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Abstract: Solution crystallization and dissolution are of fundamental importance to science and
industry alike and are key processes in the production of many pharmaceutical products, special
chemicals, and so forth. The ability to predict crystal growth and dissolution rates from theory and
simulation alone would be of a great benefit to science and industry but is greatly hindered by the
molecular nature of the phenomenon. To study crystal growth or dissolution one needs a multiscale
simulation approach, in which molecular-level behavior is used to parametrize methods capable
of simulating up to the microscale and beyond, where the theoretical results would be industrially
relevant and easily comparable to experimental results. Here, we review the recent progress made by
our group in the elaboration of such multiscale approach for the prediction of growth and dissolution
rates for organic crystals on the basis of molecular structure only and highlight the challenges and
future directions of methodic development.

Keywords: molecular dynamics; kinetic Monte Carlo; continuum simulations; crystal growth; crystal
dissolution; multiscale simulations

1. Introduction

Crystal growth and dissolution processes are an area of vital interest for pharmaceuticals,
agrochemicals, organic electronics and other technologies. Owing to their significance to many
different fields, those processes have been studied for over a century [1–3]. However, the prediction of
crystal growth and dissolution kinetics for novel organic compounds still presents a major challenge.

The theories of crystal growth and dissolution are extensively discussed in the literature [2–5].
Both processes proceed by analogous mechanisms [6,7] and involve two main steps: (1) surface reaction
and integration/disintegration of the surface species and (2) mass transfer of this species from/toward
the bulk solution across the diffusion layer that surrounds the crystal [8]. Thus, the actual process
of crystal growth and dissolution occurs at the molecular level, which also concerns crystal packing.
Crystal structure databases, which provide crystal packing information for a huge variety of molecular
structures, are to a large extent based on experimental X-ray diffraction analysis. The major drawback
of this method is that it requires a flawless crystal of very high quality. Thus, the compound has to be
synthesized and crystallized before information about the crystal structure can be obtained. Knowledge
of the crystal packing is essential for predicting growth and dissolution properties. Consequently,
to predict growth and dissolution properties from nothing but the molecular structure, simulation
techniques to predict the crystal structure must be available. However, not only the nanoscale aspects
are significant for understanding the crystal growth and dissolution processes. There are many

Crystals 2017, 7, 288; doi:10.3390/cryst7100288 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
https://orcid.org/0000-0000-000-000X
http://dx.doi.org/10.3390/cryst7100288
http://www.mdpi.com/journal/crystals


Crystals 2017, 7, 288 2 of 23

important phenomena associated with crystal growth that occur on a mesoscale comprising hundreds
of nanometer to tens of microns and occurring over long time scales (microseconds and longer) [9],
like, e.g., the evolution of crystal surface structures due to the formation of terraces, which range in
size from 0.1 to 1 microns, or step bunches, which can be as large as 100 microns [9]. Even larger
length scales and longer time scales are needed to incorporate concentration effects and calculate face
displacement velocities. An in silico prediction of macroscopic growth and dissolution properties thus
necessarily requires a multiscale modeling approach that integrates all of these aspects in one unified
simulation framework.

The standard simulation technique for modeling molecular-level behavior to reveal how the
molecular details influence the growth and dissolution kinetics is molecular dynamics (MD). In this
method, Newton’s equations of motion are solved numerically for all atoms to track the time
evolution of the systems and to derive the kinetic and thermodynamic properties of interest [10].
However, MD can, at most, only probe behavior on the nanometer and nanosecond scale. Thus, most
investigations of growth and dissolution processes using MD are reported for relatively small and
simple molecules like, e.g., urea [11–13] and glycine [14–17], or even for simple model systems, such
as hard spheres and Lennard–Jones particles [18–21], whereas most organic molecules, especially
those used as active pharmaceutical ingredients (APIs), form more complex crystal structures, and
it is extremely challenging to capture their crystal growth using fully-atomistic simulations [22].
Replacing atomistic details with lower resolution, coarse-grained (CG) beads, in which groups of
co-localized atoms are treated as a single interaction site, allows one to overcome the complexity
of molecules and the long time scale associated with the crystallization [22,23]. However, the
interpretation of time is problematic in CG models [24]. The time scale needs to be calibrated by
directly comparing with experimental data or dynamics from atomic simulations for the system
at hand [24]. Thus, mainly the usefulness of CG models to obtain relative characteristics, like,
e.g., to estimate the role of additives on the crystal growth of different API molecules was demonstrated
so far [22,23]. Enhanced-sampling methods such as umbrella sampling [25], metadynamics [26] and
forward flux sampling [27] have emerged as useful tools for understanding the mechanisms involved
in crystallization. A basic idea, common to these rare event sampling methods, is that a biased
potential is added to the system either to drive it along a predefined reaction coordinate or to prevent
it from repeating already explored trajectories [23]. However, the efficiency of these methods strongly
depends on the accuracy of the choice of reaction coordinates and may be inefficient in the case of a
large number of degrees of freedom of the molecule under consideration. Moreover, upon introduction
of an extra term into the system Hamiltonian, the actual dynamics of the system is to some extent
hampered [28]. Recently, Salvalaglio et al. [13] demonstrated that using well-tempered metadynamics,
applied within MD, one can quantitatively estimate the ratio between growth rates and thus predict
the crystal habits and their dependence on additive concentration and supersaturation. However,
the authors stressed that the approach does not allow computing absolute growth rates. The Reuter
group also established a method for a quick prediction of approximate dissolution rates at low
undersaturation based on the combination of hyperdynamics and metadynamics approaches [29–31].
This method relies on the classic rotating spiral model of Burton, Cabrera and Frank (BCF) [32], which
assumes that dissolution (growth) proceeds via rotating spirals of step edges at screw dislocations and
that dissolution (incorporation) of molecular units takes place primarily at kink defects along these
step edges.

