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Abstract: Since the synthesis of the first krypton compound, several other Kr-bearing connections
have been obtained. However, in all of them krypton adopts the +2 oxidation state, in contrast
to xenon which forms numerous compounds with an oxidation state as high as +8. Motivated by
the possibility of thermodynamic stabilization of exotic compounds with the use of high pressure
(exceeding 1 GPa = 10 kbar), we present here theoretical investigations into the chemistry of krypton
and fluorine at such large compression. In particular we focus on krypton tetrafluoride, KrF4,
a molecular crystal in which krypton forms short covalent bonds with neighboring fluorine atoms
thus adopting the +4 oxidation state. We find that this hitherto unknown compound can be stabilized
at pressures below 50 GPa. Our results indicate also that, at larger compressions, a multitude of other
KrmFn fluorides should be stable, among them KrF which exhibits covalent Kr–Kr bonds. Our results
set the stage for future high-pressure synthesis of novel krypton compounds.

Keywords: krypton; fluorine; high-pressure; Density Functional Theory; phase transitions; noble-gas
chemistry; molecular crystals, fluorides

1. Introduction

Among the non-radioactive group 18 elements (He, Ne, Ar, Kr, Xe) only the two heaviest, krypton
and xenon, form compounds isolable in macroscopic quantities. With its lowest first ionization
potential (12.13 eV) xenon forms numerous compounds in which it adopts oxidation states +1/2,
+2, +4, +6 and +8 [1–6]. The relatively large thermodynamic and/or kinetic stability of these species
enabled characterization of over 150 crystal structures for Xe-bearing systems.

Due to its higher ionization potential (14.0 eV), krypton is much less reactive and forms
compounds only in the +2 oxidation state [7–9]. All of these connections are derived from krypton
difluoride (KrF2), a compound discovered in 1963 [10–13], only a year after Bartlett’s landmark
synthesis of the first xenon compound [14,15]. In contrast to xenon difluoride (XeF2), KrF2 is
thermodynamically unstable (∆Hf = 60.2 kJ mol−1, at 93 ◦C [16]) and thus hard to synthesize and
handle. Higher fluorides of krypton (KrF4, KrF6) are not known (initial reports of the synthesis of
KrF4 [10,11] have never been confirmed), again in contrast to xenon which does form both XeF4 and
XeF6. Despite the mediocre reactivity of krypton a substantial number of compounds and complexes
containing this element were speculated to exist in the gas phase [17–23].

The next group 18 element, argon, exhibits an even higher first ionization potential (15.8 eV),
and consequently forms transient species which can be stabilized only in low-temperature matrices or
in the gas-phase [24–29]. The decreased reactivity of argon is also manifested by the fact that at ambient
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pressure it does not form any fluoride, even at low temperature. However, our recent computational
investigation indicated that argon difluoride (ArF2) can be thermodynamically stabilized (i.e., possess
a negative enthalpy of formation) at pressures above 60 GPa (=600 kbar) [30].

While 60 GPa may seem high on the pressure scale, such conditions are now routinely achieved
in experiments conducted with the use of diamond anvil cells (DACs). In recent years, there is
a growing interest in the high-pressure chemistry of noble gases concerning both experiment [31–35],
and theory [36–40]. In particular, much attention has been paid to the high-pressure phase
transformations of XeF2 [41–44]. At ambient pressure this compound forms a molecular crystal
composed of weakly interacting XeF2 molecules (in the form of linear and symmetric F–Xe–F units).
Early high-pressure investigations indicated that above 50 GPa XeF2 adopts a graphite-like hexagonal
structure, and upon further compression to 70 GPa transforms to a metallic three-dimensional
fluorite-like structure [41]. These findings were put into doubt by theory [42], and subsequent
experiments indicated that XeF2 remains molecular and insulating up to 80 GPa [43]. Furthermore,
a recent theoretical investigation on the high-pressure thermodynamic stability of XemFn phases
indicated that XeF2 should decompose into XeF4 and Xe2F above 81 GPa [44]. Interestingly Xe2F,
which is not known at ambient conditions, was predicted to exhibit direct Xe–Xe bonds [44].

