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Abstract: The orbital angular momentum (OAM) of light can be another physical dimension
that we exploit to make multiplexing in the spatial domain. The design of the OAM mode
supporting fiber attracts many attentions in the field of the space division multiplexing (SDM)
system. This paper reviews the recent progresses in photonic crystal fiber (PCF) supporting OAM
modes, and summarizes why a PCF structure can be used to support stable OAM transmission
modes. The emphasis is on the circular PCFs, which possess many excellent features of transmission
performance, such as good-quality OAM modes, enough separation of the effective indices, low
confinement loss, flat dispersion, a large effective area, and a low nonlinear coefficient. We also
compare the transmission properties between the circular PCF and the ring core fiber, as well as
the properties between the OAM EDFA based on circular PCF and the OAM EDFA based on the
ring core fiber. At last, the challenges and prospects of OAM fibers based on the PCF structure are
also discussed.

Keywords: space division multiplexing; mode division multiplexing; fiber design and fabrication;
orbital angular momentum; photonic crystal fibers

1. Introduction

The increase of transmission capacity is always the challenging and urgent task for optical fiber
communications. Up to now, nearly all the physical dimensions of a lightwave, including wavelength,
amplitude, phase, and polarization, have been substantially exploited to deal with the ever increasing
capacity requirements of optical fiber communication links. The capacity of the current optical fiber
communication systems has reached a so called “capacity crunch” of 100 Tbit/s, which is the capacity
limit over C + L bands in the single mode fiber [1]. Space division multiplexing (SDM) is considered
to be a most promising method to overcome this coming capacity crunch. Two major enabling
technologies have been researched and developed for SDM implementation. One is SDM by use of
multicore fibers [2,3], which inherently require complex fiber fabrication to keep an appropriate core
spacing to reduce core-to-core coupling. The other one is mode division multiplexing (MDM) by use
of multimode fibers, which needs orthogonality among different spatial modes to avoid intermodal
crosstalk. There are several different kinds of orthogonal modal basis sets that are potential candidates
for MDM systems. One such set is the linearly polarized (LP) mode, which is composed of different
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vector modes with different propagation constants. The other set is orbital angular momentum (OAM)
mode [4–7], which is composed of the even and odd modes of the same vector mode with nearly the
same propagation constants. The former MDM systems (using few-mode (6–12 modes) fibers) require
large and a complex multi-input multi-output (MIMO) digital signal processing algorithm to cope
with the strong mode coupling [8,9], while the latter MDM systems are considered to be MIMO-free
systems because of the weak coupling between the orthogonal OAM modes [10–13]. The OAM mode
supporting fibers can offer a large number of OAM transmission modes and hence correspond to a
large number of independent MIMO-free transmission channels. The structure design of the OAM
mode supporting fibers is currently a hot topic in the research of the OAM mode-based optical fiber
communication system.

Optical OAM mode is described with its helical phase wavefront of exp(ilφ) (l is topological
charge, φ is azimuthal angle) and its annular intensity distribution. In order to match the feature of
annular intensity-distributed OAM modes, a rational choice of fiber structure is an annular index
profile. Also, in order to avoid the near-degeneracy of the constituent vector modes coupling into
the LP modes, for this kind of fiber the refractive index contrast between different adjacent vector
modes should be larger than 10−4 [14]. Ring fibers with a high index ring core [15–24], in which the
high index is realized by up-doping, have been proposed to meet the above requirements. Up to
date, the ring fibers with a hollow core can support up to 9 orders of OAM modes (34 OAM modes)
or 36 information bearing states [20]. However, this type of fiber has two shortcomings: one is the
complex up-doping process corresponding to complex fiber fabrication and higher transmission loss;
And the other is its relatively thin ring core area (for avoiding excitation of higher radial orders OAM
modes), which will lead to the spin-orbit coupling effect, and hence a larger loss.

It is a good idea to support OAM modes by using the structure of the photonic crystal
fiber (PCF) [25,26], because PCF can offer more flexible design structures to provide unique fiber
properties such as controllable nonlinearity and confinement loss [27,28], tailorable chromatic
dispersion [28,29], etc. The PCF-based OAM modes supporting fibers show a bright application
prospect in MDM fiber communications. In this paper we will review the recent achievements
in PCF-based OAM modes supporting fibers [30–45]. The concepts of OAM modes in fibers and
the design requirements of OAM fibers are presented in Section 2. In Section 3 we will review in
detail some influential structures of the PCF-based OAM modes supporting fibers and compare the
properties of different OAM fibers and OAM EDFAs. We will also discuss challenges and prospects of
these kinds of PCF-based OAM fibers in Section 4.