Kinetic Monte Carlo (kMC) is the method of choice in mesoscale modeling of dissolution or
growth. In a kMC simulation, the growth or dissolution of a crystal is approximated by involving
rare and independent state transition events, like, e.g., transition of molecule from solution to a kink
or step site at the crystal surface. At each step in the simulation, the next event is determined on
the basis of the probability proportional to the rate for that event. The time of the next event is
determined by the overall rate for the microscopic surface processes and a suitably-defined random
number. If a set of relevant states is defined and the transition rate constants are known, then the
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time evolution of the system can be modeled. Thus, the definition of a minimal set of distinct states
and the estimation of corresponding transition rates are the main challenges for kMC simulations.
Many kMC studies consider states on the basis of their nearest-neighbor coordination [33,34] or
next-nearest-neighbor coordination [11,35]. Alternatively, the problem of state definition can be solved
by identifying the most significant factors defining site reactivity with the help of electronic structure
calculations and MD simulations for selected sites on the crystal surface [36]. Different approaches
based on MD [11,20,33–35], accelerated MD [31,37], ab initio MD [38] or even DFT techniques [39]
have been reported to determine rate constants, though the last three imply significant computational
effort making them less attractive for systems with a high number of potential transitions, as well as
for systems consisting of complex molecules with a high internal degree of freedom [40]. Significant
steps toward the multiscale modeling of crystallization have been presented in studies conducted
by Piana and co-workers [11,33,35], who first combined MD and kMC approaches to investigate the
growth of a urea crystal from solution. Their simulations successfully predicted the different crystal
morphologies of urea in solutions of methanol and water. However, as this only required relative
rate constants, the model is still restricted in its applicability. Process time is an important factor in
predicting crystallization processes, which demands that kinetic information including absolute rate
constants is correctly accounted for. Further, in their studies, Piana et al. benefited from two special
properties of urea: firstly, urea dissolution and growth has been shown to be fast in experiment and
simulation, and secondly, urea is a small molecule, which has no facile torsional degrees of freedom [33].
For most substances, these simplifications are not necessarily true. Moreover, the concentration effects,
relevant at the macroscopic scale, are not considered in their study, hindering the direct comparison
with the experimental growth rates.

On the macroscopic scale, continuum methods are gainfully applied [41–47], handling physics
expressed by continuum partial differential equations. These simulations are important for
understanding the crystal growth and dissolution processes in their complexity accounting for advection
and diffusion processes. They, however, do not shed light on how the molecular details influence the
growth and dissolution kinetics. Molecular dynamics simulations are at most used only to predict
physical parameters such as diffusivity or solubility, which are then employed to compute scale
continuum transport models [48]. In most cases, the macroscopic simulation relied on experimental data;
thus, the derivation of predictions for novel compounds still presents a major obstacle.

Thus, the protocol for in silico prediction of crystal growth/dissolution rates on the basis of
molecular structure should comprise and join all of the corresponding steps from the prediction of
molecular packing and crystal shape to continuum simulation of growth and dissolution processes.
Figure 1 presents a multiscale protocol, elaborated based on our previously published studies and
findings [40,49–52].

In this paper, we review all of the aspects relevant to establishing of such a protocol and highlight
the challenges arising at each individual step. The first two steps, prediction of (1) crystal structure
from molecular structure and (2) crystal shape, are necessary to provide the information for all further
simulations and, thus, to initialize the multiscale protocol. These steps were completely omitted in our
previous studies; however, in Section 2, we give a short survey of the actual state of knowledge and
techniques in this field. The third step involves MD simulations to take into account molecular-level
processes and to obtain process rate constants for kMC simulations, as was initially proposed by
Piana et al. [11,33,35]. In comparison to Piana et al., we consider the three-dimensional crystal model
in MD simulations, enabling dissolution to be seen on MD time scales even for highly hydrophobic
and poorly water-soluble pharmaceutical ingredients. This, as well as a choice of force field for MD
simulations and the necessity and ways to hold constant solution concentration in MD simulations are
considered in Section 3 of this paper. Our approach to properly transfer the microscopic information
from MD to kMC simulations and all procedures needed for that (state identification, detection of only
rare, uncorrelated transition events in MD simulations, etc.) are described in Section 4. The fourth
step of the multiscale protocol represents kMC simulations to calculate crystal face displacement
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velocities based on the MD rates and thus at the same constant solution concentration. This step is
described in Section 5 of the paper. The fifth and last step involves continuum simulations to describe
concentration-dependent crystal growth/dissolution on the macroscopic scale, where the results can
be directly compared with the experimental ones. The scale continuum transport model, as well
as our approach to transfer the mesoscopic information from kMC simulations to the macroscopic
level are described in Section 6 of the paper. To demonstrate our approach, the dissolution rates
for aspirin were predicted and validated by comparison with experimental assessment of aspirin
dissolution using a Jamin-type interferometer [53], as described in Section 7 of the manuscript. Aspirin
was chosen as a model substance as it is a well-studied compound, where the literature provides a
broad array of information like crystal structure [54], polymorphs [55,56], morphology [57], critical
nucleus size [58] needed to initialize the multiscale simulation protocol, as well as experimental data
on crystal dissolution [59,60] for comparison with the simulation results and validation of the different
steps of our protocol. Thus, all of the simulation results presented in the paper are for molecular
aspirin crystals. However, our approach introduces the flexibility to handle different organic model
compounds and not restricted to aspirin. A summary of our findings and some concluding remarks,
as well as the information about future directions and challenges can be found in Section 8.

Crystal structure
prediction

Molecular
structure

Crystal shape
prediction

Molecular 
dynamics

Kinetic 
Monte Carlo

Continuum

Experiment

Figure 1. Protocol for in silico prediction of crystal growth/dissolution rates on the basis of the
molecular structure only (case scenario: aspirin).