Noble-gas compounds are text-book examples of systems exhibiting hypervalency, multi-center
and charge-shift bonding [45]. Motivated by the peculiar chemistry of Xe/F mixtures at large
compression, we performed a systematic theoretical study on the high-pressure thermodynamic
stability of various KrmFn crystalline compounds. Our aim was to verify whether novel krypton
fluorides might be stabilized at large compression. Employing the Density Functional Theory (DFT)
we analyzed 11 possible stoichiometries including both species that are krypton rich (Kr6F, Kr4F,
Kr3F, Kr2F, Kr3F2), fluorine rich (Kr2F3, KrF2, KrF3, KrF4, KrF6), as well as KrF. Our study models the
0–200 GPa pressure range which is accessible to modern experiments.

We found that novel connections between krypton and fluorine should indeed stabilize at large
compression. In particular, our results indicate that fluorine should oxidize krypton difluoride at high
pressure to yield KrF4—a first example of a compound containing krypton in the +4 oxidation state.
We also predict formation of KrF at 100 GPa, which is a compound containing direct Kr–Kr bonds.
By comparing our results with previous investigations, we propose general trends in the high-pressure
reactivity of noble-gas difluorides.

2. Results

For each of the studied KrmFn compounds we propose crystal structures and perform geometry
optimization at high pressure utilizing the DFT method in its periodic approach. We also optimize the
structures of solid Kr and F2. Due to the large complexity of solid-state structures, proposing good
high-pressure candidate crystal structures is challenging. In recent years, considerable effort was put
into developing algorithms which enable effective structure search for a solid compound of given
composition [46–49]. In this study, we performed crystal structure searches employing the USPEX
(Universal Structure Predictor: Evolutionary Xtallography) evolutionary algorithm [50,51]—in all of
them the only input information was the stoichiometry of the compound and the pressure at which
the search was conducted (for more computational details see Materials and Methods).

Our calculations do not include temperature effects, and thus give the thermodynamic stability
at the 0 K temperature limit. Due to the large computational burden associated with calculating
vibrational properties of solids, neglecting finite-temperature corrections is a standard approach in
high-pressure computational chemistry. At the T = 0 K limit, the Gibbs free energy (G) can be equated
to the enthalpy (H), and hence at a given pressure the thermodynamic stability of a compound will be
governed by its enthalpy.

In this work we define the enthalpy of formation, ∆Hf(KrmFn) at a given pressure as:

∆Hf(KrmFn) = [H(KrmFn) − m·H(Kr) − n/2·H(F2)]/(m + n), (1)
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where H(KrmFn), H(Kr), and H(F2) are the calculated enthalpies of KrmFn, Kr, and F2 at each pressure.
Equation (1) gives ∆Hf(KrmFn) values per atom, and ensures that ∆Hf(Kr) = ∆Hf(F2) = 0. In order to
assess the relative thermodynamic stability of various KrmFn phases, as well as their decomposition
into Kr and F2, we use the enthalpies of formation defined above to construct the so-called tie-line
plot [52]. In this representation, ∆Hf(KrmFn) values are plotted against the mole fraction of F atoms.
It can be shown that a phase is thermodynamically stable if no tie-line passes below it [52].

2.1. Pressures Up to 50 GPa

We start our discussion with the results obtained in the pressure regime up to 50 GPa. We find that
the thermodynamic stability of various phases differs qualitatively in this pressure range compared
to results obtained at higher compression (see Section 2.2). In Figure 1a we display a tie-line plot of
the Kr/F system for pressures of 0 GPa (1 bar = 10−4 GPa; ambient pressure thus equals effectively to
0 GPa), 15 GPa and 50 GPa.
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At ambient pressure two compositions are located on the convex hull (i.e., there are no tie-lines 
passing below them, and hence they are thermodynamically stable). These are Kr3F2 and KrF2. 
Inspection of the structure of the former compound (Figure 1b), indicates that it is composed of linear 
F–Kr–F molecules, characterized by a Kr–F bond length of 1.93 Å, and unbound Kr atoms (nearest 
Kr–F contact at 3.42 Å). Therefore, a more realistic formulation of Kr3F2 would be 2Kr·KrF2—that is a 
co-crystal of Kr and KrF2. This phase quickly destabilizes at high pressures, and is predicted to 
decompose into Kr and KrF2 already at 1 GPa. 

