE model of a sub-grain
scale representative volume element or RVE, delineating the explicit γ-γ′ morphology. The CPFE
model incorporates a non-Schmid size-dependent dislocation density-based crystal plasticity model,
in which signed dislocation densities are explicit variables [20,21]. The next step focuses on the
homogenized single-crystal scale where an activation-energy-based crystal plasticity model from the
homogenization of the dislocation density-based sub-grain model is developed. The homogenized
model incorporates temperature variation from room temperature to 1200 K, orientation dependencies
to capture asymmetry in tension-compression and activation of cubic slip systems along the effect of the
discrete sub-grain morphology through critical morphological parameters. The resulting hierarchical
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model has the potential of significantly expediting crystal plasticity FE simulations, while retaining
accuracy.

Section 2 of this paper introduces the sub-grain scale dislocation density crystal plasticity
constitutive laws with anti-phase boundary (APB) shearing of γ′ precipitates. Section 3 provides
a framework for an activation energy-based model at the scale of single crystals. The homogenization
procedure that yields morphology-dependent constitutive parameters and their calibration and
validation with sub-grain RVE models, as well as experimental results are discussed in Section 4.
The morphology dependencies of the mechanical properties in nickel-based superalloysis discussed in
Section 5. A summary in Section 6 will conclude the paper.

Figure 3. Schematic representation of three scales for Ni-based superalloys in the crystal plasticity finite
element framework: (a) polycrystalline microstructure showing the grains and CPFEMmesh; (b) single
grain description with the sub-grain γ-γ′ microstructure; (c) discretized sub-grain γ-γ′ microstructural
representative volume element (RVE); and (d) homogenized crystal plasticity FE model for a single grain.

While this work provides a stand-alone solution to the multi-scale CPFEMproblem it addresses,
the model and techniques developed here are also intended to be incorporated into the Object-Oriented
Finite Element code, or OOF [22], a general-purpose modeling code intended to assist materials
scientists and materials engineers in undertaking computational investigations of structure-property
relations in a large variety of systems, including mechanical systems whose behavior is dominated by
crystal plasticity.

2. Sub-Grain Scale for the γ-γ′ Microstructural of Nickel Superalloys

Binary nickel superalloy is a two-phase material consisting of γ (Ni) and γ′ (Ni3Al ) phases.
Plastic deformation is accumulated through crystallographic slip systems, which is different in the
two phases, which results in plastic anisotropy in the sub-grain scale. A dislocation-density-based
crystal plasticity model, proposed in [1,20,21], is used and implemented to model the rate-dependent
plastic behavior. It incorporates the evolution of statistically-stored dislocations (SSDs) in both the
γ -channels and the precipitates due to various dislocation generation and annihilation mechanisms,
while cross-slip dislocations (CSDs) are considered just for γ′ phase [8]. In order to take into account
the gradient of plastic strain at the geometrically-incompatible locations such as the matrix-precipitate
interface and grain boundaries, geometrically-necessary dislocations (GND) are also incorporated.
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Plastic deformation of nickel-based superalloys can occur by activation of octahedral slip systems
and cubic slip systems. However, the dislocation mechanisms are different in the γ -channel and in
the precipitates. The length of a full dislocation or super-dislocation in precipitates dominant within
Ni3Al + XX compositions is 〈110〉, almost twice as large as a full dislocation in regular FCC crystals,
where a full dislocation is 1

2 〈110〉. The dominant deformation mechanism in precipitates for almost
all ranges of temperatures is the dissociation of a screw super-dislocation into two super-partials,
which have a Burgers vector of 1

2 〈11̄0〉 and the corresponding creation of a planar fault anti-phase
boundary or APB. Afterward, these superpartials basically split into two shockley partials, to bind a
complex stacking fault (CSF) having Burgers vectors of 1

6 〈112̄〉 as shown in Figure 2. The non-Schmid
resolved shear stresses (τα

pe and τα
se, τα

cb) associated with the shockley partials on primary, secondary
octahedral and cube planes, as shown in Figure 2, are included in the constitutive models at both
scales. The cross-slip mechanisms in Ni3Al + XX compositions do not follow Schmid’s law, commonly
employed in crystal plasticity models [23], according to experimental observations. Materials that
follow Schmid’s law usually have symmetric evolution for hardness, while the evolution of hardness
of the cross-slip mechanism is not symmetric and is different in tension and compression, and it also
depends on the crystal orientations. The shear stress on the primary octahedral slip plane τα

pe constricts
the Shockley partials and is partially responsible for the tension-compression asymmetry. For one of
the tensile or compressive load direction, τα

pe constricts the Shockley partials to increase cross-slip rates
resulting in the higher flow stress, while in the opposite direction, it hinders cross-slip with a decrease
in flow stress.

2.1. Crystal Plasticity Model for the Sub-Grain Model

The constitutive model admits a multiplicative decomposition of F = FeFp where the total
deformation gradient F contains an inelastic, incompressible part Fp associated with just slip without
rotation and an elastic part Fe that accounts for rigid-body rotations and elastic stretching. For the
plastic velocity gradient Lp, the plastic shear strain rate γ̇α on the slip system α (including the
slip direction mα

0 and slip plane normal nα
0 in the reference configuration) and the Schmid tensor

sα
0 = mα

0 ⊗ nα
0 can be employed to calculate the evolution of plastic deformation as:

Lp = ḞpF−p =
N

∑
α=1

γ̇αsα
0 =

N

∑
α=1

γ̇αmα
0 ⊗ nα

0 (1)

The stress-strain relation invokes the second Piola–Kirchoff stress S and its work conjugate
Green–Lagrange strain tensor Ee in the intermediate configuration:

S = det(Fe)Fe−1
σFe−T

= C : Ee and Ee =
1
2
(FeT

Fe− I) (2)

where C is a fourth order anisotropic elasticity tensor, σ is the Cauchy stress tensor and I is the
identity tensor.