2. Crystal Structure and Shape Prediction

The prediction of crystal structure at the atomic level is one of the most fundamental challenges
in condensed matter science [61]. Crystal structure prediction (CSP) approaches have been evolving
rapidly in the past few decades and have now grown into an overwhelmingly vast, diversified and
active field of research [62,63]. The ever increasing computer power allowed making many successful
predictions of organic crystal structures [63]. The best starting point to keep track of the existing range
of approaches is constituted by the accounts of the Blind Tests of CSP organized by the Cambridge
Crystallographic Data Centre every few years [64]. These contests ask participants to predict the
crystal structures of organic molecules starting from only the 2D molecular structure, which are then
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compared with the experimentally obtained, but not publicly released data to reveal the particularly
effective techniques. Despite the excessive ramification of approaches developed to date, the whole
CSP process can generally be subdivided into three distinct steps, each with their own methodologies
and challenges: (1) conformational exploration of the molecule(s), (2) generation of candidate packing
arrangements and (3) (re-)ranking of candidate structures using some form of fitness function [64].
Successful crystal engineering relies on the knowledge of molecular conformation, i.e., the overall
shape of molecular building-blocks, as well as the relative arrangement of functional groups within a
molecule that can participate in structure-directing interactions [65]. Molecular shape can be easily
predicted for rigid molecules, but becomes more challenging as molecular flexibility is increased
and the molecules of interest have a choice of conformers when self-assembling into a crystal [65].
Different conformers may lead to very different crystal packing arrangements, ultimately influencing
the properties of the crystal [65]. Therefore, conformational flexibility can be seen as a principal
obstacle to crystal engineering. Commercially available and industrially employed CSP approaches
like the Polymorph Predictor within Accelrys’ Materials Studio rely on a rigid molecule approximation
and only concentrate on the evaluation of different packing arrangements. This is clearly insufficient
for flexible APIs, which in the crystal frequently adopt geometries that are significantly different from
the stable gas-phase conformer. This is particularly relevant for the engineering of pharmaceutical
materials, where solid form properties of active pharmaceutical ingredients may be manipulated,
either by selection between polymorphs, or the design of multi-component crystals, such as salts or
co-crystals. Thus, there is also still no general solution to the main CSP challenge, i.e., the existence of
crystal polymorphism [62,63]. Each polymorph may differ from others in physicochemical properties,
such as density, solubility, bioavailability, mechanical strength, dissolution rate, to name but a few [23].
Knowledge of different polymorphs is essential to the pharmaceutical industry for choosing the
crystalline form with the most efficient therapeutic performance and to exclude the crystallization of
any unwanted form.

To see which surfaces are relevant to study growth and dissolution processes, not only molecular
packing, but also crystal shape should be predicted in silico. They both are needed to initialize the
multiscale growth and dissolution protocol. Crystals reveal a large variety of shapes, depending on
their chemical composition and structure, as well as on the growth conditions, such as supersaturation,
temperature, solvent and even impurities. For novel compounds, such external parameters will not be
necessarily known, but one still needs to determine the facets that dominate the morphology from the
known crystal structure for the next steps of the proposed multiscale protocol. Under conditions of
extremely slow growth, the shape of a crystal is determined by thermodynamics: the crystal tends to
grow to a shape of a polyhedron having minimum surface energy [66]. Such an equilibrium shape
is thus obtained, according to the Gibbs thermodynamic principle, by minimizing the total surface
free energy associated with the crystal-medium interface. The procedure is based on the Gibbs–Wulff
theorem, also known as Wulff construction [67], and provides the equilibrium crystal shape from
separately computed surface free energies of all low-index crystal facets. Critical for this shape are
thereby not the absolute surface free energies, but only their relative ratios. Less stringent (and efficient)
approaches may and have therefore been employed to their computation. One means to this end is
to neglect (or crudely approximate) vibrational free energy contributions to the surface free energies
and to use static surface energies obtained for T = 0 K optimized surface structures. This reduces the
computational burden to such an extent that in fact first-principles electronic structure methods like
DFT may directly be employed to produce these numbers. This approach is for instance commonly
followed to determine nanoparticle shapes in heterogeneous catalysis [68–70]. It has also been used
for growth applications from solutions, where also any solvent influences have been neglected [71,72].
This neglect extends over both the solvent influence on the surface vibrational properties and the
electrostatic effects on the surface energies due to the solvent dielectric properties. However, these
various levels of approximation are generally not deeply investigated, and further efforts should be
made to conduct systematic analysis of the level of theory required to reliably predict the crystal
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shape. Moreover, one can notice that the Gibbs condition is not normally realized in practice as
crystal growth in crystallizers is significantly removed from the equilibrium state [73]. Under most
conditions, the shape of a crystal is determined by kinetics rather than thermodynamics [73]. Thus,
it certainly might be a limitation for the whole protocol, if crystal structure and shape predictions
completely fail. Other methods are also available to deduce morphology of a crystalline material from
its internal crystal structure, like, e.g., the Bravais–Friedel–Donnay–Harker (BFDH) method [74–76],
which uses the crystal lattice and symmetry to generate a list of possible growth faces and their relative
growth rates, or the attachment energy model [77], which takes into account the energetics of crystal
interactions in addition to the crystal geometry. These methods in general provide good predictions of
vapor-grown crystals or crystals grown in systems in which the solvent does not interact strongly with
the solute. However, in many instances, the simulated crystal shapes differ from the experimental ones
because of the kinetic effects due to supersaturation, solvent and impurities dominating the crystal
growth process [78]. The more is known about crystal growth conditions, the better the crystal shape
can be predicted. For that, a number of sophisticated methods exists that account for the effects of such
external factors [79–83]. However, for the next step of the protocol, e.g., MD simulations, it is essential
that the dominant faces and edges are presented. Their actual size and relations to the surrounding
surfaces are less important, as shown in the next section.

Currently, no simple general solution to predict crystal packing and crystal shape data for
compounds with conformational flexibility exists; neither are we concerned with the elaboration
of crystal structure and shape prediction methods. Instead, we relied on the experimental data
for aspirin [57,84] in our work [40,52]. Aspirin was modeled in its protonated state using unit
cell parameters of the polymorphic form I [84]. The aspirin nanocrystal for MD simulations was
built according to the experimental morphology, typical for aspirin crystallized from ethanol-water
solutions [57].

3. MD Simulations

MD simulations are widely used to study crystal growth and dissolution and are of the utmost
importance in unraveling the microscopic details of these processes. However, simulations are
presently affected by several shortcomings, which hinder a reliable comparison with experimental
growth and dissolution rates and limit growth/dissolution studies to systems and conditions often
far from those investigated experimentally [28]. These weaknesses can be classified into two main
categories: (1) limitations related to the accuracy of the computational model used to represent the
system and (2) shortcomings due to the finite-size effects. In this section, we describe our attempts
to resolve these issues and to obtain reliable results in MD simulations: from the choice of the
parameter set to describe intermolecular and intramolecular interactions and simulations of nanocrystal
in its experimentally determined shape to avoiding finite-size effects during crystal growth and
dissolution simulations.