Figure 1. (a) Pressure dependence of the enthalpy of formation per atom of various KrmFn phases
at 0, 15 and 50 GPa. The compounds stable at 0 GPa (Kr3F2, KrF3), 15 GPa (KrF2, KrF4) and 50 GPa
(KrF2, KrF4) are marked in the upper part of the graph; (b) The P1 structure of Kr3F2 (=2Kr·KrF2) at
0 GPa; (c) The Cmcm structure of KrF2 at 50 GPa; (d) the I4/m structure of KrF4 at 50 GPa; blue/red
balls depict Kr/F atoms; Kr–F bonds (solid lines) and shortest intermolecular Kr–F contacts (dashed
lines) are given in Å.
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At ambient pressure two compositions are located on the convex hull (i.e., there are no tie-lines
passing below them, and hence they are thermodynamically stable). These are Kr3F2 and KrF2.
Inspection of the structure of the former compound (Figure 1b), indicates that it is composed of linear
F–Kr–F molecules, characterized by a Kr–F bond length of 1.93 Å, and unbound Kr atoms (nearest
Kr–F contact at 3.42 Å). Therefore, a more realistic formulation of Kr3F2 would be 2Kr·KrF2—that
is a co-crystal of Kr and KrF2. This phase quickly destabilizes at high pressures, and is predicted to
decompose into Kr and KrF2 already at 1 GPa.

The other stable compound at ambient conditions is KrF2. At 0 GPa, our evolutionary searches
identify two structures of I4/mmm and P42/mnm symmetry which are nearly degenerate in terms
of enthalpy. These correspond respectively to the experimentally known ambient-pressure α and β

polymorphs of KrF2 [53,54]. Both of them contain linear F–Kr–F units with a Kr–F bond length of 1.93 Å.
Application of pressures up to 6 GPa leads to thermodynamic stabilization of the I4/mmm structure
over P42/mnm. Above 6 GPa we predict a phase transition from I4/mmm to a structure of Cmcm
symmetry composed of slightly bent F–Kr–F molecules (173◦ at 50 GPa, see Figure 1c). This polymorph
of KrF2, which is isostructural to the predicted high-pressure phase of ArF2 [30], remains the most
stable structure up to 200 GPa. Even at that pressure it retains its molecular character with Kr–F bonds
(1.78 Å) still much shorter than the Kr–F intermolecular contacts (2.19 Å).

We predict that at 0 GPa KrF2 is marginally stable with respect to decomposition into Kr
and F2 (∆Hf = −0.08 eV/atom). In contrast, the experimental enthalpy of formation at ambient
pressure is slightly positive (0.21 eV/atom [16]). This value was well reproduced with rigorous
coupled-cluster calculations of Dixon et al. [55]. In our previous study, we found that the
Perdew–Burke–Ernzerhof (PBE) functional used here tends to overestimate the thermodynamic
stability of noble-gas compounds, and that more accurate values can be generally achieved with
the application of the hybrid HSE06 functional [30]. Indeed, calculation performed with the use of
this functional gives ∆Hf(KrF2) = 0.06 eV/atom, much closer to the theoretical value of Dixon et al.
(0.21 eV/atom, [55]). However, the high computational cost of the HSE06 functional severely restricts
the number of compounds that can be studied. Therefore, here we opted to work with the less
accurate PBE functional, which however enabled us to screen a much larger array of possible
stoichiometries. We emphasize that the pressure dependence of ∆Hf is the same at both the PBE
and HSE06 level of theory (see Figure S2 in the Supplementary Material, SM). This gives us confidence
that the thermodynamic stabilization of krypton fluorides that we observe at high pressure is not
a computational artifact, although the pressure at which a given compound becomes stable might be
underestimated (vide infra the case of KrF4).