The plastic shear strain rate on a slip system is given by the Orowan equation as γ̇α = ρα
Mbαvα

with the mobile dislocation density as ρα
M, Burgers vector as bα and the dislocation velocity as vα for

a given slip system. The crystal plasticity framework incorporating the signed dislocation density
used for superalloys in [1] is modified in the current study for rate-dependent plastic behavior.
The modifications include adding cross-slip dislocation densities, the temperature dependency of
cross-slip shear resistance and considering cubic slip systems in addition to octahedral slip systems.
In general, the velocity of dislocations can be written as:

vα = v0exp
(
− Q

KBθ

)
sinh

(
|τα| − τα

pass

τα
cut

)p

sign(τα) (3)
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The initial dislocation velocity is considered as v0 = λα f0 where f0 is the attack frequency and
λα is a temperature-dependent jump width. The jump width λα can be calculated in terms of parallel
and forest dislocation densities as λα = c0√

ρα
Pρα

F
( θ

θre f
)c1 . The temperature-dependent velocity in this

equation includes the absolute temperature θ and the activation energy Q. To provide a control to the
velocity for a given hardening evolution, an exponent p is introduced in the form of the hyperbolic
term in the current study. The dislocation velocity in this equation is a function of resolved shear stress
τα, a component of applied load and slip system resistances parallel to the slip system or passing stress
τα

pass and perpendicular to the slip system or cutting stress τα
cut. The passing stress is the result of the

interaction of mobile dislocations with other dislocations and their networks in the slip plane, while
the cutting stress is the result of the mobile dislocations cutting the forest dislocations with density ρα

F,
which are perpendicular to the slip plane. The passing and cutting stresses are [24]:

τα
pass = c2Gb

√
ρα

P + ρα
F , τα

cut =
c3KBθ

b2

√
ρα

F (4)

where G is the shear modulus and c2 and c3 are material constants. Parallel and forest dislocation
densities are due to statistically-stored dislocations or SSDs, which account for lock formation, dipole
formation, athermal annihilation, thermal annihilation and geometrically-necessary dislocations
or GNDs to account for the gradient of the plastic deformation between two phases [24]. Finally,
the mobile dislocation density ρα

m can be written as a function of forest and parallel dislocation
densities along with the temperature as:

ρα
M =

c9KBθ
√

ρα
Fρα

P
Gb3 (5)

where c9 can be evaluated from c2 and c3 as c9 = 2c3
c2

.
In general, dislocation activities or plastic deformation in the two-phase nickel superalloys begin

in the γ channel when the resolved shear stress is larger than the slip system resistance or passing
stress. Then, the SSDs evolve, and due to gradients in plastic deformation in the γ channel and
γ′ precipitates, the GNDs also evolve; at some point, the dislocation in the channel has enough stress
to cut through the precipitates, generating dislocation nucleation in the γ′ phase. The dislocation
nucleation criterion in the γ′ phase can be divided into two categories, namely: (1) for octahedral slip
systems with the non-Schmid effects and (2) for the cubic slip systems without the non-Schmid effects.
To accommodate the criterion in the crystal plasticity framework, the APB shearing criterion in [1] is
extended as follows:

τα
e f f = |τ

α| − τα
pass > τc (6)

where:

τα
e f f =

{
|τα| − τα

pass f or |τα| > τα
pass

0 f or |τα| ≤ τα
pass

(7)

This criterion is valid for both octahedral and cubic slip systems; however, the critical shear stress
for octahedral slip systems stated in Equation (7) is a function of three non-Schmid components of the
shear stresses on the primary and secondary octahedral slip planes, as well as the cube plane, as well
as the anti-phase boundary energy on both octahedral and planes. On the other hand, τc for the cubic
slip system is just a function of temperature. Overall, the critical shear stress for both octahedral and
cubic slip systems can be written as [8]:

τα
c =

{
τα

co = τα
co(τ

α
pe, τα

se, τα
cb, θ, Γ111, Γ010) on octahedral slip systems

τcc = τcc(θ) on cube slip systems
(8)
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There are two factors, important in increasing dislocation densities of the cross-slip mechanism,
creating thermally-activated constrictions and increasing temperature. The critical shear stress
corresponding to Equation (8) evolves by increasing the dislocation densities of the cross-slip
mechanism. However, the strength of obstacles decreases with an increase in temperature.
Consequently, there is a competition between increasing strength due to the formation of KW locks
and obstacle strength reduction with increasing temperature.

2.2. Material Constants in the Constitutive Law

There are two types of material constants in Equations (3)–(8). Constants in the first type can
be found in the literature [25]. They include h, Γ010, Γ111, b, µ and ρ0, which have values of 0.3, 0.083,
0.3, 2.49 × 10−10 m, 142.2 GPa and 5.0 × 1015 m/m3, respectively. The statistically-stored dislocation
density needs a proper initial value, which we derive based on the experiments and can be stated as a
function of temperature:

ρSSD0 =


4.04× 1011 − 3.34× 108θ θ ≤ 659K

2.42× 1011 − 0.87× 108θ 659K < θ ≤ 930K

13.28× 1011 − 12.58× 108θ 930K < θ ≤ 1000K

1.53× 1011 − 0.8× 108θ θ > 1000K

As discussed, the critical shear stress in Equation (7) for cubic slip systems was just a function of
temperature because the cross-slip mechanism only occurs for the octahedral slip systems. From the
data given in [8], the cubic slip resistance can be calibrated as:

τcc =

{
460 MPa θ ≤ 915K

1558− 1.2θ MPa otherwise

The elastic stiffness tensor Cαβ = Cβα(α = 1, ..., 6, β = 1, ..., 6) is considered to have the cubic
symmetry for both phases. The elastic stiffness tensor components are functions of temperature.
For the γ phase, the non-zero components of the stiffness tensor can be derived [26]:

C11 = C22 = C33 = (298− 0.096θ) GPa

C44 = C55 = C66 = (139− 0.035θ) GPa

C12 = C13 = C23 = (191− 0.057θ) GPa

For the γ′ phase, the non-zero components of the stiffness tensor are:

C11 = C22 = C33 = (325− 0.096θ) GPa

C44 = C55 = C66 = (144− 0.035θ) GPa

C12 = C13 = C23 = (209− 0.057θ) GPa

The rest of the material constants in the constitutive model, corresponding to the second type,
are calibrated from experiments on single-crystal CMSX-4 in [8]. The alloy contains a 70% volume
fraction of predominantly cuboidal γ′ precipitates of an average size of 0.45 µm with the average size
of the RVE of 0.5 µm.