3.1. Choosing the Force Field

To successfully simulate crystal growth and dissolution, i.e., to obtain the results corresponding
to the experimental ones quantitatively or at least qualitatively, the molecular interactions in both
crystal and solution environments have to be accurately described. Thus, the choice of force field
with a suitable combination of a mathematical formula and associated parameters that are used to
describe molecular energy plays a pivotal role. In the literature, a broad variety of force field parameter
sets can be found. The difficulty in choosing a suitable force field mainly arises from the strict focus
of most common force fields on particular properties. Moreover, some of these are designed to be
compound specific; thus, their applicability to novel compounds is limited. For screening purposes
those force fields are favored for which software packages and online resources are provided to
facilitate the generation of force field parameter files for common simulation packages. Thus, the most
general approach to find the parameters for novel compounds like, e.g., small-molecule drugs is to use
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common biomolecular force fields designed for protein interactions and ligand-docking simulations.
Here, small-molecule drugs of varying configuration and containing various functional groups are
included in the force fields parameter sets. Examples for such force fields are, besides others, the
CHARMM [85] (Chemistry at HARvard Molecular Mechanics) force field, the AMBER [86] (Assisted
Model Building and Energy Refinement) force field or, in an extended form, the Generalized AMBER
Force Field [87] (GAFF), and the OPLS [88] (Optimized Potential for Liquid Simulations) force field.
These force fields are designed to adequately describe protein interactions, where the screening of
multiple small-molecule compounds is an important field of interest. For that, force field generating
tools have been developed, e.g., the SWISS PARAM server [89] for the CHARMM-compatible force
field based on the Merck Molecular Force Field (MMFF) [90], the ACPYPE (AnteChamber PYthon
Parser interfacE) [91] wrapper script around the ANTECHAMBER software [92] for the GAFF or the
PRODRG server [93] for the GROMOS [94] (GROningen MOlecular Simulation package) force field.
The latter, however, has been shown to produce sub-optimal results [95], especially when it comes to
calculating the charges. Additionally, force fields can be obtained directly from software packages in
commercial software, such as Maestro from the Schrödinger software package creating OPLS force
field parameters.

Choosing an appropriate force field remains a challenge and is crucial to the results obtained.
For example, studying the crystal growth of glycine from an aqueous solution, Banerjee and
Briesen [14] monitored dissolution, although growth was expected for the applied supersaturated
conditions. Cheong and Boon [16] compared different force fields and charges for the simulation of
glycine crystal growth and found the heat of solution to be an important criterion when choosing the
force field for crystal growth simulation. Heat of solution is the change in the enthalpy when 1 mol of
a substance is dissolved in a solvent, thus an important quantity for crystallization, as it incorporates
both the crystal and the solution phase and quantifies the tendency for crystallization and dissolution.
A positive value indicates that the crystal dissolution is an endothermic process. The crystalline state is
then favored over the dissolved state, and one can also expect that crystal growth would be obtainable
with a suitable supersaturation.

In addition to the heat of solution, we considered several other criteria to make a proper
choice in force field selection for crystal growth and dissolution simulations [49]. Structural,
thermodynamic and interface-specific parameters were evaluated for several API ingredients (aspirin,
ibuprofen, paracetamol). Apart from the importance of the heat of solution for the evaluation of
the solid-to-solution phase transitions, it was concluded that the interaction energies might give
valuable information about the choice of the force field whenever a dominant interaction within the
crystal was present, such as hydrogen bond pairs between carboxyl groups in the case of aspirin and
ibuprofen. Moreover, the lattice parameters of the unit cell after its relaxation with the corresponding
force field (further referred to as a relaxed unit cell) have been shown to provide reliable information,
which is important for the stability of the crystal structure. The distance threshold and the orientation
tolerance parameters, characterizing maximal deviations from the reference crystal molecular positions
and orientations, have also proven to be appropriate indicators of a correct representation of the
crystal-water interfaces by the force fields [49]. The consideration of all of these aspects led us to the
choice of the Merck molecular force field for the simulation of aspirin crystal dissolution in our further
works [40,50].

3.2. Superiority of Three-Dimensional over Two-Dimensional Dissolution Simulations

Most investigations of crystallization processes using MD consider the distinct faces of the crystal
in contact with the solvent [11,12,14–16,33,35,96–98]. However, time scales accessible in regular MD
simulation are often not sufficient to resolve dissolution from the perfectly flat interfaces. Recently
published experimental and MD simulation data on the dissolution of paracetamol highlighted
the significance of the so-called “corner and edge effect” [99], indicating that in particular corners
and edges between facets serve as the initial sites for dissolution and may be accessed by MD.
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The crystal representation used in the paracetamol study [99], however, was in no way related
to the true experimental morphology, and due to its limited size, the employed crystal was not
stable over the whole simulation time. This prevents a direct comparison to experiment or use as a
predictive-quality protocol. We overcame these limitations with MD simulations of an entire aspirin
nanocrystal in its experimentally determined shape revealing the (100), (001), (011) and (110) faces,
cf. Figure 2a [40,50]. It was cut from a pre-equilibrated supercell (310 K and ambient pressure of
1 bar) using the VMD [100] program. The size of the nanocrystal was around 10 × 18 × 14 nm3 [40]
and thus exceeded the size of the critical diameter for stable nuclei [58], enabling one to properly
sample dissolution while the crystal bulk remained in the same configuration as obtained from the
relaxed unit cell. The system consisted of a total number of 9407 aspirin molecules surrounded with
177589 TIP3P water molecules [40]. The dissolution was simulated over 280 ns using version 4.6 of
the GROMACS package and took about ten days on 1024 cores of SuperMUC System of Leibniz
Supercomputing Centre [40]. Pronounced differences were observed in the face-specific dissolution
behavior. A dissolution mechanism via receding edges was found for the (001) plane, which is in good
agreement with experimental results [40,50]. However, while the proposed dissolution mechanism
for the (100) plane is terrace sinking on a rough surface, no pronounced dissolution of the perfectly
flat face was seen. The most obvious reason why there is almost no dissolution of the (100) aspirin
crystal face in the MD simulations is that simulation times were too short. While this is necessarily
true, another reason for the stability of the (100) plane might be the strong deviation of the initial
surface structure used in the simulations from experimentally observed ones. Danesh et al. [60] have
shown that the (100) faces are very rough, which is in good agreement with etching patterns obtained
by Wen et al. [101] for pure water as an etching medium. The roughness of the (100) crystal face is
expected to be of major importance for crystal dissolution. Unfortunately, the feasible simulation cell
size does not allow for the construction of proper, rough surfaces for MD simulations.