2. Design of Fibers Supporting OAM Modes

2.1. OAM Modes in Optical Fiber

Both OAM modes and LP modes in optical fibers can be considered as a superposition of vector
mode bases. The difference is that LP modes are formed by the vector modes with different propagation
constants in the weakly guiding fibers, while OAM modes are constituted by those vector modes
with nearly the same propagation constants in the fibers. Therefore, OAM modes do not suffer
from inter-modal dispersion caused by mode walk-off transmission [14]. OAM modes in fibers are
denoted as OAMl,m, where l (l = ±1, ±2, ±3, . . . ) is the topological charge, and m is the radial order
corresponding to the intensity profile of the mode in radial direction. Orbital angular momentum
(OAM) and spin angular momentum (SAM) are two aspects of a light beam and can coexist in the same
light beam. SAM is related to the rotation of the polarization vector, while OAM is related to the twist
of the beam wavefront. The number of supported OAM modes includes all degrees of degeneracies in
polarization and in the direction of twist of phase front of the electric fields. OAM modes in fibers can
be composed of vector eigenmodes by the following relations:

OAM±
±l,m = HEeven

l+1,m ± jHEodd
l+1,m (1)
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OAM∓
±l,m = EHeven

l−1,m ± jEHodd
l−1,m (2)

where the sign in superscript “±” denotes the right or left circular polarization corresponding to
two values of SAM, and the sign in subscript “±l” denotes the right or left rotation direction of the
wavefront of the OAM modes. The distinction between odd and even HE modes is π/2 azimuthal
rotation in polarization, and is the same for odd and even EH modes; j presents a π/2 phase shift.
The two OAM±

0,m modes composed by the fundamental HE1,m modes with left or right circular
polarization cannot be considered as OAM mode for they carry no OAM [20]. Moreover, the two
OAM∓

±1,m modes possessing opposite directions of polarization and wavefront rotation are actually
composed by azimuthally polarized TE0,m and radially polarized TM0,m, which can also not be viewed
as OAM modes because they have different propagation constants and are unstable in the fiber [14].
The OAM1,m with the identical directions of polarization and wavefront rotation, which is composed
by even and odd HE2,1, has two OAM modes. The OAM modes with the same l and m compose an
OAM mode family. When l = 1, the OAM family has 2 OAM states, and when l > 1, the OAM families
include 4 OAM states.

2.2. Design Requirements of OAM Fibers

The design of one kind of OAM fiber is guided by many considerations under which we will ask
what good features we can achieve. Many considerations are contrary to each other. So trade-off is
an effective method during fiber design. The following factors should be considered in designing an
OAM fiber.

(1) The index profile of the designed OAM fiber should match the intensity profile of OAM modes:
An OAM beam spirals around the propagation axis and forms a ring intensity profile. In order to
hold the ring-shaped OAM modes, rationally, the OAM fibers should have a circular or ring-shaped
structure, in which the ring core area is with higher refractive index and inner hole, and the outer
cladding is with lower indices. The ring fiber with step-index profile is a rational good design which
can support 34 OAM modes [20]. The circular-shaped PCF is another rational design whose structure
has a ring area (higher index area) surrounding several air-hole arrays (lower index area in average).
Also, inside the high index area there should be a central air hole with lower index.

(2) For adjacent vector modes, large effective index separation (>10−4) between them should
be achieved: The OAM mode transmission instability in the OAM fibers arises for the reason that
the near degeneracy of the constituent HE and EH vector modes (in the same OAM family) easily
leads to a result of being coupled into LP modes. To avoid this negative effect of stable transmission,
the effective indices of the constituent HE and EH vector modes should be separated as much as
possible, which will break the weakly guiding approximation condition. The general rule to keep
OAM modes transmission stability is ∆neff > 10−4, which comes from the polarization-maintaining
fibers [14]. The high refractive index contrast requires the large material refractive index difference
between the fiber core and the fiber cladding, which is easier to implement for the photonic crystal
fiber than the ring fiber with up-doping. The thickness of the ring core can also influence the effective
index separation. The larger the thickness is, the smaller the effective index separation is [45].

