Supporting material

Synchrotron Radiation Pair Distribution Function Analysis of gels in cements

Ana Cuesta ¹, Jesus D. Zea-Garcia ², Diana Londono-Zuluaga ², Angeles G. De la Torre ², Isabel Santacruz ², Oriol Vallcorba ¹and Miguel A.G. Aranda ¹*

- ¹ ALBA Synchrotron radiation facility, Carrer de la Llum 2-26. 08290 Cerdanyola del Vallès, Barcelona, Spain;
- ² Departamento de Química Inorgánica, Cristalografía y Mineralogía. Universidad de Málaga, 29071 Málaga, Spain
- * Correspondence: migarcia@cells.es; Tel.: (+34) 935924305

This supporting information contains:

Description of every total scattering raw data set deposited open access.

Table S1. Rietveld quantitative phase analysis results for the alite pastes after 34 hydration days.

Table S2. Summary of the weight losses from the TGA study for the alite pastes.

Table S3. Anisotropic atomic displacement parameters (ADPs) for portlandite in w/s=0.80 paste obtained in the PDF analysis. Note that the parameters for the hydrogen were not refined.

Table S4. Quantitative phase analysis results obtained by PDF using two crystal structures for the nanocrystalline CSH gel in the alite w/s=0.46, 0.55, and 0.65 pastes. Rw values are also included.

Table S5. Refined unit cell parameters for portlandite and clinotobermorite T3_14sc in the alite w/s=0.46, 0.55, and 0.65 pastes by PDF analysis.

Table S6. LXRPD Rietveld quantitative phase analysis results for the calcium aluminate pastes.

Table S7. Refined unit cell parameters and ADPs for hydrogarnet and gibbsite in the calcium aluminate pastes obtained by the PDF analysis.

Figure S1. Particle size distribution of the raw materials measured by laser diffraction (a) Ca₃SiO₅, (b) CaAl₂O₄ and (c) Ca₄Al₆O₁₂SO₄.

Figure S2. Thermogravimetric data for Ca₃SiO₅ pastes hydrated for 34 days at room temperature: (a) w/s=0.46 sample; (b) w/s=0.55 sample; (c) w/s=0.65 sample; (d) w/s=0.80 sample.

Figure S3. Experimental (blue circles) and fitted (red solid line) PDF patterns for the as-received Ca₃SiO₅. Difference curve as grey line.

Figure S4. Thermogravimetric data for CaAl₂O₄ pastes hydrated for 30 days: (a) w/s=0.55 sample hydrated at 35°C; (b) w/s=1.20 sample hydrated at 35°C; (c) w/s=0.55 sample hydrated at 45°C.

Figure S5. Thermogravimetric data for (a) ye'elimite–gypsum paste hydrated with w/s=1.2 for 21 days at room temperature and (b) ye'elimite–bassanite paste hydrated with w/s=1.2 for 14 days at room temperature

Figure S6. Experimental (blue circles) and fitted (red solid line) PDF patterns for the ye'elimite– bassanite paste hydrated with w/s=1.20 for 21 days at room temperature (a) high r-range: 30-50 Å, (b) low r-range: 1.6–35 Å, (c) enlarged view of: 1.6–10 Å. Difference curve as grey lines.

Description of every total scattering raw data set deposited open access.

All of the total scattering raw data underlying this article, including the nickel and Ca₃SiO₅ data sets employed as standards and the empty capillary utilized for data processing, can be accessed on Zenodo at https://doi.org/10.5281/zenodo.890585, and used under the Creative Commons Attribution license.

Files:

Ni0p7_ALL.dat: Nickel sample employed as standard.
C3S_2016_anh_ALL.dat: Anhydrous alite employed as standard empty0p7_ALL.dat: empty capillary
C3S-046_ALL.dat: alite paste hydrated with a w/s mass ratio of 0.46.
C3S-055_ALL.dat: alite paste hydrated with a w/s mass ratio of 0.55.
C3S-065_ALL.dat: alite paste hydrated with a w/s mass ratio of 0.65.
C3S-080_ALL.dat: alite paste hydrated with a w/s mass ratio of 0.80.
CA_35C_055_ALL.dat: calcium aluminate paste hydrated with a w/s mass ratio of 0.55 at 35°C
CA_35C_120_ALL.dat: calcium aluminate paste hydrated with a w/s mass ratio of 1.20 at 35°C
CA_45C_055_ALL.dat: calcium aluminate paste hydrated with a w/s mass ratio of 0.55 at 45°C
C4A3s_G_120_ALL.dat: ye'elimite with gypsum paste hydrated with a w/s mass ratio of 1.20.

Table S1. Rietveld quantitative phase analysis results for the alite pastes after 34 hydration days.

sample	Alite (wt%)	CaCO ₃ (wt%)	Portlandite (wt%)	ACn [#] (wt%)
alite_046	13.2	1.4	18.2	67.2
alite_055	11.2	1.2	21.8	65.8
alite_065	10.8	1.2	21.6	66.4
alite_080	10.1	1.5	21.8	66.7
П				

[#] ACn accounts for the amorphous phase plus any crystalline not-quantified content.

Table S2. Summary of the weight losses from the TGA study for the alite pastes.