Thus, one can notice that the principal limitation to the range of applicability of the given
multiscale approach is determined by the rate of the molecular crystallization and dissolution steps,
as well as size limitations in MD. In order to calculate a reliable rate for a transition event, this
event should occur at least a few times during the MD simulation [35]. A too small number of
events of a certain type would lead to zero or almost zero rates. As the MD rates are input rates for
the kMC algorithm, they have a strong influence on the end results primarily affecting a given slow
growing/dissolving surface, as well as the crystal habit, determined by the relative growth/dissolution
rates. The problem is that the typical times currently accessible to a single MD simulation are 10−7 s,
which might prevent the observation of some of the slowest steps. This also prevents the observation
of the formation of new faces and edges, which are not present in the experimental morphology, but
could be expected to evolve during the kMC simulations, like, e.g., the development of a new (010) face
due to easy detachment of molecules with a low number of neighbors from the tip formed by the (110)
faces. However, as the basic assumption of the given multiscale approach is that individual molecular
steps are independent of each other, it is possible to combine the results of multiple independent
MD simulations to calculate the transition rates. Thus, to obtain all rates for kMC simulations, three
different starting configurations were considered for aspirin nanocrystal, cf. Figure 2: (a) crystal in its
experimental shape, (b) crystal obtained by cutting the tip formed by the (110) faces and, thus, with the
(010) face exposed and (c) block structure revealing only the (100), (010) and (001) faces to obtain rates
for (010)/(100) and (010)/(001) edges [40]. Thereby, we also were able to sample dissolution events
for the slowest (100) face. We assumed that it is the orientation of the hydrogen bonds that plays an
important role for stabilization of the (100) face. As the hydrogen bonds are directed perpendicular to
the (100) plane, the molecules have strong interactions with the underlying layer of aspirin molecules.
Thus, to increase the sampling of dissolution events, alternative terminations were applied to this
slowly dissolving face in the starting configuration (b), cf. Figure 2b: from the two opposite (100) faces,
one face was constructed such that the surface layer had hydrogen-bonding partners, whereas on
the opposite side, the surface layer was cut such that no hydrogen-bonding partners were present.
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Additionally, another approach was applied to improve the sampling of dissolution events for the (100)
faces in this structure: voids were introduced to reduce the number of nearest neighbors for the
molecules on the surface, thus reducing their stability in the crystal lattice, cf. Figure 2b. While the
second approach led to no significant differences in the dissolution properties on the (100) face, cutting
the crystal so that the hydrogen-bonding partners were removed allowed us to register much more
transition events [40].

(a) (b) (c)

Figure 2. Representations of aspirin crystal morphology in MD simulations: (a) Starting configuration
of the nanocrystal in its experimental shape, (b) starting configuration with the (010) face and (c) block
structure revealing only the (100), (010), and (001) faces.

3.3. Constant Chemical Potential

With the presently available computational resources, classical MD calculations can typically
study systems of size up to 105–106 atoms. However, such size limitations are particularly dramatic
in the simulation of phase transformations, such as crystal growth from solution or dissolution of
crystals [13,102–105]. While for a macroscopic system, the solutions’ chemical potential does not change
in the time scale accessible by MD simulation, the standard MD simulations cannot guarantee this.
During the growth or dissolution, the concentration of the solute changes, resulting in a change
of chemical potential eventually affecting the process itself. In MD, this should be handled by
finite-size corrections. Recently, some works appeared, which discuss finite-size effects and methods
to expand the information from MD simulations of phase transformations towards the limit of a
macroscopic system [13,102–105]. However, most of them consider only nucleation processes, where
the correction term is introduced based on the classical nucleation theory and modified liquid drop
model for describing nucleation in a finite closed model [102], sharing many approximations and
shortcomings. Thus, the direct application of this method to the crystal growth and dissolution
problem is not trivial. Grand-canonical simulations could in principle eliminate finite-size effects
by imposing a constant chemical potential in the solution phase. This is achieved by means of
trial insertion and deletion of molecules. However, low acceptance rates render such approaches
computationally infeasible [106]. Furthermore, insertions of particles near the growing crystal or
insertion of fractional particles may lead to unphysical effects, which may ultimately obscure the
true growth mechanisms and rates [106]. An approach to allow for simulations under constant
chemical potential was proposed by Perego et al. [105]. Their CµMD method allows to maintain a
region containing the growing/dissolving crystal and its immediate surrounding at constant solution
concentration, while the remainder of the simulation box acts as a molecular reservoir. This is
achieved by implementing an external force, which regulates the passage of molecules from and to
the control region. Consequently the time scale accessible for this method is limited by the amount
of solute molecules in the molecular reservoir. The method was successfully applied to study planar
crystal-solution interfaces. However, significant changes are needed to extend the method to other
geometries [105]. Moreover, the parametrization of the CµMD method is not trivial and needs a
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preliminary tuning and testing to provide an effective decoupling between the reservoir region and
the growing crystal [105].

A simple approach to simulate crystal dissolution at constant undersaturation of the surrounding
medium at comparably low computational cost was devised and demonstrated by our group [50].
In our MD simulations of aspirin nanocrystal dissolution [40,50], we proposed to use virtual atoms
(sticky dummy atoms), which have a strong interaction potential with dissolved aspirin molecules,
whereas interactions with water are excluded. To ensure that the virtual atoms do not interfere with
the crystal bulk and thus have no impact on the crystal dissolution behavior, a plane of 100 sticky
dummy atoms is introduced into the water slab at a distance of at least two cutoffs from the crystal
(see Figure 3a). This still allows for free diffusion of aspirin molecules in the solvent. As was shown in
our work [50], almost exactly half of the molecules, which have been in the liquid once, have returned
to the crystal, where they could adsorb or reintegrate into the crystal lattice, which agrees nicely
with the random walk expected for free diffusion. The other half reach within the cutoff radius of
sticky dummy atoms and get trapped immediately and irreversibly, cf. Figure 3b, where the final
configuration after 280 ns of simulation is shown. Thus, the number of aspirin molecules diffusing
freely in solution is kept at a low value over the whole simulation time, and continuous dissolution of
the crystal at almost zero concentration conditions can be monitored.

(a) (b)

Figure 3. Sticky dummy atoms (red points above the nanocrystal) in action: (a) initial and (b) final
snapshots from MD simulation of aspirin nanocrystal in its experimental form with crystal-like
molecules plotted as white surface, liquid-like molecules in blue and adsorbed molecules in green.
Water molecules are not shown for clarity.