The second type of material constants are the ones calibrated according to the constitutive model to
capture the experimental data. In general, these constants can be divided into three categories: (1) yield
state constitutive constants, (2) temperature state material constants; and (3) hardening state material
constants. The yield state includes stresses corresponding to the onset of plastic deformation up to
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0.2% offset strain. The temperature material constants are responsible for the anomalous behavior
of Ni3Al alloys. The hardening material constants reflect the interaction of different dislocation
mechanics, which result in hardening after the yield sate. The parameters corresponding to the yield
state, temperature state and hardening state are listed in Tables 1–3.

Table 1. Calibrated material constants for the yield state of the constitutive model according to the
experimental data.

Parameter poct pcub Q(J) k1 k2

Value 1.1 1.2 1.1× 10−20 0.5 0.6

Table 2. Calibrated material constants for the temperature state of the constitutive model based on the
experimental data.

Parameter ξ0 A θc

Value 1.8 325 1400

Table 3. Calibrated material constants for the hardening state of the constitutive model based on
experimental data.

Parameter f0(1/s) c0(1/m) c1 c2 c3 c4 c5 c6 c7 c8

Value 108 0.078 −3.77 4 0.3 100 0.001 0.0001 10 10

2.3. Implementation of the Crystal Plasticity Constitutive Model into to the Code

The crystal plasticity constitutive model explained in Section 2 for the two-phase γ-γ′ is
implemented in a crystal plasticity FE (CPFE) code. The rate-dependent constitutive model requires
the use of a time-integration scheme; therefore, an implicit time-integration scheme is implemented.
In the implicit schemes developed in [25,27], backward Euler time integration methods are used to
solve a set of nonlinear equations in the time interval t ≤ τ ≤ t + ∆t using iterative Newton–Raphson
methods. The algorithm proposed in [27] needs the solution of six equations corresponding to the
number of second Piola–Kirchoff stress components, while that in [25] solves equations equal to the
number of slip systems (>6 for the FCC systems). The integration algorithm in [27] is adopted in
this work, which requires known deformation variables, e.g., F(t) and Fp(t), ρSSD(t), ρCSD(t) and
ρGND(t) and slip system deformation resistances τα

pass(t), τα
cut(t), τα

co(t) and τα
oc(t) at time t, as well as

F(t + ∆t), as inputs to a material update routine CPFEM-MAT. By, integrating Equation (1), the plastic
part of the deformation gradient at time t + ∆t is expressed as:

Fp(t + ∆t) = (I +
N

∑
α=1

∆γαmα
0 ⊗ nα

0)F
p(t) = (I +

N

∑
α=1

∆γαsα
0)F

p(t) (9)

By substituting the expressions for Fp(t + ∆t) and F(t + ∆t) into Equations (1) and (9),
the incremented second Piola–Kirchoff stress is calculated as:

S(t + ∆t) =
1
2

C :
(

Fp−T
(t + ∆t)FT(t + ∆t)F(t + ∆t)Fp−1

(t + ∆t)− I
)

=
1
2

C :
(
A(t + ∆t)− I

)
−

N

∑
α=1

∆γα
(
S(t + ∆t), τα

pass(t), τα
cut(t), τα

co(t), τα
oc(t)

)
Cα

= Str −
N

∑
α=1

∆γα
(
S(t + ∆t), τα

pass(t), τα
cut(t), τα

co(t), τα
oc(t)

)
Cα

(10)
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where:

A(t + ∆t) = Fp−T
(t + ∆t)FT(t + ∆t)F(t + ∆t)Fp−1

(t + ∆t) and Cα
=

1
2

C :
(
Asα

0 + sαT
0 A

)
(11)

A nonlinear Newton–Raphson iterative method is used to find the second Piola–Kirchoff stress
stated in Equation (10):

Si+1(t + ∆t) = Si(t + ∆t)−
(

I +
N

∑
α=1

Cα ⊗ ∂∆γα

∂Si

)−1

Gi where G = S− Str +
N

∑
α=1

∆γαCα (12)

The plastic deformation gradient can be calculated by solving this equation. Subsequently, Cauchy

stress and the tangent stiffness matrix Wijkl =
∂σij
∂εkl

can be computed by having Cauchy stress and

strain in CPFEM-MAT and passed on to the FE program for the equilibrium equation. The time
integration scheme at the Gauss point level is detailed in Table 4.

Table 4. Time integration scheme in CPFEM-MAT. APB, anti-phase boundary.

A. For time increment from t to t + ∆t with known F(t + ∆t) all known variables at time t

i. Calculate Str = 1
2 C :

(
A(t + ∆t)− I

)
using Equations (10) and (11).

ii. Evaluate the resolved shear stress due to trial stress τα = Str : sα
0 , and update

deformation variables in Step B.
iii. From Equation (10), calculate the first iterate S1(t + ∆t) = Str −∑N

α=1 ∆γα(t + ∆t)Cα

iv. For the i-th iteration in the Newton–Raphson method
(a) Evaluate τiα = Si(t + ∆t) : sα

0 , and update deformation variables in Step B.
(b) Using Equations (11) and (12), evaluate Si+1(t + ∆t) = Si(t + ∆t)− (di)−1Gi

where (di)−1 = I + ∑N
α=1 Cα ⊗ ∂∆γiα(t+∆t)

∂Si(t+∆t) and Gi = Si(t + ∆t)− Str + ∑N
α=1 ∆γα(t + ∆t)Cα

(c) Verify convergence: If no, go to Step (a); if yes, go to Step v.
v. Evaluate τ(i+1)α = Si(t + ∆t) : sα