The first novel krypton fluoride that becomes thermodynamically stable at elevated pressure is
KrF4; it becomes part of the convex hull already at 15 GPa (Figure 1a). This indicates that KrF4 should
be accessible at high pressures through a reaction of KrF2 with F2 or by reacting Kr and F2 in a 1:2
or greater ratio. Considering the abovementioned over-binding of KrmFn compounds at the applied
level of theory (DFT/PBE) the experimental pressure of synthesis might be higher by about 25 GPa,
i.e., reach 40 GPa. Indeed, HSE06 calculations indicate that KrF4 should be stable above that pressure
(Figure S2 in SM). We note that such pressure is still in the range of modern experimental techniques.

The most stable structure of KrF4 in the entire considered pressure range—up to 200 GPa—is
a molecular crystal of I4/m symmetry composed of weakly interacting square-planar KrF4 units
(Figure 1d). Even at 200 GPa, the Kr–F bond within these molecules (1.77 Å) is more than 20% shorter
than the closest Kr–F intermolecular contact (2.26 Å). In fact, the crystal structure of KrF4 is analogous
to the predicted high-pressure phase of XeF4, which is also molecular even at large compression [44].

To confirm the presence of four covalent Kr–F bonds in KrF4, we perform an analysis of the
Electron Localization Function (ELF) [56]. This dimensionless function, defined for every point in the
crystal structure, spans values from 0 to 1. Values close to 1 are generally interpreted as indicating
paired electrons (i.e., lone pairs, bonds, and core electrons). Typical covalent bonds are characterized
by ELF values of exceeding 0.7; however, previous studies indicated that the maximum ELF value
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for the Xe–F bond in XeF2 is only 0.5 [42,44]. This can be rationalized by taking into account that this
bond arises from a three-center two-electron interaction, and is characterized by a bond order of 1/2.
By analogy, the same applies to the Kr–F bond in KrF2, for which we obtain a maximum ELF value of
0.4 (Figure 2a). This is slightly lower than the value found for XeF2 in accordance with the fact that
Kr–F is a weaker bond. More importantly, we find the same ELF values of 0.4 for Kr–F bonds in the
KrF4 molecules present in the I4/m structure (Figure 2b), which indicates that in this particular phase
krypton forms four covalent connections to fluorine atoms; therefore, it can be assigned an oxidation
state of +4.Crystals 2017, 7, 329 5 of 12 
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2.2. The 50–200 GPa Pressure Range

Our calculations indicate that KrF4 remains thermodynamically stable up to the highest pressure
considered in this study (200 GPa). We also do not find any pressure range at which KrF6—the only
KrmFn compound with greater fluorine content than KrF4—would exhibit thermodynamic stability.
However, we do find that some less-fluorine rich KrmFn phases stabilize at pressures larger than
50 GPa. In particular, on the krypton-rich side of the phase diagram we find Kr6F and Kr4F becoming
part of the convex hull at approx. 80 GPa (Figure 3), and remaining thermodynamically stable up to
200 GPa. Therefore, one should expect formation of these compounds in krypton-rich Kr/F mixtures
upon compression.

At higher pressures we predict stabilization of KrF (at 100 GPa), and Kr2F (at 140 GPa).
Both of them remain on the convex hull up to 200 GPa. Interestingly, we find that KrF2 becomes
thermodynamically unstable above 180 GPa—above that pressure it should spontaneously decompose
into the hitherto unknown KrF and KrF4.

