Supplementary Materials: Synthesis, Crystal Structure and DFT Studies of 1,3-Dimethyl-5propionylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione

Anamika Sharma, Yahya E. Jad, Hazem A. Ghabbour, Beatriz G. de la Torre, Hendrik G. Kruger, Fernando Albericio and Ayman El-Faham

Table S1. The calculated bond distances and bond angles compared to the experimental data of title compound.

	Parameter Bond Length Experimental Theoretical			Bond Angles		
Parameter			Parameter	Experimental	Theoretical	
R (1,7)	1.218 (2)	1.2215	A (19,4,27)	103 (2)	107.1839	
R (2,12)	1.213 (3)	1.2142	A (7,5,8)	118.1 (2)	118.7543	
R (3,17)	1.264 (3)	1.2489	A (7,5,12)	125.7 (2)	125.5948	
R (4,19)	1.310 (3)	1.3082	A (8,5,12)	116.2 (2)	115.6509	
R (4,27)	1.110 (3)	1.0189	A (12,6,13)	117.8 (2)	118.4499	
R (5,7)	1.404 (2)	1.4113	A (12,6,17)	123.3 (2)	123.7612	
R (5,8)	1.476 (4)	1.4706	A (13,6,17)	118.9 (2)	117.7889	
R (5,12)	1.383 (3)	1.3878	A (1,7,5)	119.4 (2)	119.8531	
R (6,12)	1.391 (3)	1.4038	A (1,7,18)	125.6 (2)	124.7365	
R (6,13)	1.472 (3)	1.4708	A (5,7,18)	115.0 (2)	115.4104	
R (6,17)	1.372 (2)	1.3781	A (5,8,9)	109.5	109.8901	
R (7,18)	1.451 (3)	1.4593	A (5,8,10)	109.4	107.4694	
R (8,9)	0.980	1.0900	A (5,8,11)	109.4	109.8914	
R (8,10)	0.979	1.0853	A (9,8,10)	109.6	110.486	
R (8,11)	0.980	1.0900	A (9,8,11)	109.5	108.6143	
R (13,14)	0.980	1.0899	A (10,8,11)	109.5	110.4854	
R (13,15)	0.980	1.0899	A (2,12,5)	122.0 (2)	121.6725	
R (13,16)	0.980	1.0851	A (2,12,6)	121.3 (2)	121.7421	
R (17,18)	1.428 (3)	1.4486	A (5,12,6)	116.6 (2)	116.5854	
R (18,19)	1.410 (2)	1.4025	A (6,13,14)	109.4	109.7358	
R (19,20)	1.490 (3)	1.5016	A (6,13,15)	109.5	109.7356	
R (20,21)	0.990	1.0942	A (6,13,16)	109.5	107.6712	
R (20,22)	0.990	1.0942	A (14,13,15)	109.5	108.676	
R (20,23)	1.517 (3)	1.5288	A (14,13,16)	109.4	110.5068	
R (23,24)	0.980	1.0922	A (15,13,16)	109.5	110.507	
R (23,25)	0.980	1.0915	A (3,17,6)	118.0 (2)	118.5799	
R (23,26)	0.980	1.0915	A (3,17,18)	122.9 (2)	122.9107	
			A (6,17,18)	119.1 (2)	118.5094	
			A (7,18,17)	120.3 (2)	120.1389	
			A (7,18,19)	121.9 (2)	121.8316	
			A (17,18,19)	117.8 (2)	118.0295	
			A (4,19,18)	119.2 (2)	120.1114	
			A (4,19,20)	115.0 (2)	114.661	
			A (18,19,20)	125.8 (2)	125.2277	
			A (19,20,21)	108.6	107.6702	
			A (19,20,22)	108.7	107.6708	
			A (19,20,23)	114.2 (2)	114.6173	
			A (21,20,22)	107.7	103.2987	
			A (21,20,23)	108.7	111.4397	
			A (22,20,23)	108.7	111.4403	
			A (20,23,24)	109.5	109.214	
			A (20,23,25)	109.4	111.7744	
			A (20,23,26)	109.5	111.7744	
			A (24,23,25)	109.5	108.1569	
			A (24,23,26)	109.5	108.1571	
			A (25,23,26)	109.4	107.6318	

Theoretical Calculations

According to the above crystal structure, a crystal unit was selected as the initial structure, while DFT-B3LYP/6-311G++(d,p) methods in Gaussian09 was used to optimize the structure of the title compound. Further, keto form of title compound was also optimized using Gaussian09. No solvent corrections were made with these calculations. Vibration analysis showed that the optimized structure indeed represents a minimum on the potential energy surface (no negative eigenvalues). A four-membered ring transition state was calculated which was confirmed using IRC calculations.