0 , and update deformation variables in Step B.

vi. From Equation (9), evaluate Fp(t + ∆t) =
(

I + ∑N
α=1 ∆γα(t + ∆t)sα

0

)
Fp(t)

vii. Calculate Fe(t + ∆t) = F(t + ∆t)F−p(t + ∆t),
σ(t + ∆t) = 1

det(FeT(t+∆t))FeT(t + ∆t)S(t + ∆t)Fe(t + ∆t) and W = ∂σ
∂ε

B. Update deformation variables at any stage
I. Calculate dislocation density increments ρ̇α

SSD, ρα
CSD, ρ̇α

GNDs, ρ̇α
GNDet and ρ̇α

GNDen
II. Evaluate forest and parallel dislocation densities ρP, ρF and mobile dislocation

density ρm from Equation (5)
III. Check for the APB criterion given in Equation (6), then calculate cross-slip, passing and cutting shear

resistances and the evolution of plastic shear strain from the Orowan equation by using Equation (3)

2.4. Validation of the Sub-Grain CPFEM Model

The results of the crystal plasticity constitutive model developed for the dislocation nucleation in
both γ-γ′ phases and stated in Section 2 in the CPFEM framework are compared with experimental
data, which were performed by different experts [28–30]. These experiments are carried out on CMSX-4
nickel superalloys or on a very similar compound; therefore, the RVE is constructed for a regular
array of cubic precipitates with a 70% precipitate volume fraction. The dimensions of the RVE are
0.5 µm × 0.5 µm × 0.5 µm . The size of cubic γ particles allocated symmetrically at the eight corners
is 0.45 µm. The CPFE model of the microstructural RVE is discretized into 2200 elements using
eight-noded trilinear brick elements. To emulate the experimental conditions, constant strain-rate
and creep loads are applied to the top surface, while rigid body modes are suppressed by applying
boundary conditions on the opposite bottom surface.
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The model is able to predict the mechanical behaviors of nickel-based superalloys for a wide
range of temperatures, different orientations and different strain rates in the quasi-static range and
exhibits asymmetry in tension and compression. Tensile constant strain tests are performed for four
temperatures including room temperature, 800 ◦C, 850 ◦C and 950 ◦C. These two sets of simulations
are executed with respect to two [001] and [111] orientations at different temperatures. For orientations
close to [001], three constant strain rate simulations, which correspond to the experiments, are
performed at 800 ◦C [28], 850 ◦C [30] and 950 ◦C [30]. The tensile constant strain rate is 0.001 s−1.
The volume-averaged stress-strain responses are subsequently compared with the experimental
data in Figure 4a. The simulations show a very good agreement with experimental data. It can
be observed that the yield stress and hardening drop as temperature increases. The second set of
comparisons is done for an orientation close to [111] where three constant strain rate simulations are
performed at 25 ◦C [29], 850 ◦C [30] and 950 ◦C [30]. The constant tensile strain rate is 0.0001 s−1.
The volume-averaged stress-strain responses are subsequently compared with experimental data in
Figure 4b. The simulations show a good agreement with experimental data. It can be observed that the
yield stress at high temperature is much less than at room temperature due to the activation of cubic
slip systems.

(a) (b)

Figure 4. Volume-averaged true stress-logarithmic strain response by CPFEM and experiments [28–30]
for different temperatures of a single crystal of nickel-based superalloy (CMSX-4): (a) [001] orientation
under a tensile constant strain rate of 0.001 s−1 (b) [111] orientation under a tensile constant strain rate
of 0.0001 s −1.

3. Grain-Scale Crystal Plasticity Framework

The homogenized single-crystal grain-scale for nickel superalloys proposed in [1,31–33] is
employed. The model is almost similar to the sub-grain model where hardening parameters are
a function of plastic deformation instead of dislocation densities. The constitutive model incorporates
an evolving thermal shear resistance, as well as an athermal shear resistance due to the plastic
deformation. For a slip system α, the plastic shear strain rate can be calculated from the Orowan
equation as:

γ̇α =


0 for τα

eff ≤ 0

γ̇α
∗ exp

{
− Q

KBθ

[
1−

( |τα
eff|

τα
cut

)p
]q}

sign(τα) for 0 < τα
eff ≤ τα

cut
(13)

For the slip system α, γ̇α
∗ is a reference strain-rate as a function of plastic strain and morphological

parameters [8]. The temperature-dependent slip system resistance sα is assumed to be a result of
a thermally-activated obstacle to slip τα

cut or sα
∗ and partly due to the athermal obstacles τα

pass or sα
a
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as defined in [8]. The driving force for dislocation motion on the slip system α is comprised of the
difference between the athermal shear resistance and the resolved shear stress.

The athermal shear resistance reflecting the effect of parallel dislocations in the slip direction mα is
defined as ṡα

a = ∑N
β=1 hαβ

a |γ̇βsin(nα, tβ)| where nα is the slip-plane normal, tα = mα × nα. The thermal
shear resistance or cutting stress incorporates two dislocation mechanisms. The first mechanism
is employed in order to capture the effect of forest dislocations as ṡα

∗ = ∑N
β=1 hαβ

∗ |γ̇βcos(nα, tβ)|.
The evolution of total shear slip resistance is ṡα =

√
(ṡα

a )
2 + (ṡα∗)2. The interactions between slip

systems are taken to be isotropic; in other words, the coefficients are the same, i.e., hαβ
a = hαβ

∗ = hαβ.
Each component of hαβ is the deformation resistance on slip system α due to shearing on slip system β.
It describes both self and latent hardening as:

hαβ = qαβhβ , where hβ =

[
h0

(
1− sβ

sβ
sat

)r]
sign

(
1− sβ

sβ
sat

)
(14)

The parameter hβ is the resistance parameter for the dependent self-hardening rate; sβ
sat is the

saturation value of reference shear stress; and exponent r is a material constant. The parameter
qαβ = q + (1− q)δαβ or the interaction coefficient matrix includes q as a latent-hardening parameter
and is chosen to be 1.4.