(3) OAM modes (as many as possible) can be supported in the designed OAM fiber: OAM modes
belong to orthogonal eigenstates of Helmholtz equation, and the number of these orthogonal
eigenstates is theoretically infinite. But the fiber can only support the limited number of OAM
modes because of the restriction of the fiber structure. The number of OAM modes which can be stably
transmitted in the fiber is decided by two factors. One is the radius of the fiber core, as we know that
the number of mode increases with the increasing of fiber core radius. Another one is the degree of
separation of mode-effective indices between adjacent vector modes in the same OAM mode family.

(4) Ensure all the guided OAM modes are good quality modes and avoid exciting the higher radial
orders (m > 1) modes: Higher radial orders modes have more than one ring of intensity distribution,
and the phase distributions at the different area sections of different rings are quite different, which
would cause trouble to multiplex and demultiplex OAM modes. Therefore, exciting higher radial
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orders modes (m > 1) should be prevented in the designed fiber. For the ring fiber, thin thickness of
high index ring core helps preventing excitation of higher radial orders modes. But large thickness of
the ring core is the insurance of good mode quality for the transmitted OAM modes held in the ring
core area. Moreover, the thin ring core structure is easy to cause spin-orbital coupling due to imperfect
circular symmetry [7]. Considering the trade-off among mode quality, higher radial orders modes
excited, and spin-orbital coupling, we should optimize the thickness of the ring core in designing the
OAM fibers.

(5) The OAM modes excited in the designed OAM fibers would possess good transmission
features such as low confinement loss, flat dispersion, large effective mode area, and low nonlinear
coefficient within a larger wavelength range (at least covering C + L bands). Low confinement loss
ensures longer transmission distance. Flat chromatic dispersion (CD) makes unified CD compensation
possible at the receiver in wavelength division multiplexing (WDM). Large effective area and low
nonlinear coefficient can limit the nonlinear signal distortion.

3. Review of OAM Fibers Based on Photonic Crystal Fiber Structure

As mentioned above, in order to match the ring-shaped intensity distribution of OAM modes, a
direct, rationally designed OAM fiber is ring-shaped fiber. The ring fiber with a hollow center was so
successful at supporting 34 OAM modes [20] that the “ring fiber” is nearly the substitution name of
the OAM fiber over a period of time. The ring-shaped erbium-doped method was also used to design
OAM modes amplifier. However, the design limits of ring-shaped OAM fibers are obvious: the reason
is that the adjustable parameters are limited (for ring-shaped fiber, the parameters include the inner
and outer radii, the indices of ring core, and cladding). This kind of limited optimization parameters
can make us in a dilemma. For example, in order to prevent higher radial orders modes from exciting,
we have to limit the thickness of the ring core, but in the meanwhile thin ring core area cannot offer
enough area to form the good-quality OAM modes.

The photonic crystal fiber (PCF) structure can offer more degrees of freedom or more adjustable
parameters for fiber optimization. PCFs are originally designed to get controllable transmission
properties in fibers, such as flatten CD, low or high nonlinear coefficient, etc. Recently, PCFs were
adopted to transmit OAM modes to fulfill the above requirements. The obvious advantage over the
conventional ring-shaped OAM fibers is its more adjustable parameters for optimization to ensure
good transmission quality of OAM modes. Another merit of PCF-based OAM fibers is that they
can obtain high refractive index contrast between the ring core and the cladding region without any
up-doping. The reported typical PCF structure-based OAM fibers can be divided into the following
three categories according to the cladding structure.

3.1. Hexagonal Lattice PCFs

The first PCF structure reported for the transmission of OAM modes is an As2S3 ring PCF with
hexagonal lattice cladding and a hollow center, as shown in Figure 1a, which can only support a
lower number of OAM modes (2 OAM modes) with unsatisfied mode quality [30]. The values of the
structure parameters Λ, r0, r2, and r3 (r3 = r4 = r5 = r6 = r7 = r8) are 0.4 µm, 0.18 µm, 0.12 µm, and
0.18 µm, respectively. This fiber is proposed to mimic the ring shape of the OAM modes as the ring
fiber does, but the hexagonal structure of air-hole arrays is not a good design. The hexagonal structure
cannot provide enough circular symmetry, which results in its poor OAM mode quality and higher
confinement loss. However, the large nonlinear coefficient and relatively wider bandwidth (522 nm) of
the fiber can be used to generate the supercontinuum.