4. Linking Nanoscale and Microscale

The principal objective of MD simulations in the multiscale strategy by Piana et al. [33] is to
obtain state transition rates for kMC simulations. The main task for a quantification of these rate
constants from the obtained MD trajectories is thereby the unambiguous definition and identification
of distinct molecular states. To characterize the crystal growth and dissolution process, order
parameters need to be established that discriminate between “crystal-like” and “solution-like” states.
For aspirin dissolution, structural order parameters in the form of the orientation and number of
neighbors proved to be sufficient [51]. Crystal-like molecules are thereby defined as those having
their orientations within a certain threshold value from the orientations of the molecules from the
relaxed unit cell used to construct the crystal (called reference orientations) and at least one neighbor
among the crystal molecules, as described in detail in our papers [40,51]. However, the identification
of an appropriate set of order parameters can be far from trivial in many other cases [107], and
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a significant number of approaches to differentiate one state from the other can be found in the
literature [12,20,33,96–98,108–117].

Crystalline molecules can then be further subdivided in different substates according to their
local coordination environment, e.g., on the basis of the number of neighboring crystalline molecules.
The state transition rate constants for the kMC simulations can be calculated from MD simulations by
just counting the corresponding transition events, as well as the possibilities for these transitions to
occur [40]:

kA→B =
1

∆t · n∆t

∑n∆t
nA→B

∑n∆t
nA

, (1)

where nA→B is the number of transitions from state A to state B and nA is the number of molecules
in state A calculated at each time interval ∆t, while n∆t is the number of time intervals during the
whole simulation.

The central idea behind a kMC simulation is a coarse-graining of the time evolution to discrete rare
events and focusing on the corresponding Markovian state-to-state dynamics [118]. Thus, only rare,
uncorrelated events are of interest. The analysis of processes occurring at the solid/solution interface
during crystal growth and dissolution simulations requires an effective way to detect only rare,
uncorrelated transitions from one state to another. Because of the oscillatory behavior of molecules,
this is not a trivial problem. The oscillatory behavior of molecules (especially of surface molecules
interacting with the solution) leads to spurious recrossings at the boundary between liquid and
solid state, which severely complicate the reliable identification of significant transitions that are
relevant over longer time scales [51]. The analysis problem arising due to such fast non-Markovian
dynamics becomes especially acute for systems consisting of complex molecules with a high degree of
conformational flexibility [51]. Due to strong fluctuations of the molecular position and orientation,
numerous transitions between crystal-like substates with different number of neighbors, as well as
from the crystal-like to the solution-like state can be registered. Consideration and calculation of all of
these transition events would lead to strong overestimation of transition rates. The number of such fast,
non-Markovian transitions can be reduced by analyzing the data averaged over some time interval,
as done by Piana et al. [11,33,35]. However, the resulting transition rates are very sensitive to the choice
of the time interval [20,51]. Reily and Briesen paid more attention to the choice of sampling interval
and tried to avoid the counting of recrossing events. Namely, the time interval was chosen on the basis
of the velocity autocorrelation function (VAF) of solute particles near the equilibrated interface, as well
as the VAF of solute particles in the bulk of the crystal slab from the same simulation. Only transitions
where the particles remained in the new state for two consecutive time intervals were counted [20].
To improve the estimation of molecular states during crystal growth and dissolution MD simulations,
we proposed a new approach [51], based on Kalman filtering [119], making it possible to focus on rare,
uncorrelated transition events, i.e., effective dynamics of the Markov chain. The idea is to consider the
fluctuations of orientation and position of each crystal molecule as noisy measurements of the “true”
(corresponding to the Markovian molecular state) molecular orientation and position and to estimate
these “true” values using the Kalman filter algorithm. For the application of a Kalman filter [119],
information on the measurement noise variance and the process noise variance is needed. Often, these
parameters are just tuned to obtain good filter performance. To avoid this level of arbitrariness, we
introduced a scheme to define all filter parameters and thus to provide a way for robust and reliable
molecular state definition. According to this scheme, filter parameters as well as tolerance parameters
are determined from short preliminary MD simulation, in which the crystal structure still stays stable.
The details on the method and its application to processing of MD simulations data can be found
in [51]. To analyze nanocrystal MD simulations and calculate rates for individual transition events,
like incorporation or dissolution of a solute molecule into/from a particular crystal surface or edge,
a scheme to classify all crystal molecules into different edge and surface categories was introduced.
There, the neighbor-based approach combined with the geometry-based resolution algorithm is used to
identify whether a molecule under consideration belongs to a certain surface or edge from a predefined
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set of surfaces and edges. Thereby, related faces or edges may be considered to be of the same type
(like, e.g., the opposite (1̄00) and (100) faces further referred to as (100) for MD and kMC simulations),
as demonstrated in Figure 4.

Figure 4. Result of the application of state classification scheme for an aspirin nanocrystal at the
beginning of MD simulation. The molecules located at flat faces are gray for the (100) face, blue for
the (001) face, light blue for the (011) face and light gray for the (110) face. Molecules located on edges
formed by the intersection of single-indexed faces are indicated in light green, and purple is used to
show molecules on the edges formed by the intersection of double-indexed faces. Orange indicates
molecules on the edges formed by single- and double-indexed faces. Water and sticky dummy atoms
are not shown. Reprinted with permission from [40]. Copyright 2016 American Chemical Society.

For each type (e.g., particular edge or surface), rates dependent on the neighbor count can be
calculated. Usually, the data points acquired from MD simulations are not distributed over the whole
range of the number of neighbors and, thus, need to be interpolated to be used as an input for kMC
simulations. Thereby the event count for each specific number of neighbors can be used as the weight
for fitting. As the rates for different numbers of neighbors can differ by several orders of magnitude,
a logarithmic scale is used. In [40], for each type j, the logarithmic values of the dissolution rates
yi = ln(kij) over the corresponding number of neighbors xi were plotted and approximated with the
power law function y = a · xb + c, where a, b and c are fitting parameters. This function was chosen for
fitting, as it is simple and gave a reasonable fit for all types. In this case, the dependence of rates for
each type j from the number of neighbors can be rewritten as k j = exp (a · xb + c). Comparing this
with the Arrhenius equation k = A exp (− Ea

RT ), one finds for the activation energy: Ea(x) = −aRTxb in
the case of A = exp(c). This expression gives us the dependence of activation energy from the number
of neighbors x, as well as from their spatial arrangement, varying for different edge and face types,
and thus, represented by the use of type-specific coefficients a, b, c [40].

Altogether, for successfully linking of MD and kMC simulations, the whole range of analysis
procedures should be performed on MD data, cf. Figure 5.

Figure 5. Linking MD and kMC approaches.