The activation enthalpy for cross-slip is extended in the same approach employed in the sub-grain
scale presented in Equation (8) where the rate of cross-slip resistance is a function of the anti-phase
boundary energies on the octahedral and cube planes, as well as on the non-Schmid components of the
resolved shear stress. The non-Schmid components τα

pe, τα
se and τα

cb are considered to have the same
duties in the dislocation dissociation and slip on the octahedral slip systems and contribute to their
slip resistances. According to [34], the cross-slip shear resistance can be stated as:

τα
crossco = ξ0exp

(
A

θ − θc

)
µ

√
ρ0exp

(
− Hα

KBθ

)

where Hα = cH

{
h + k1(tα

pe − k1tα
se) +

√(
1√
3
− Γ010

Γ111 + |tα
cb|
)

b
B

}
(15)

The total thermal shear resistance or cutting stress can be calculated as:

τα
cut = sα

∗ + sα
cross (16)

Material parameters in the above homogenized constitutive model are calibrated for the superalloy
CMSX-4 single crystals in [1] and listed in Table 5.

Table 5. Calibrated material constants for the single-crystal grain-scale activation-energy-based model.

Parameter k1 k2 ξ0 A θc Q (J) p q γ̇ (s−1) h0 (MPa) r

Value 0.4 0.6 8 325 1600 6.5× 10−19 0.78 1.15 5× 107 100 1.115

4. Homogenized Single-Crystal Model from the Sub-Grain RVE Model

The morphology-dependent constitutive parameters in Equations (13) and (14) for the
activation-energy-based crystal plasticity model are considered to be governed by the Hill–Mandel
principle of macro-micro energy equivalence [35], where the micromechanical analysis is conducted
with the sub-grain RVE model. The constitutive model includes functional parameters, which are
formulated in terms of critical morphological variables and are fitted by computational homogenization
of the sub-grain RVE model response.
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4.1. Morphological Parameters in the Sub-Grain Microstructural RVE

The sub-grain microstructural RVE consists of γ′ precipitates homogeneously distributed in
a matrix γ phase as shown in Figure 3c. The two-phase γ-γ′ microstructure is characterized as
three morphology parameters including: (i) the volume fraction of the γ′ precipitates, (ii) the shape
factor n of the γ′ precipitates and (iii) the minimum channel width lc between the γ′ precipitates.
The volume fraction is defined as the ratio of the γ′ precipitate volume to the total RVE volume,

i.e., v f =
Vγ′

VRVE
. The shape factor of the precipitates is described in terms of the exponent of a

superellipsoid:
( x

a
)n

+
( y

b
)n

+
( z

c
)n

= 1, where a, b and c are the dimensions of the three principal axes
and n is the shape exponent. Here, a = b = c for equiaxed precipitates. A value n = 2 corresponds
to spherical precipitates, while n→ ∞ corresponds to cubic ones. In the homogenization procedure,
a transformed shape factor n1 = tan−1(n) is used to avoid singularity.

4.2. Morphology-Dependent Constitutive Parameters in the CP Model

Plastic shear deformation and hardening constitutive parameters in the single crystal grain-scale
of AE-CP model are functions of the statistically-stored dislocations and cross-slip dislocation densities.
At this scale, the homogenized single-crystal scale, the distribution of the dislocations is uniform.
At the sub-grain scale, the distribution is not uniform because in a two-phase material, there will be
a gradient in the dislocation densities, which generates geometrically-necessary dislocations. GNDs
can change significantly when the morphology of the RVE changes. In other words, when the shape,
size and distance between precipitates change, which normally occurs during the heat treatment
process, the mechanical response of the RVE will vary. Hence, morphological parameters should also
be incorporated into the homogenization process through these functions to consider the gradient of
plastic shear strain corresponding to GNDs. Sensitivity analyses in [1] show that the initial thermal
shear resistance, the reference slip-rate, the saturation shear stress and the cross-slip shear resistance
are functions of the morphology. Thus, in Equations (13) and (14), the parameters sα

∗0(n1, vp, lc),
γ̇∗(n1, vp, lc), sα

sat(n1, vp, lc) and sα
cross(n1, vp, lc) can be derived in terms of morphology, as well as

(γα,5γα).

4.3. Functional Forms of the Single-Crystal Homogenized Constitutive Parameters

Four constitutive parameters in the single-crystal grain scale, sα
∗0(n1, vp, lc), k∗(n1, vp, lc),

k(n1, vp, lp) sα
sat(n1, vp, lc) and sα

cross(n1, vp, lc) are represented as a functional forms in terms of the
microstructural morphology. The functional forms are derived through the homogenization procedure.
Therefore, a large number of sub-grain RVE model simulations with varying volume fractions, channel
widths and shapes is generated and simulated in the dislocation density sub-grain scale where an
explicit representation of the γ-γ′ morphology is assigned in the RVE. For each morphology in the
sub-grain scale, simulations in the homogenized single-crystal level are performed in order to satisfy
macro-homogeneity [35,36]:

〈S〉 :
〈

Ė
〉
=

1
ΩRVE

∫
ΩRVE

S dV :
1

ΩRVE

∫
ΩRVE

Ė dV =
1

ΩRVE

∫
ΩRVE

S : Ė dV =
〈
S : Ė

〉
(17)

Here, S and Ė correspond to the second Piola–Kirchhoff stress and the Lagrangian strain rate,
respectively, and the symbol 〈X〉 corresponds to volume averaging over the RVE domain.