Almost at the same time, the helically twisted PCF is proposed, as shown in Figure 1b, in which
a regular hexagonal lattice of hollow holes is arrayed symmetrically as the fiber cladding around a
central glass core [31–34]. This type of microstructure fiber is continuously twisted to match (mimic)
the spiral properties of OAM, in which a fraction of the axial momentum is transformed into azimuthal
momentum to form the OAM states. However, the fiber with the parameters of Λ ≈ 2.9 µm and
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d ≈ 0.9 µm can only support single OAM mode and has a high transmission loss. To increase the
number of OAM modes and effective index separation between adjacent eigenmodes, the twisted
air-core PCF is proposed [35]. This fiber enlarges the index contrast between the ring core and cladding
to separate the OAM modes. Also, with the increase of the twist rate, the index separation of different
OAM modes increases, but at the cost of losing high order modes.
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Figure 1. Cross section and structure parameters of (a) ring photonic crystal fiber (PCF) (reprinted
with permission from [30]. Copyright 2012 Optical Society of America), (b) the twisted air-core
PCF (Reprinted from [31] by permission from AAAS), and (c) hollow-core photonic bandgap fiber
(HC-PBGF) (reprinted with permission from [41]. Copyright 2016 Optical Society of America).

Another PCF with hexagonal lattice is a 7-cell hollow-core photonic bandgap fiber (HC-PBGF),
as illustrated in Figure 1c, which can confine the light into the low refractive index hollow core by
the effect of photonic bandgap [41]. The optical field shape of the fiber shows six-fold symmetry, not
circular symmetry. This fiber with the parameters of Λ= 4.7 µm, d = 0.98Λ, dh = 0.44Λ, tc = 0.01Λ,
dc = 0.94Λ, and dr = 0.2Λ supports eight eigenmodes which can be used to constituted OAM modes by
Equations (1) and (2) in theory, but only two OAM modes (OAM1,1) can propagate over long distance
because of the high confinement loss for the high order modes.

3.2. Circular PCFs

The PCFs with hexagonal lattice can only hold a lower number of OAM modes with unsatisfied
mode quality. Obviously, the photonic crystal structure with somewhat circular symmetry will help
to support a higher number of good quality OAM modes. Based on this kind of idea, a circular type
PCF was firstly proposed by our research group as shown in Figure 2 [36]. This kind of circular
PCF, by optimizing design, can support 14, 26, and 42 good quality OAM modes with satisfied
transmission properties like low confinement loss, flat CD, large effective mode area, and low nonlinear
coefficient [39,42,43,45].
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Figure 2. Cross-section and main parameters of C-PCF. Reprinted with permission from [36]. Copyright
2015 Optical Society of America.

Before discussing the above-proposed circular PCF in detail, other PCF structures based OAM
fibers should be pointed out. A microstructure ring fiber (MRF) with the same number of air holes
in three different rings was presented to satisfy circular symmetry of the OAM optical intensity, as
shown in Figure 3a [37,38]. Strictly speaking, this kind of optical fiber belongs to the microstructure
fiber rather than PCF. The reason is that the cladding of the fiber is not a periodical structure. The air
hole size of this kind of fiber is different in every ring but adjacent air holes keep tangent, and such a
structure makes it easier to fabricate the preform. Also, the thick ring design can balance the mode
separation, the coupling of SAM and OAM, as well as suppressing of the higher radial orders modes.
But the MRF has narrow bandwidth and higher confinement loss.

Another type of circular PCF with the parameters of d0 = 6.6 µm, d1 = 1.8 µm, d2 = d3 = d4

= 1.2 µm, Λ0 = 6 µm, Λ1 = 1.8 µm, Λ2 = 1.5 µm, and Λ3 = 1.5 µm was also presented to adopt the
similar fiber structure to that of MRF mentioned above, as shown in Figure 3b. In order to make the
complete circular symmetry structure, the outer three rings of air holes are the same size but different
gaps, while the size of the innermost ring of air holes is larger than that of other three rings. The base
material of the fiber is As2S3 glass [40]. The outcome of this fiber design is only to increase the number
of OAM modes based on the PCF structure in Ref. [30]. However, this kind of fiber is not suitable for
the OAM mode transmission because of the high nonlinearity, while it is suitable for supercontinuum
generation and short distance application. Furthermore, the fabrication of the fiber is difficult because
of the complicated cladding structure.