Within their pressure stability range, Kr6F and Kr4F do not exhibit any phase transitions.
The lowest-enthalpy structures of these krypton-rich phases are formed by closely packed Kr atoms
decorated with isolated F atoms (see Figure S3 in the SM). As shown in Table 1, the Kr–F distances
found in these compounds are considerably longer than the covalent Kr–F bonds in KrF2 and KrF4.
On the other hand, Kr–Kr contacts are comparable to those found in solid Kr at the same pressure.
These characteristic features indicate that the building blocks of both Kr6F and Kr4F consist of atoms
rather than molecules, and that these compounds lack covalent bonding. The latter point is confirmed
by the analysis of the ELF function for these compounds, which indicates that ELF values calculated
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between all of the atoms do not exceed 0.1. This number is comparable to the value found between Kr
atoms in solid krypton at the same pressure (Figure S4 in SM).
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Table 1. Comparison of the closest Kr–F, Kr–Kr and F–F distances (in Å) for the lowest enthalpy
structures of KrmFn compounds at 150 GPa.

Phase Type Kr–F Kr–Kr F–F

Kr Atomic
(3D)

- 2.68–2.75 -
Kr6F 2.29–2.39 2.58–2.77 2.78
Kr4F 2.31–2.34 2.62–2.70 2.68

Kr2F 2D 2.29 2.51–2.56; 2.83–2.84 2.21
KrF 1D 2.27–2.33 2.29; 2.78–2.90 2.29

KrF2 Molecular
(0D)

1.80 2.66 2.19
KrF4 1.80 3.57 2.00

F2 - - 1.42

For Kr2F, our structure investigations identified a phase with I4/mcm symmetry, one that remains
the lowest-enthalpy structure in the whole pressure range studied. This polymorph is isostructural
with a previously proposed high-pressure phase of Xe2F [44]. Similarly to that structure, it contains
an interpenetrating network of graphitic Kr layers (Figure 4a) with a Kr–Kr bond of about 2.5 Å at
150 GPa, which is ca 8% shorter than the Kr–Kr separation in solid krypton at the same pressure
(Table 1). The second-nearest Kr–Kr contacts in Kr2F are much longer (2.83–2.84 Å, Figure 4b), and the
length of Kr–F contacts hints at no covalent bonding between krypton and fluorine (Table 1). In case
of Xe2F, Peng et al. indicated formation of covalent Xe–Xe bonds [44]. For Kr2F we find, however,
that ELF values between nearest-neighbor Kr atoms do not exceed 0.15 (Figure 4c), which hints at
lack of Kr–Kr covalent bonding within the graphitic layers. Therefore, although the structure of Kr2F
features more directional contacts than Kr6F and Kr4F, it seems that it also can be described as built of
relatively weekly bonded Kr and F atoms.
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Similarly to Kr2F, we find that KrF exhibits only one polymorphic form in the whole pressure range
studied. This structure of P2/m symmetry contains chains of Kr atoms (Figure 5a) with an extremely
short Kr–Kr bond of 2.29 Å at 150 GPa (which is about 15% shorter than the Kr–Kr contact in solid
krypton; see Table 1). At the same time, Kr–F and F–F shortest distances are considerably longer than
those found in KrF2 and F2, respectively, while secondary Kr–Kr contacts are slightly longer to those
found in solid Kr (Table 1, Figure 5b). These structural features indicate formation of Kr–Kr covalent
bonds within the Kr chains. Indeed, inspection of the ELF function shows that the maximum ELF value
along the shortest Kr–Kr distance is 0.4, comparable to what is found for KrF2 and KrF4 (Figure 5c).
We note that Peng et al. found XeF to be thermodynamically stable at 100 GPa and 140 K [44]. However,
their lowest enthalpy structure contained Xe–Xe dimers, instead of Kr chains found by us for KrF.
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3. Discussion

Previous theoretical studies on the reactivity of Xe/F [44] and Ar/F [30] systems indicated that
application of high pressure leads to stabilization of compounds with high fluorine content (XeF2, XeF4,
XeF6, ArF2) with respect to pure elements. We have found the same trend for the Kr/F system studied
here—in particular we find that large compression should lead to thermodynamic stabilization of
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a crystal containing KrF4 molecules. If obtained, this compound would constitute the first example of
a chemical connection containing krypton in the +4 oxidation state.