				0				
T-1-1- CO (Cantanian	Candinata	(A)	af am al	6		
Table 52.0	mmizea	(arresian)	Coordinates	(A)	or enoi	TOTT I	or title	compound
rubic on.	opunizea	curteorur	coordinates	(1 1)	or citor	TOTICI	ior true	compound.
				· ·				

# opt b3lyp/6-311++	g(d,p) (HF = -760.87486	5944 a.u.)	
01			
0	-0.61415600	2.28424300	-0.00000500
0	3.47762000	0.28492700	-0.00021300
0	-0.17101600	-2.43068900	0.00015600
0	-2.45406100	-1.49715100	0.00006600
Ν	1.43203200	1.27760900	0.00012000
Ν	1.64613100	-1.08770900	-0.00002300
С	0.02118200	1.24096900	0.00004000
С	2.10576300	2.58480300	0.00012800
Н	2.73500300	2.67767400	0.88528700
Н	1.33481900	3.34867600	0.00030500
Н	2.73474700	2.67784400	-0.88519400
С	2.26883400	0.17045200	-0.00006100
С	2.49429800	-2.28926800	-0.00008100
Н	2.28334500	-2.88863100	-0.88559600
Н	2.28340400	-2.88867000	0.88542100
Н	3.52892800	-1.96212400	-0.00011100
С	0.27963200	-1.26589000	0.00008400
С	-0.57059000	-0.09300800	0.00003900
С	-1.95973200	-0.28598700	-0.00000100
С	-2.98645500	0.80979300	-0.00009400
Н	-2.78143300	1.45696600	-0.85823500
Н	-2.78148000	1.45707700	0.85796200
С	-4.43608700	0.32421300	-0.00010900
Н	-5.10447400	1.18796900	-0.00018700
Н	-4.66082000	-0.27969300	0.88091200
Н	-4.66076100	-0.27981000	-0.88106400
Н	-1.66659400	-2.14367100	0.00013000

# opt b3lyp/6-311++g(d,p) (HF = -760.84960093 a.u.)				
01	0.00505.000	1 200 (0200	0.0550.4(00)	
C	-0.03595400	1.30960200	-0.35734600	
C	2.01450200	-0.02425000	0.00028000	
С	-0.09232900	-1.26557800	-0.37034900	
С	-0.74078600	0.04089700	-0.79630600	
С	2.11535800	2.40799300	0.15313700	
Н	2.42217400	2.44549200	1.19911400	
Н	1.48604800	3.26201100	-0.07852300	
С	2.01335700	-2.45974100	0.11210600	
Н	2.29889000	-2.53578100	1.16217700	
Н	1.35548400	-3.28243000	-0.15135200	
Ν	1.32582300	1.19183500	-0.10513900	
Ν	1.27717200	-1.20710500	-0.12981800	
0	3.20263900	-0.04950100	0.23309500	
0	-0.71657600	-2.30061500	-0.30843800	
0	-0.61673100	2.37205100	-0.29739400	
С	-2.26607700	0.05265400	-0.49060000	
С	-2.74063400	0.35126900	0.91971700	
Н	-2.73613500	1.44463300	1.00338800	
Н	-3.78394400	0.03268200	0.96054500	
0	-3.03274500	-0.14073500	-1.40006300	
С	-1.93304000	-0.25699900	2.07250100	
Н	-2.38373800	0.02832400	3.02554800	
Н	-1.91437600	-1.34677900	2.01917100	
Н	-0.90000600	0.10364500	2.09370800	
Н	-0.68308100	0.04116300	-1.89288300	
Н	3.00501100	2.40033700	-0.47366800	
Н	2.91362900	-2.47108500	-0.49896100	

Table S3. Optimized Cartesian Coordinates (Å) of keto form for title compound.

Table S4. Optimized C	Cartesian (Coordinates ((Å) (of transition	state.
-----------------------	-------------	---------------	-------	---------------	--------

# opt = (calcfc,ts,noeigentest) b3lyp/6-311++g(d,p) (HF = -760.780416598 a.u.)				
01				
С	-0.06295000	-1.31148200	-0.13255000	
С	-2.10326300	0.06710400	0.06433000	
С	-2.10326300	0.06710400	0.06433000	
С	0.06554400	1.22165200	-0.22232600	
С	-2.27397400	-2.35820700	0.24336600	
Н	-2.69765500	-2.35219300	1.24860000	
Н	-1.63384700	-3.22651400	0.11619300	
С	-2.03135400	2.50246100	0.07758100	
Н	-2.46131100	2.60072400	1.07521900	
Н	-1.30632700	3.29278400	-0.09417000	
Ν	1.44419600	-1.16519700	0.03067000	
Ν	-1.32405900	1.22128900	-0.05005500	
0	-3.30678200	0.13255500	0.21668000	
0	0.72499000	2.25141600	-0.17698600	
0	0.49597500	-2.39371800	-0.00581400	
С	2.12776100	-0.15961200	-0.56453100	
С	3.12239000	-0.35632200	0.51128000	
Н	3.07264300	-1.43685100	0.71451500	
Н	4.11645500	-0.14714000	0.10947700	
0	2.44068400	-0.08001100	-1.78113400	
С	2.83189800	0.42274900	1.80238800	
Н	3.60660100	0.20459100	2.53933100	
Н	2.81428400	1.49737700	1.61905700	
Н	1.86966800	0.13200100	2.22872300	
Н	1.19942800	-0.04937600	-1.91507600	
Н	-3.08976700	-2.36982900	-0.47832800	
Н	-2.83638900	2.55082700	-0.65478700	

 $\label{eq:Figure S1. Optimized geometry of the title compound (B3LYP/6-311++G(d,p)).$

Figure S2. ¹H NMR of title compound in CDCl₃.

Figure S3. ¹³C NMR of title compound in CDCl₃.

Figure S4. ¹H NMR of title compound in Acetone-d₆.

Figure S5. ¹H NMR of title compound in DMSO-*d*₆ at 20 °C.

Figure S6. ¹³C NMR of title compound in DMSO-d₆ at 20 °C

Figure S7. ¹H NMR of title compound in DMSO-*d*₆ at 30 °C.

Figure S8. ¹H NMR of title compound in DMSO-*d*₆ at 40 °C.

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).