Now, to get back to the circular PCF proposed by our research group. As shown in Figure 4,
the circular photonic crystal fiber (C-PCF) has a big air hole in the center and several rings air-hole
arrays around it as the fiber cladding, in between a ring-shaped area of base pure silica remains where
OAM modes can be transmitted. Roughly speaking, the region occupied by pure silica contributes to
refractive index with the value 1.444, and the region occupied by air holes provides index with the
value of 1; therefore, the average refractive index of cladding area is the mean value of two regions
weighted with the areas they occupy. Hence, the larger the air filling fraction is, the higher the index
contrast between the OAM mode transmission area and the cladding area is. The discrepancy between
the structure we proposed and MRF shown in Figure 3a is that the fiber design we proposed possesses
the same size of the air holes and the same gaps between adjacent holes in the same ring and different
rings, which maintains the periodical structure of PCF.
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cl (3)

ρ =
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r
(4)

where λ is the wavelength in vacuum, nco is the index of the fiber core, ncl is the average effective
index of the cladding, ncl = 1.444(1 − f ) + f , and f is the air filling fraction of the cladding, which is
defined as

f =
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2

)2
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N + 1

2

)
Λ
]2

−
[
(N − 7

2 )Λ
]2 = 3

(
dn

2Λ

)2
(5)
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where, f means the ratio of air hole area versus the total area in cladding. Roughly speaking,
Veff determines the number of vector modes supported in the fiber; f makes an influence on ncl,
and hence the index contrast; and ρ means the thickness of the ring area which hold the OAM modes,
and hence determines the quality of the OAM modes held in the fiber.

We make the comparison between the C-PCF 1# and the ring core fiber in Ref. [19]. We can clearly
see that for ring core fiber the cutoff frequency lines for high radial orders modes covers a higher
value of ρ, which means a thinner ring area, as shown in Figure 5a. For example, at the Veff = 9.8,
HE1,2 mode will cutoff when ρ > 0.65. However, the cutoff frequency lines for high radial orders
modes show a flatter tendency, which means these cutoff lines cover less range of ρ, as shown in
Figure 5b. For example, in the range of Veff < 12, HE1,2 mode will cutoff when ρ > 0.38. We conclude
that compared with the ring core fiber, the designed C-PCF can support more OAM modes without
exciting high radial orders (m > 2) modes, which is one of the advantages of the C-PCFs over the ring
core fibers. Another advantage is that the smaller value of ρ (the thicker ring area) can be chosen to
suppress the coupling between SAM and OAM while keeping more OAM modes during the process
of the fiber design.

1 
 

0 4321

Y

X

N
765

(a)  

  
 Figure 4. Cross-section and main parameters of the designed circular photonic crystal fibers (C-PCFs)

for (a) the fiber base; (b) C-PCF 1#; (c) C-PCF 2#; and (d) C-PCF 3#. Reprinted from [45] by permission
from Elsevier.
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off the first one air-hole ring (the C-PCF 1#).

Based on 5 requirements mentioned above, which are essential for stable OAM mode transmission
in long distance MDM systems, C-PCF 3# can support up to 42 OAM modes with good transmission
features [45], such as good mode field quality, large index separation and flat dispersion over wide
bandwidth, low confinement loss, and a low nonlinear coefficient. It is an effective method to increase
the number of the OAM modes by changing inner air-hole arrays into ring core area, and hence
enlarging the radius of ring area r, by which we also designed C-PCF 1# and C-PCF 2# in the OAM
fiber family with different outer ring size, as shown in Table 1. The C-PCF 1# has the minimum number
of mode and the maximum bandwidth, while C-PCF 3# has the maximum number of mode and the
minimum bandwidth among the three fibers, as shown in Table 1. Three C-PCFs all cover entire band
of optical fiber communications.
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Table 1. Structure parameters of C-PCF family and orbital angular momentum (OAM) modes supported.