The increased reactivity of krypton compared to argon is evident from this study. We find
that the stabilization pressure of KrF4 is 15 GPa (more adequately approx. 40 GPa after taking into
account overbinding due to the employed functional), while a compound containing ArF4 molecules
is predicted to form only above 250 GPa [30]—see Table 2. On the other hand, krypton remains less
reactive than xenon at high pressure—our results indicate that KrF6 is not stable at least up to 200 GPa,
while XeF6 can be obtained at ambient conditions.

Table 2. Comparison of the theoretical thermodynamic stability NgF2, NgF4, and NgF6 (Ng = Ar, Kr,
Xe) compounds up to pressures of 200 GPa. Pressures at which a given stoichiometry is stable are given
in GPa (amb.—stable at ambient pressure; n.d.—not determined). For NgF2 the numbers in parenthesis
correspond to the decomposition pressure given in GPa.

Ng NgF2 NgF4 NgF6 Ref.

Ar 58 (> 200) > 200 n.d. [30]
Kr amb. (180) 15 > 200 this work
Xe amb. (81) amb. amb. [44]

Pressures exceeding 50 GPa should lead to stabilization of krypton-rich fluorides (Kr6F and
Kr4F at 80 GPa, Kr2F at 140 GPa). This is in analogy with previous results for the Xe/F system,
where stabilization of Xe2F was predicted to occur above 60 GPa [44] (we note that in that study Xe6F
and Xe4F compositions were not taken into account). We do not observe formation of direct bonds
between noble-gas atoms in KrmF (m = 2, 4, 6) compounds, in contrast to Xe2F, which does exhibit
Xe–Xe bonds. We do however find Kr–Kr bond for KrF, which becomes stable at 100 GPa.

The enhanced thermodynamic stability of KrF at large compression influences the stability of
KrF2, which is predicted to decompose into KrF and KrF4 at 180 GPa. Still, KrF2 is more stable at
large compression than XeF2, which in turn is predicted to disproportionate into Xe2F and XeF4 above
81 GPa. Generally, it seems that the thermodynamic stability of noble-gas difluorides at high pressure
increases, when moving up group 18 with ArF2 predicted to dominate the convex hull of the Ar/F
system up to 200 GPa [30].

We find that F–Kr–F molecules in KrF2 undergo slight bending in response to compression, in
analogy to ArF2, but we do not encounter any signs of auto-ionization, as predicted for XeF2 [42].
Interestingly, our structure searches do not identify any phases containing KrF+ and Kr2F3

+ cations,
which are known to form upon reaction of KrF2 with fluoride acceptors [7]. This might hint at the fact
that the fluoride-donor properties of KrF2 are suppressed at large compression. In general, it seems
that in the case of the Kr/F system, ionic bonding is not a major driving force in stabilization of
high-pressure phases, in contrast to what is found for the N/F system [57].

We hope that the insight into the high-pressure chemistry of krypton offered by this study will
motivate future investigation, in particular, experimental attempts to obtain KrF4 and KrF. As already
noted, the pressures necessary for the synthesis reported here are expected to be underestimated
by about 25 GPa; nonetheless, even with this correction they fall well within the experimentally
accessible pressure range achievable even with the use of commercially available diamond anvil
cells. Most importantly, we note that both compounds should be accessible by a convenient pathway
involving the high-pressure decomposition of KrF2; such synthesis scheme should be preferred over
the direct synthesis from Kr and F2, in particular due to the large reactivity and toxicity of fluorine.