This extensive set of simulations, as explained in detail in [1], results in the following functional
forms of the single-crystal constitutive parameters by using the least square minimization method in
order to find the coefficients. The final form of these four constitutive parameters is as follows:
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sα
∗0(n1, vp, lc) = a1(n1, vp) +

b1(n1, vp)√
lc

= −50vpn1 + 222vp − 34n1 + 384+

−33.3vpn1 + 32.92vp + 19.61n1 − 0.037
√

lc

sα
sat(n1, vp, lc) = a2(n1, vp) +

b2(n1, vp)

lc
= 6680vpn1 − 8905vp − 1648n1 + 3185+

−3359vpn1 + 5008vp + 3631n1 − 0.21
√

lc
k∗(n1, vp, lc) = 19847vpn1lc + 12768vpn1 − 23120vplc

+4080n1lc − 7500vp + 33n1 − 2700lc + 65

k(n1, vp, lc) = a3(n1, vp) +
b3(n1, vp)√

lc
= 221.4vpn1 − 327.6vp + 31.5n1 + 5.5+

−176.5vpn1 + 281.2vp − 2.44n1 + 0.14
√

lc

sα
cross(n1, vp, lc) = sα

cross ∗ s0(n1, vp, lc) , s0(n1, vp, lc) = a1(n1, vp) +
b1(n1, vp)√

lc
= −50.32vpn1 + 0.538vp − 0.09528n1 + 1+

−0.08662vpn1 + 0.08566vp + 0.051n1 − 0.000096
√

lc

(18)

The size-dependent variable, the channel width lc, can be seen in the parameters to reflect explicitly
the size effect due to the presence of geometrically-necessary dislocations in the sub-grain scale of the
model. In this equation, the unit of lc is µm, while the units of initial thermal resistance and saturation
shear resistance are MPa, and s0 is a dimensionless function.

4.4. Validation of the Homogenized Single-Crystal Grain-Scale Model

In order to validate the parametric constitutive model at the single-crystal grain scale, tensile
constant strain tests are simulated for two orientations [001] and [111] for three temperatures 25 ◦C [29],
800 ◦C [28] and 950 ◦C [30] shown in Figure 5. The simulation at room temperature is performed for
the [111] orientation and shows high yield stress because cubic slip systems are not activated at this
temperature. Furthermore, the transition from the elastic to plastic part is very sharp, which shows
that dislocation activities in the channel and matrix start almost simultaneously. Two simulations
under elevated temperature are done for [001] orientation. In both simulations, it can be observed
that initially plastic deformation starts in the channel where the slope of the elastic part changes for
the stress around 600 MPa. However, this change is not significant due to the very small volume
fraction of the channel. The yield stress and hardening decrease dramatically from 800 ◦C–950 ◦C.
The simulations show a very good agreement with the experimental data.

Figure 5. Volume-averaged true stress-logarithmic strain response by CPFEM and experiments [28–30]
under a constant strain rate 0.001 s−1.
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5. Morphology Effect in Nickel-Based Superalloys

So far, all simulations are performed for CMSX-4, which is a single crystal of a nickel-based
superalloy containing 70% of cuboidal precipitates with an average distance of 0.45 µm. The main
idea of this work is to bridge the morphology effect from an explicit representation (sub-grain
scale) to an implicit one (grain scale) in order to get the same response with significant savings
in time and computation. Therefore, the multi-scale scheme could greatly benefit the design and
optimization [37–39] for the next generation of these alloys. In this section, the effect of morphology on
the mechanical behavior of these alloys is investigated as a function of three independent morphology
parameters: precipitate size, volume fraction and shape. In the first set of simulations, the size of the
precipitates is changed from a very small particle size (0.15 µm) to a large one of (1.35 µm), while
the volume fraction and the shape of precipitates are kept constant at 70% and n→ ∞, respectively.
In other words, for a unit cube of this material for one particle of γ′ of a dimension of 1.35 µm, there
will be 27 particles of 0.45 µm and 729 particles of a dimension 0.15 µm. The stress-strain curve under
a tensile constant strain rate of 0.001 s−1 and 800 ◦C for these three sizes is shown in Figure 6. There is
almost a 200-MPa difference between the 0.15 µm and 1.35 µm sizes. Smaller precipitate sizes for the
same volume fraction and shape result in more particles, and more particles increase the dislocation
densities and shear resistance.

In the second set of simulations, the volume fraction of the precipitates is altered from a very low
volume fraction of 30% to a high volume fraction of 70%, while the size and the shape of precipitates
are kept constant at 0.45 µm and n→ ∞, respectively. In other words, for a unit cube of this material,
the channel width between precipitates in the case of 50% is 1.82-times and 30% is 2.95-times its width
at a 70% volume fraction. The stress-strain curve under a tensile constant strain rate of 0.001 s−1 and
800 ◦C for these three volume fractions is shown in Figure 7. There is almost a 250-MPa difference
between the 70% and 30% volume fractions. A larger volume fraction of the precipitate or a smaller
channel width for the same size and shape increases the dislocation densities and shear resistance.

Figure 6. Volume-averaged true stress-logarithmic strain response by CPFEM under the strain rate of a
single crystal of a nickel-based superalloy to investigate the effect of precipitate size at 800 ◦C under a
tensile strain rate of 0.001 s−1.
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Figure 7. Volume-averaged true stress-logarithmic strain response by CPFEM under the strain rate of a
single crystal of a nickel-based superalloy to investigate the effect of the precipitate volume fraction at
800 ◦C under a tensile strain rate of 0.001 s−1.

In the last set of simulations, the shape of the precipitates is changed from a small shape factor
n = 1.1 to a large shape factor n = 1000, while the size and volume fraction of precipitates are kept
constant at 0.45 µm and 70%, respectively. In other words, the surface boundary between precipitates
is very smooth in the case of a smaller shape factor, and it is very sharp in the case of n = 1000, which
looks like a cube. The stress-strain curve under a tensile constant strain rate of 0.001 s−1 at 800 ◦C for
these three shape factors is shown in Figure 8. The difference between the lowest and highest yield
stresses is not as pronounced as for the size and volume effects; however, the transition between the
elastic and plastic part is sharper for the bigger shape factors. From the figure, the dislocation activities
or plastic deformation begin at the stress around 700 MPa where three curves start to have a slight
divergence. The slope of the curve from this point is higher for higher shape factors, which indicates
less plastic deformation in the channel due to the sharp precipitate edge. Therefore, round-shaped
precipitates increase the dislocation density due to more dislocation bowing around precipitates and
result in bigger yield stress.