C-PCF 1# C-PCF 2# C-PCF 3#

Refractive index Silica: n = 1.444, air holes: n = 1.000; ncl = 1.231, (nco/ncl)2 = 1.376
Common parameters Air hole pitch: Λ = 2.0 µm, diameters of the air holes: dn = 1.6 µm, dn/Λ = 0.8

Outer radius r = 3.2 µm r = 5.2 µm r = 7.2 µm
Effective normalized frequency Veff = 9.79 Veff = 15.91 Veff = 22.04

OAM modes l = 1~4, 14 states l = 1~7, 26 states l = 1~11, 42 states
Bandwidth 560 nm (1.25–1.81 µm) 480 nm (1.25–1.73 µm) 460 nm (1.25–1.71 µm)

We also compare the transmission properties of the HE4,1 mode for three C-PCFs [45], in which
we can find that C-PCF 3# has the best performance features such as dispersion value, dispersion
variation ∆D in C band, confinement loss, and nonlinear coefficient. From C-PCF 1# to C-PCF 3#, the
higher the number of air-hole rings that are removed, the lower the values of dispersion, confinement
loss, and nonlinear coefficient are, and the greater flatness of the dispersion over wavelength range is.
The main reason is the fact that the higher the number of air-hole rings removed means the larger the
ring area that is required to hold the transmitted OAM modes in this region, and hence there is less
chance for mode energy leakage; and also larger effective mode area corresponds to smaller nonlinear
coefficient. Therefore, C-PCF 3# may be the best choice among the three.

Then, we make the comparison of transmission properties between the C-PCF 3# [45] and the ring
core fiber [20]. The C-PCF 3# can support a greater number of OAM modes (42 modes) than the ring
core fiber can (26 OAM modes in simulation, 34 OAM modes in experiment), and the bandwidth of
the former is wider than that of the latter. At 1.55 µm, the minimum index separations of the C-PCF 3#
and the ring core fiber are 2.7 × 10−4 (between HE11,1 and EH9,1) and 1.1 × 10−4 (between TE0,1 and
HE1,1), respectively. The dispersion value and dispersion variation (equivalent to dispersion slope) of
the C-PCF 3# in C band are larger than that of the ring core fiber, as shown in Figure 6. For example,
at 1.55 µm, the ring core fiber shows a lower dispersion of 1.86 ps/(km.nm) for HE2,1 mode, while
the C-PCF 3# shows a higher dispersion of 77.02 ps/(km.nm) for the same mode. The dispersion
variations of HE8,1 mode in C band are 0.7 ps/(km.nm) for the ring core fiber, and 2.7 ps/(km.nm) for
the C-PCF 3#, respectively. In addition, the ring core fiber with the high index contrast is fabricated by
up-doping, while the C-PCF 3# is fabricated by single material of silica.
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In addition, we also designed a core-pumped OAM erbium doped fiber amplifier (EDFA) based
on C-PCF [46]; the proposed OAM fiber amplifier can provide a gain larger than 20 dB for all 14 OAM
modes, with the small differential mode gain (DMG) less than 0.15 dB and the noise figure lower
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than 3.5 dB across the C-band (Ref. [46] in Figure 7). For the ring core fiber structure, the two-layer
Erbium doping OAM EDFA using core pumped based on solid-core ring fiber can provide gain over
20 dB with DMG below 0.28 dB for all 18 OAM modes, and the noise figure larger than 3 dB over the
C-band (Ref. [47] in Figure 7) [47]. The cladding-pumped OAM EDFA based on air-core ring fiber
supports 12 OAM modes, with a gain more than 20 dB, DMG larger than 0.25 dB, and the noise figure
larger than 3 dB over the C-band (Ref. [48] in Figure 7) [48]. Among three OAM EDFA structures, the
OAM EDFA based on C-PCF can provide the highest flat gain larger than 20 dB, and the OAM EDFA
possesses the lowest DMG and the minimum NF.Crystals 2017, 7, 286 11 of 15 
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3.3. Kagome Lattice PCFs

The hollow-core PCF with Kagome lattice was proposed to explore terahertz OAM modes
transmission in an anti-resonant reflecting optical waveguide (ARROW), as shown in Figure 8 [44].
The values of structure parameters t and d are 0.3 mm and 2.4 mm, respectively. Three OAM modes
(OAM+

+1,1, OAM−
−2,1 and OAM+

−2,1) can be supported in the fiber. The fiber covers a broad bandwidth
of 0.25 THz, and the purity values of OAM modes are larger than 0.9. Unlike the conventional fibers,
the terahertz Kagome hollow-core PCFs suffer from the higher modal confinement losses with the
order of 10–3 dB/cm. The performance of this fiber needed to be continuously improved by optimizing
the fiber structure.
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The performances of the OAM fibers based on PCF structures are summarized in Table 2, in which
we can see a roughly development footprint.