Finally, we note that a detailed study of the electronic properties of the KrmFn compounds reported
here would also be of interest. Analyzing the bands structure of these connections is beyond the scope
of this study, we only note that our calculations indicate that Kr, F2, KrF2 and KrF4 are semiconductors
at 150 GPa, while Kr6F, Kr4F, Kr2F and KrF are metallic at the same pressure (see Table S3 in SM).
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4. Materials and Methods

Our study is based on periodic DFT calculations which were performed with the VASP
5.2 program [58–60]. We utilized the generalized gradient approximation (GGA) in the form of
the Perdew–Burke–Ernzerhof (PBE) functional [61], which was successfully applied in previous
high-pressure studies on xenon fluorides [42,44], as well as a recent study on the ambient-pressure
structures of KrF2 [62]. The projector augmented-wave (PAW) method was used [63], as implemented
in the VASP 5.2 code. Our calculations do not included van der Waals corrections the DFT functional.
We have found, however, that inclusion of such dispersion corrections (in the form of the D3
correction [64]) lead to negligible differences in the high-pressure thermodynamic stability of KrF2 and
KrF4 (see Figures S1 and S2 in SM), in accordance with previous results for the Ar/F system [30].

The cut-off energy of the plane waves was set to 600 eV with a self-consistent-field convergence
criterion of 1 × 10−5 eV. Valence electrons (Kr: 4s, 4p; F: 2s, 2p) were treated explicitly, while VASP
pseudopotentials, accounting for scalar relativistic effects, were used for the description of core and
semi-core electrons. The spacing of the k-point mesh was set at 2π × 0.06 Å−1. All structures were
optimized in 10 GPa steps (5 GPa below 20 GPa) using a conjugate gradient algorithm. Structure
visualization was performed with the VESTA software [65], while symmetry recognition with the
online FINDSYM program [66].

For each pressure, we optimize the structure of the studied KrmFn phases, as well as that of
elemental Kr and F2. From the resulting enthalpies we derive the enthalpies of formation of KrmFn

phases at each pressure. At ambient pressure, krypton adopts the face-centered cubic (fcc) structure [67].
In our calculations, already at slightly elevated pressure (approx. 10 GPa) krypton adopts a hexagonal
close-packed (hcp) structure and maintains it in the whole considered pressure range (0–200 GPa) We
also note that, above 50 GPa, the ambient pressure structure of F2 (C2/c space group [68]) symmetrizes
spontaneously to a Cmca structure which is analogous to the high-pressure molecular polymorph of
Cl2 [69]. For a comparison of the experimental and calculated crystal structures of α-F2 and Kr at
ambient pressure see Table S4 in the SM.

The candidate structures of KrmFn were identified using the USPEX evolutionary algorithm [50,51]
coupled with the PBE functional. The evolutionary searches were performed at P = 100 and 200 GPa
with 1, 2 and 4 formula units per cell.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/7/11/329/s1,
Table S1: Structure parameters of the most stable polymorphs of Kr3F2, KrF2 and KrF4, Table S2: Structure
parameters of the most stable polymorphs of K6F, Kr4F, Kr2F and KrF, Table S3: Calculated band gaps for the
lowest enthalpy structures of KrmFn compounds at 150 GPa, Table S4: Comparison of the experimental and
calculated (PBE method) crystal structures of α-F2 and Kr at ambient pressure, Figure S1: Comparison of the
relative enthalpy of the ambient pressure P42/mnm structure of KrF2 with respect to the high-pressure Cmcm
structure obtained with three different computational methods (PBE, PBE+D3, HSE06), Figure S2: Comparison of
the enthalpy change of the reaction KrF2 + F2 -> KrF3 obtained with three different computational methods (PBE,
PBE+D3, HSE06). The ambient pressure CCSD(T) value calculated with the use of data from Dixon et al. (ref. [55])
is marked with a star. Figure S3: (a) The P–1 structure of Kr6F obtained at 150 GPa; (b) the C2/m structure of Kr4F
at 150 GPa, Figure S4: The ELF function at 150 GPa for: (a) the P–1 structure of Kr6F; (b) the C2/m structure of
Kr4F; (c) the hcp structure of Kr.
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