Figure 8. Volume-averaged true stress-logarithmic strain response by CPFEM under the strain rate of a
single crystal of a nickel-based superalloy to investigate the effect of precipitate shape at 800 ◦C under
a tensile strain rate of 0.001 s−1.
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5.1. Flow Stress Variations with Morphology in Nickel-Based Superalloys

The yield strength corresponding to 0.2% offset strain is considered to investigate the dependencies
on the morphology of nickel-based superalloys. Accordingly, crystal plasticity simulations are
performed for different morphologies including different shapes, volume fractions and sizes
of precipitates.

5.1.1. Flow Stress Variations with the Shape of Precipitates

Crystal plasticity finite element simulations are performed at 1000 K under a strain rate of 0.001 s−1

for the crystal orientation [001] with the different shapes of precipitates while their volume fraction
and size are constant for each set. In the first set of simulations, the volume fraction is constant and
equal to 50%, while three sets of simulations are done for different sizes of precipitates, respectively
0.15 µm, 0.45 µm and 1.35 µm. In the second set, the size is fixed and equal to 0.45 µm, while the
volume fraction changes as 30%, 50% and 70%, respectively. The results of the CPFEM simulations are
shown in Figure 9 with symbols. The solid lines are plotted as the best trending functions to present
these data. For all six plots, the functional form of a + b

n is the best trending function to represent
the data where n is the shape factor of precipitates defined in Section 4.1. In the the first set shown
in Figure 9a, a and b are functions of the size of precipitates as a(r) and b(r), where in the second set
shown in Figure 9b, they are functions of the volume fraction of the precipitates as a(v f ) and b(v f ).
Hence, the flow stress in nickel-based superalloys will change proportionally with the shape factor of
the morphology as 1/n.

(a) (b)

Figure 9. Variations of the 0.2% yield strength of a single crystal of a nickel-based superalloy with respect
to the shape of precipitates at 1000 K under a tensile strain rate of 0.001 s−1: (a) constant volume fraction
for different sizes of precipitates; (b) different volume fractions for a constant size of precipitate.

5.1.2. Flow Stress Variations with the Size of Precipitates

Crystal plasticity finite element simulations are performed at 1000 K under a strain rate of 0.001 s−1

for the crystal orientation [001] with the different sizes of precipitates, while their shapes and volume
fractions are constant for each set. In the first set of simulations, the volume fraction is constant and
equal to 50%, while three sets of simulations are done for different shapes of precipitates: 1.5, 2 and 10,
respectively. It should be mentioned that the shape factor of two corresponds to the spherical shape for
precipitates, while 10 represents almost a cubic shape of the precipitates. In the second set, the shape
factor is fixed and equal to four, while the volume fraction changes as 30%, 50% and 70%, respectively.
The results of the CPFEM simulations are shown in Figure 10 with symbols. The plotted solid lines are
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the best trending functions to present CPFEM data. For all six plots, the functional form of a + b√
r is

the best trending function to represent the data where r is the size of precipitates. In the the first set
shown in Figure 10a, a and b are functions of the shape factor of precipitates as a(n) and b(n), where
in the second set shown in Figure 10b, they are functions of the volume fraction of the precipitates as
a(v f ) and b(v f ). Hence, the flow stress in nickel-based superalloys will change proportionally with
the size of the morphology as 1/

√
r.

(a) (b)

Figure 10. Variations of the 0.2% yield strength of a single crystal of a nickel-based superalloy with respect
to the size of precipitates at 1000 K under a tensile strain rate of 0.001 s−1: (a) constant volume fraction for
different shape of precipitates (b) different volume fractions for a constant shape of precipitate.

5.1.3. Flow Stress Variations with the Volume Fraction of Precipitates

Crystal plasticity finite element simulations are performed at 1000 K under a strain rate of 0.001 s−1

for the crystal orientation [001] with the different volume fraction of precipitates while their shape
and size are constant for each set. In the first set of simulations, the size is constant and equal to 50%,
while three sets of simulations are done for different shapes of precipitates: 1.5, 2 and 10, respectively.
In the second set, the shape factor is fixed and equal to four, while the size of precipitates changes
as 0.15 µm, 0.45 µm and 1.35 µm, respectively. The results of the CPFEM simulations are shown in
Figure 11 with symbols. The solid plotted lines are the best trending functions to present these data.
For all six plots, the functional form of a + bv f is the best trending function to represent the data where
v f is the volume fraction of precipitates defined in Section 4.1. In the the first set shown in Figure 11a,
a and b are functions of the shape of precipitates as a(n) and b(n), where in the second set shown in
Figure 11b, they are functions of the size of the precipitates as a(r) and b(r). Thus, the flow stress in
nickel-based superalloys will change linearly with the volume fraction of the morphology as v f .
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(a) (b)

Figure 11. Variations of the 0.2% yield strength of a single crystal of a nickel-based superalloy with
respect to the volume fraction of precipitates at 1000 K under a tensile strain rate of 0.001 s−1: (a) constant
size for different shapes of precipitates; (b) different sizes for a constant shape of precipitate.

5.1.4. Functional Form of the Flow Stress with Respect to the Morphology of Precipitates

As presented in the last section, the flow stress changes by changing the morphology of the
microstructure. The change is proportional with 1/n with the shape of the precipitates while it changes
as 1/

√
r with the size of the precipitates and linearly with the volume fraction of the precipitates.