Table 2. OAM fibers based on PCF structures.

Year Author Lattice Material
Number
of OAM
Modes

Supported OAM Modes Bandwidth Reference

2012 Y. Yue et al. Hexagon As2S3 2 OAM1,1 522 nm [30]
2012 G.K.L.Wong et al. Hexagon SiO2 1 OAM+1,1 ( OAM−1,1) [31]

2015 1 H. Zhang et al. Circular SiO2 10 OAM1,1 OAM2,1 OAM3,1 [36]
2016 C. Chen et al. Circular SiO2 34 OAM1,1, . . . , OAM9,1 60 nm [37]
2016 G. Zhou et al. Circular SiO2 34 OAM1,1, . . . , OAM9,1 [38]

2016 2 H. Zhang et al. Circular SiO2 14 OAM1,1, . . . , OAM4,1 560 nm [39]
2016 W. Tian et al. Circular SiO2 26 OAM1,1, . . . , OAM7,1 750 nm [42]
2016 Z. Hu et al. Circular As2S3 26 OAM1,1, . . . , OAM7,1 [40]
2017 H. Li et al. Hexagon (PBG) SiO2 2 OAM1,1 240 nm [41]
2017 H. Li et al. Kagome Polymer 3 OAM+

+1,1, OAM−
−2,1, OAM+

−2,1 0.25 THz [44]
2017 H. Zhang et al. Circular SiO2 42 OAM1,1, . . . , OAM11,1 460 nm [45]

1 manuscript received in July 31, 2015; 2 manuscript received in October 26, 2015.

4. Challenges and Prospects

More and more attention is focusing on the PCF structure for transmitting OAM modes, because
PCF provides more degrees of freedom for optimizing the fiber performance. However, we also have
a long way to go. Although we can design more and more PCF structures supporting more OAM
modes, it is difficult to fabricate such PCFs because majority of those PCFs have complicated structure.
So far, most of PCFs designed to transmit OAM modes can only be found in theoretical papers; almost
no PCF was actually fabricated, except for the helically twisted PCF. The reason is that during the
process of the fabrication of such PCF structure, the temperature and the drawing speed need to be
precisely controlled to prevent the collapse of air holes. Therefore, design and fabrication of the novel
PCF structures for better performance of OAM modes transmission are two roads we have to make an
effort to go down.

Another road we must go down is the PCF-based OAM mode devices design. For example, the
PCF-based OAM fiber amplifier with a single pump can amplify all channel signals in a PCF-based
OAM fiber that should be designed and fabricated, because this kind of fiber amplifier will match
PCF-based OAM transmission fiber and reduce the number of the amplifiers (single mode fiber based)
in OAM mode division multiplexing (MDM) communication systems. In addition, band rejection
filters, sensors, multiplexers and demultiplexers, switching devices, supercontinuum generator, and
dispersion control utilizing PCF-based structure are promising effort directions.

The most possible scenario, in which the PCF-based OAM fibers can play a significant role, is the
short haul communication systems connecting the data processing centers with dense transmission
data, in which currently many single mode fibers are needed to link between the data processing
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centers. The PCF-based OAM fiber can cut the number of the fibers and connectors and reduce the
complexity of the system and cost savings.

5. Conclusions

In this paper, we review the recent main achievements in designing OAM mode fibers based
on PCF structures. Based on five requirements for the design rules of OAM fibers for the stable
transmission of OAM modes, we summarize the reasons why the PCF-based fibers can support OAM
modes and possess some advantages over current ring core OAM fibers. The OAM fiber based on the
C-PCF structure reveals some good features, such as the good quality of OAM transmission modes,
enough effective index separation, low confinement loss, flat dispersion, a large effective mode area,
and a low nonlinear coefficient. At the same time, we also compare transmission properties between
the OAM fiber based on the C-PCF structure and the ring core fiber, as well as the amplification
properties among three OAM EDFAs. Also, it shows that the OAM fiber based on the PCF structure is
one promising choice of the OAM fibers. Furthermore, the development footprints of research works
in OAM fibers based on the PCF structure are also summarized. Finally, the challenges and prospects
are discussed.
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