Weight loss (wt%)	RT-250°C	250°C-400°C	400°C–600°C	600°C–1000°C	Full range
alite 046	13.9	2.0	6.2	2.2	24.3
alite 055	14.1	1.7	6.5	3.1	25.4
alite ⁰⁶⁵	15.1	1.6	6.6	3.3	26.6
alite_080	15.0	1.6	7.1	3.2	26.9

Atom	Ca1	01	Η
Х	0	0.3333	0.3333
У	0	0.6667	0.6667
Z	0	0.2161	0.4256
u11	0.0037	0.0084	0.0264
u22	0.0037	0.0084	0.0264
u33	0.0118	0.0212	0.0264
u12	0.0019	0.0042	0.0132
u13	0	0	0
u23	0	0	0

Table S3. Anisotropic atomic displacement parameters (ADPs) for portlandite in w/s=0.80 paste obtained in the PDF analysis. Note that the parameters for the hydrogen were not refined.

Table S4. Quantitative phase analysis results obtained by pair distribution function (PDF) using two crystal structures for the nanocrystalline CSH gel in the alite w/s=0.46, 0.55, and 0.65 pastes. Rw values are also included.

sample	Rw (%)	Ca3SiO5 (wt%)	CaCO ₃ (wt%)	Cryst- Ca(OH)2 (wt%)	C-S-H (wt%)
Alite_046					
clinotobermorite T3 14sc	28.5	32.4	0.3	23.1	44.1
Jennite, ICSD #151413	30.0	36.8	0.4	26.3	36.5
Alite_055					
clinotobermorite, T3 14sc	29.5	23.4	0.9	33.6	42.2
Jennite, ICSD #151413	32.5	24.9	0.9	35.9	38.3
Alite 065					
clinotobermorite, T3 14sc	23.2	14.1	0.8	30.2	54.9
Jennite, ICSD #151413	27.4	13.2	0.8	28.5	57.5

Table S5. Refined unit cell parameters for portlandite and clinotobermorite T3_14sc in the alite w/s=0.46, 0.55, and 0.65 pastes by PDF analysis.

Samula	Portlandite		Clinotobermorite_T3_14s				
Sample	a (Å)	c (Å)	a (Å)	b (Å)	c (Å)	β (°)	
alite_046	3.593	4.914	11.304	7.307	42.375	94.5	
alite_055	3.594	4.914	11.180	7.356	42.003	93.0	
alite_065	3.594	4.916	11.238	7.302	42.621	94.2	

Table S6. Laboratory x-ray powder diffraction (LXRPD) Rietveld quantitative phase analysis results for the calcium aluminate pastes.

sample	Hydrogarnet (wt%)	Hemicarbonate (wt%)	ACn (wt%)		
CA_055_35°C	42.0	1.6	56.4		
CA_120_35°C	42.7	1.7	55.6		
CA_055_45°C	45.0	2.2	52.8		

Table S7. Refined unit cell parameters and ADPs for hydrogarnet and gibbsite in the calcium aluminate pastes obtained by the PDF analysis.

		Hydro	garnet	Gibbsite						
Sample	$ADPs(Å^2)$				a (Å)	h (Å)	a (Å)	B (9)	ADPs (Å ²)	
	a (A)	Ca	Al	0	a (A)	D (A)	(A)	Р()	Al	0
CA_055_35°C	12.579	0.0063	0.0072	0.0182	8.693	5.046	9.713	94.6	0.0050	0.0153
CA_120_35°C	12.578	0.0054	0.0063	0.0152	8.668	5.075	9.699	94.6	0.0012	0.0062
CA_055_45°C	12.573	0.0063	0.0071	0.0167	8.671	5.064	9.712	94.5	0.0021	0.0093

Figure S1. Particle size distribution of the raw materials measured by laser diffraction (a) Ca₃SiO₅, (b) CaAl₂O₄, and (c) Ca₄Al₆O₁₂SO₄.

Figure S2. Thermogravimetric data for Ca₃SiO₅ pastes hydrated for 34 days at room temperature: (a) w/s=0.46 sample; (b) w/s=0.55 sample; (c) w/s=0.65 sample; (d) w/s=0.80 sample.

Figure S3. Experimental (blue circles) and fitted (red solid line) PDF patterns for the as-received Ca₃SiO₅. Difference curve as grey line.

Figure S4. Thermogravimetric data for CaAl₂O₄ pastes hydrated for 30 days: (a) w/s=0.55 sample hydrated at 35°C; (b) w/s=1.20 sample hydrated at 35°C; (c) w/s=0.55 sample hydrated at 45°C.

Figure S5. Thermogravimetric data for (a) ye'elimite–gypsum paste hydrated with w/s=1.2 for 21 days at room temperature and (b) ye'elimite–bassanite paste hydrated with w/s=1.2 for 14 days at room temperature

Figure S6. Experimental (blue circles) and fitted (red solid line) PDF patterns for the ye'elimite– bassanite paste hydrated with w/s=1.20 for 21 days at room temperature (a) high r-range: 30-50 Å, (b) low r-range: 1.6–35 Å, (c) enlarged view of: 1.6–10 Å. Difference curve as grey lines.