Therefore, the flow stress in the single crystals of nickel-based superalloys can be stated as:

σy = (c1 +
c2

n
)(c3 +

c4√
r
)(c5 + c6v f ) (19)

According to this equation, the size of precipitates has the major effect on the yield stress, where
the behavior shows a sort of Hall–Petch effect. The Hall–Petch effect represents the variation of the
yield stress with respect to the size of the grain in a polycrystalline microstructure. The three variables
in this equation, the shape, size and volume fraction of the precipitates, affect the channel width
between precipitates. While the channel width between precipitates becomes narrower, the dislocation
will have a difficult time passing through the channel. The size of precipitates in the nickel-based
superalloys is related to the distance between precipitates for a specific shape and volume fraction.
For example, if we have a cubic two-phase γ-γ′ microstructure with the unit dimension, the average
size of precipitates would be 0.8 of the unit for the volume fraction of 51.2% with cubic precipitates.
In order to change the size of precipitates to 0.4 units while the volume fraction is 51.2% and the shape
of the precipitates is cubic, we have to change the size of the microstructure; therefore, the size of
the cubic microstructure becomes half of a unit. When the size of the microstructure decreases, the
precipitates become closer, and the channel width becomes narrower. Hence, for a specific volume
fraction and shape, finer precipitates mean less size in the microstructure, which results in less distance
between precipitates or less channel width. Dislocations have a difficult time passing through the
channel with less distance between precipitates, so they start to bow around the precipitates and result
in the generation of another source of hardening, which is geometrically-necessary dislocations (GNDs).
The generation of these dislocations accordingly results in increasing the yield stress. The decrease
in the channel width, when the shape of precipitates changes, is not as sharp as changing the size of
precipitates; therefore, the increment in the yield stress for lesser shape factor or more curvy precipitates
is not the same as the increment seen in the size; however, the explanation stays the same. Dislocation
will have more space to bow around precipitates and creates additional sources of dislocations to
harden materials with a lesser shape factor. There will be the same explanation for increasing the
yield stress by increasing the volume fraction. Having a greater volume fraction for the same size
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and shape of precipitates means less channel width between precipitates, which directly results in
increasing GNDs.

Different optimization methods can be used in order to find the unknown coefficient. However,
the least square method is employed in this work in order to calculate the constants c1–c6. The input
date are obtained from 324 crystal plasticity finite element simulations, which are performed at 1000 K
under a tensile strain rate of 0.001 s−1 as shown in Figures 9–11 and used for the least square method as
the input data. The functional form of the flow stress as a function of shape, size and volume fraction
of precipitates is calculated as:

σy = 1069.88− 345.39v f +
34.67

n
+

181.14v f

n
− 146.97√

r
+

425.51v f√
r
− 19.15

n
√

r
−

0.411v f

n
√

r
(20)

In this equation, the volume fraction of precipitates can change from 0.2–0.7; the shape factor
of precipitates can change from 1.5–10; and the size of precipitates can vary from 0.15 µm–1.35 µm.
The result of the above equation will be the flow stress in MPa.

5.1.5. Validation of the Functional Form of Flow Stress with Respect to the Morphology of Precipitates

In order to validate the functional form of the flow stress given in Equation (20), 10 random
morphologies are created and first simulated with the crystal plasticity finite element model, then the
results are compared with the ones obtained from Equation (20). All simulations are performed at
1000 K under a tensile strain rate of 0.001 s−1. The results and comparison are shown in Table 6. As can
be seen, the functional form of the flow stress obtained from the multi-scale framework gives almost
identical flow stress compared with the crystal plasticity finite element models.

Table 6. The CPFEM and Equation (20) results and comparison for the flow stress for
different morphologies.

Shape Factor (n) Volume Fraction (v f ) Size (r) (µm) CPFEM Flow Stress (MPa) Equation (20) (MPa)

1.7 0.31 0.45 973.6 976.9
2.2 0.32 0.37 975.1 969.3
2.5 0.36 0.43 980.6 983.2
2.3 0.44 0.57 1006.1 1009.8
2.9 0.48 0.55 1012.7 1014.3
3.5 0.52 0.31 1046.3 1050.6
4.2 0.57 0.38 1049.6 1053.4
6.7 0.61 0.45 1048.1 1044.4
7.3 0.41 0.37 986.9 984.0
8.1 0.44 0.31 1006.1 1000.1

6. Conclusions

This paper proposes a functional form for the flow stress of single crystals of nickel-based
superalloys as a result of a multi-scale crystal plasticity finite element framework. The multi-scale
scheme bridges two scales in a hierarchical framework from the two-phase γ-γ′ sub-grain scale
to a homogenized single-crystal grain-scale constitutive model that can be augmented to model
polycrystalline microstructures of nickel superalloys. The non-Schmid constitutive models for two
scales include the main dislocation mechanism active in these materials. For the single-crystal
grain scale, an activation-energy-based crystal plasticity finite element model is developed that
incorporates non-Schmid effects along with the characteristic parameters of the sub-grain scale
γ-γ′ morphology. For the next scale, a crystal plasticity homogenized model is used, which
includes the effect of the morphology implicitly through the homogenized constitutive parameters.
A notable advantage of this multi-scale model is that its high efficiency enables it to be effectively
incorporated in the polycrystalline grain scale of crystal plasticity finite element simulations, while
retaining the accuracy of detailed RVE models. The homogenized model incorporates the effect
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of important characteristics of the sub-grain γ-γ′ morphology, viz. the size, shape and volume
fraction of the precipitates. The uniformly-distributed precipitates in the sub-grain RVEs in the shape
of generalized ellipsoidal particles provide a platform for a modeling framework connecting the
two scales, one with explicit representation and the other with their respective parametric forms.
There is a size dependency in the two-scale model, where it naturally occurs in the sub-grain
scale due to the presence of geometrically-necessary dislocations or GNDs, and it is reflected in
the homogenized single-crystal grain-scale model through the explicit dependence on the channel
width. The homogenized activation-energy-based crystal plasticity model is found to accurately
reproduce the stress-strain response of the detailed RVE for a range of microstructural variations. It is
also found to agree quite well with the results of experimental studies on single-crystal superalloys in
the literature. The morphology parameters include the shape factor, volume fraction and size of the
precipitates, which have different impacts on the flow stress. The functional form of the flow stress
obtained from the multi-scale framework gives almost identical flow stress in comparison with the
crystal plasticity finite element models.
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