5. Kinetic Monte Carlo Simulations

A basic n-fold kMC algorithm [120,121] can be employed for the simulation of crystal growth
and dissolution. In contrast to MD simulations, each molecule can be represented just by a point
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on a grid with the arrangement of the lattice sites according to the crystal structure. Moreover, only
key growth and dissolution processes are considered for the system. These two simplifications make
kMC computationally much less expensive, thus enabling the simulation of larger size and longer
time scales compared to MD. For example, the aspirin crystal considered in our kMC studies [40]
consisted of about 8.48 million molecules and dissolution was simulated for 7.5 ms, which took only
about two days on a single processor. Each grid site in kMC simulations carries the information of
whether it is occupied by a crystal molecule or vacant. For each occupied site, it can also be defined
how many neighbors it has and to which crystal face or edge it belongs, i.e., its state, based on the
applied state identification scheme. For the crystal dissolution simulations in [40], each kMC process
corresponded to the removal of one of the crystal sites. All possible kMC processes were grouped into
types to distinguish between states of the sites. The dissolution processes from a particular face or
edge were considered as belonging to a particular type, cf. Figure 6. The processes within a certain
type had different rates depending on the number of neighbors of the specific crystal site. These rates
were calculated from MD simulations, as described above.

Figure 6. Representation of aspirin crystal in kMC simulations. The molecules located at flat faces are
gray for the (100) face, blue for the (001) face, light blue for the (011) face and light gray for the (110) face.
Molecules located on edges formed by the intersection of single-indexed faces are indicated in light
green, and purple is used to show molecules on the edges formed by the intersection of double-indexed
faces. Orange indicates molecules on the edges formed by single- and double-indexed faces.

On each kMC step, first, one of the available types (e.g., dissolution from a particular face or
edge) was chosen in proportion to the transition probability obtained from the MD simulations. Then,
a particular process within the selected type, i.e., one of the sites for dissolution belonging to the
selected face or edge, was chosen using an effective linear selection method [122]. The occupancy
of the selected site was then changed to vacant and for all neighbors of the selected site, the state
identification scheme was applied to update their states. After updating the system time, the next
kMC step could be performed until the maximum number of steps was reached.

In comparison to MD simulations, crystal face displacements could be directly observed in
kMC simulations (see Figure 7), and the corresponding rates were calculated. The distance found
between the face center calculated on each kMC step and the initial plane was stored during kMC
simulations. Displacement rates were obtained from the linear regression of this distance over time.
As the Monte Carlo technique is of a stochastic nature, a number of simulations is required to obtain
statistically meaningful results. The typical way to determine the required number of replicates is to
perform a convergence study by computing the standard deviations. For aspirin crystal dissolution,
25 independent simulations were used for calculation of average face displacement rates, and the
relative standard deviations obtained were about 1–2% [40].
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Figure 7. Face displacements from kMC simulations.

The evolution of the whole system is simulated based on the transition rates from MD simulations.
Thus, the kMC face displacement rates are obtained at constant concentration (zero concentration in
the case of aspirin dissolution simulations) and are only conditionally comparable to the experiment,
where the concentration decreases during the crystal growth or rises during the crystal dissolution.
To compensate for this, the continuum simulations based on the face displacement rates from kMC
simulations can be performed, as described in the next section.

6. Coupling Molecular and Continuum Domains

According to Mullin et al. [4], the kinetics of crystal growth or dissolution of a face j of the crystal
can be described by the empirical equation:

Gj(t) = kj(T)
(

c(t)
csat
− 1
)gj

(2)

where Gj is the face displacement velocity, kj(T) is a rate constant for a specific temperature T for
the respective face, c(t) and csat are the bulk and saturation concentrations, correspondingly, and gj is
the order of the growth process. This equation does not take advection into account, which will be
relevant when considering flow conditions, as planned in our future work (see also the Conclusions).
Only processes in a stagnant fluid are considered here.

The order of the growth process in the Equation (2) may differ from 1, as this equation accounts
not only for integration/disintegration, but also for the diffusion process. However, one can consider
diffusion and integration/disintegration as two separate and independent processes. Taking the
concentration on the crystal surface csur f ,j(t) instead of the bulk concentration c(t) in Equation (2) and
setting gj to 1 would allow one to split integration/disintegration from diffusion process:

Gj(t) = kj(T)

(
csur f ,j(t)

csat
− 1

)
(3)

For simplicity, we will further consider the case of an aspirin crystal dissolving in a chamber
filled with water. With a surface concentration of zero at t = 0, the values obtained from combined
MD and kMC simulations (cf. Figure 7) can be considered as initial values for the face displacement
velocities, as they were obtained at constant zero concentration, provided by the above dummy atoms
mechanism in MD simulations:

vkMC,j = Gj(t = 0) = −kj(T) (4)

Thus, we obtain the following expression for time-varying face displacement velocities:
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Gj(t) = vkMC,j

(
1−

csur f ,j(t)
csat

)
(5)

The process of diffusion can be separately covered by the classical diffusion equation known as
Fick’s second law:

∂

∂t
c(x, t)− D∇2c(x, t) = 0 (6)

where D is the diffusion coefficient, the dependent variable c is the concentration in the bulk, the
independent variables are the position x and time t.

Finding a unique solution requires an initial condition for the concentration in the bulk, as well as
boundary conditions on the walls of the chamber and on the crystal surface. For crystal dissolution,
the initial bulk concentration can be considered as zero. On the walls of the chamber, the flux in and
out of the domain is zero. This is represented by the Neumann boundary condition:

D
∂c
∂x

n
∣∣∣∣
walls

= 0 (7)

where n is the face normal of the walls of the chamber. The boundary condition on the crystal surface
is face-specific and can be also represented by the Neumann boundary condition describing the flux
over the respective crystal face:

− D
∂c
∂x

n
∣∣∣∣

j
= Gj(t)

ρ

M
= vkMC,j

(
1−

csur f ,j(t)
csat

)
ρ

M
(8)

where vkMC,j is the rate constant for the face j directly obtained from kMC simulation (cf. Figure 7),
csur f ,j and csat are the surface and saturation concentrations, ρ is the density and M is the molecular
mass of the crystal substance. The diffusion coefficient in Equation (6) as well as the saturation
concentration can be easily calculated using MD simulations [40,52]; thus, the equation can be solved,
and the face displacement velocities can be evaluated.

7. Continuum Simulations and Results

In continuum simulations partial differential equations are solved numerically, e.g., with the
finite-element method. Comparing to molecular dynamics and kinetic Monte Carlo simulations, time and
size scales can be extended by a large amount, and the simulations can cover typical experimental scales.
Thus, a comparison of the respective results yields a good indicator of the simulation accuracy. In [52],
a solution of the model Equation (6) with the corresponding boundary conditions (Equations (7) and (8))
was obtained for an aspirin crystal and compared with experimental results obtained using a Jamin-type
interferometer [53] with the experimental setup, i.e., the size of the measurement chamber and aspirin
crystal, chosen in agreement with the simulation settings. The simulations of the dissolution of an aspirin
crystal in the measurement chamber of the interferometric device were performed using COMSOL
multiphysics Version 5.0 [123]. Thereby, two different variants were considered: the values for diffusion
coefficient D and solubility csat in model Equations (6)–(8) were either predicted in silico (Variant 1) or
set to experimental values known from the literature [52,124] (Variant 2). In the first case the diffusion
coefficient was calculated from the averaged mean square displacement of 20 individual MD simulations.
The solubility of aspirin in water was calculated with the conductor-like screening model for realistic
solvation (COSMO-RS [125]) using commercially available software COSMOtherm (Version C30 Release
15.01., COSMOlogic, Leverkusen, Germany), though it can be also calculated from MD simulations
using, e.g., the direct coexistence method or chemical potential route [126], which however could be
computationally prohibitive. In continuum simulations, the concentration was evaluated as the average
over the whole domain and normalized with the saturation concentration. It is further referred to as
relative saturation.
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The simulation results yielded a relative saturation of 83% after 24 h of dissolution in the case of
predicted parameters (Variant 1) and 67% in the case of experimental model parameters (Variant 2).
The relative saturation measured using the Jamin-type interferometer [53] for three individual aspirin
crystals with the same crystal dimensions as in simulations was in the range of 55–66% [52]. Thus,
the simulation results in Variant 2 only slightly overestimated the experimental data. Overestimation
of the final average concentration in the case of predicted model parameters was expected, as the
predicted diffusion coefficient was about 20% higher than the known experimental value [52].

The displacement velocity of the (001) face over time was calculated from the total flux of aspirin
over the selected crystal surface in simulations:

v001 = MA−1
001ρ−1

∫

A001

−D
∂c
∂x

n dA, (9)

using A001 as the surface area of the (001) face.
Experimentally, the face displacement velocity was obtained from tracking the surface position

over time. For that, the crystal was divided into three segments as described in [52], and experimental
results, presented in Figure 8, are given as averaged data points over these segments. Results for
both simulations and the experiment exhibit comparably fast dissolution velocities at the beginning,
whereas face displacement levels out toward the end. The simulation data obtained with experimental
parameters (Variant 2) underestimate the face displacement velocity in the initial hours, while the face
displacement velocity almost exactly matches the experimental findings in Variant 1. However, from
Figure 8, it can be also seen that the process is diffusion-controlled. A sensitivity analysis performed for
all parameters describing the dissolution process: face rate constants obtained from kMC simulations,
diffusion coefficient and solubility also revealed a strong diffusion control, and thus, an expressed
insensitivity of the simulation results to the actual intrinsic kMC disintegration rates [52].
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Figure 8. Face displacement velocity for the (001) face of aspirin crystal as obtained in the experiment
and calculated from continuum simulations based on kMC face rate constants and (Variant 1) the
predicted in silico values for diffusion coefficient and solubility or (Variant 2) experimental values for
the diffusion coefficient and solubility.

Figure 8. Face displacement velocity for the (001) face of aspirin crystal as obtained in the experiment
and calculated from continuum simulations based on kMC face rate constants and (Variant 1) the
predicted in silico values for the diffusion coefficient and solubility or (Variant 2) experimental values
for the diffusion coefficient and solubility.

8. Conclusions and Outlook

Here, we described the multiscale modeling approach for in silico prediction of crystal
growth/dissolution rates on the basis of molecular structure only, highlighted the difficulties in
the realization of all single steps and illustrated our recent attempts to overcome these on the example
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of aspirin dissolution. Through a suitable combination of MD, kMC and continuum simulations,
we were able to predict the aspirin dissolution rates at tractable computational cost and in good
agreement with experimental results [52]. However, the dissolution of aspirin was found to be
diffusion-controlled in both the simulation and experiment employing a stagnant fluid. Due to this,
the obtained continuum simulation results are not very sensitive to face displacement rates obtained
from kMC simulations, but rely mainly on the determined diffusion coefficient. Thus, the validation of
the actual multiscale-integration approach is still limited. Additionally, the conditions of a stagnant
fluid can generally be considered inadequate for actual oral administration of API crystals, and many
reports [127–129] suggest that inclusion of hydrodynamic (fluid flow) factors is critical in describing any
dissolution processes in the human gastrointestinal tract. The consideration of flow conditions, firstly,
would make the study more realistic and, secondly, would allow for a much deeper understanding of
the proposed multiscale-integration approach by overcoming the diffusion limitation. Instead of only
solving a distributed mass transfer equation, momentum transfer will have to be solved in this case in
a coupled manner via a CFD approach. In future work, we will study the dissolution behavior under
flow conditions both simulation based and experimentally to validate the scale integration concepts
for disintegration-controlled conditions.

The goal to achieve such an assessment on the basis of the molecular structure only has also not yet
been met at the other end of the scale. In current aspirin simulations, not only the molecular structure,
but also the crystal packing and the crystal shape were used as input. Such information is readily
available for model APIs like aspirin. However, this is generally not the case for multicomponent
systems, like, e.g., hydrates, salts and co-crystals, which are presently one of the primary strategies
pursued to improve the solubility of poorly-soluble drugs [130,131]. The consideration of such
systems will also definitely increase the complexity of the state transition description for the MD-kMC
integration. In terms of future work, new sophisticated neighbor and orientation definition schemes
will be elaborated to expand the scope of the multiscale approach toward multicomponent systems.
The state identification scheme mentioned in Section 4 and described in detail in our previous work [40]
supports correct assignment of molecules to different face and edge categories only if these are defined
by low Miller indices of one and zero. Some complex compounds may, however, require accounting
for higher-indexed faces. For that, a new algorithm is currently under development in our group.
The proper realization of all protocol steps will enable simplifying the design of crystallizer operations,
as well as support decision making in early stages of in silico drug development as it will consider
release properties for an API on the basis of the molecular structure only.
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