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Abstract: This article is not a review in the conventional sense. Rather, it is a monographic study of
the implications of detection in Al-Cu-Fe quasicrystals of the electronic heat capacity contributions
associated with the two-level electron excitations. Our aim was to reveal correlations between these
contributions, on the one hand, and specific features of electron transport, magnetic susceptibility,
Hall-effect, tunnelling and optical spectra, on the other hand. It is shown that the full range of these
features can be understood in the framework of the unified conceptual scheme based on two-level
electron excitations.
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1. Introduction

Quasicrystals in general and icosahedral (i-) phases in particular have attracted the interest of
scientists, not only because of their exotic lattice structure. A question that arises from the very
beginning is why nature should prefer quasiperiodic to periodic order. The lattice structure of these
phases is based on an icosahedron, i.e., a polyhedron that has fivefold symmetry and cannot serve as a
unit cell of a periodic crystal. It is clear that minimization of the internal energy cannot be achieved
without a decrease in the kinetic energy of free charge carriers. Now it is well known that the formation
of icosahedral phases does lead to a significant reduction in the metallic properties of initial metals.

Due to this reduction, the icosahedral phases differ from conventional metals, both quantitatively
and qualitatively. The main quantitative difference lies in the fact that these phases have an
anomalously low (~1019–20 cm−3) concentration of conduction carriers in the low temperature limit; i.e.,
the average valence (electrons/atom) in the alloy at low temperatures is e/a ~10−3. As a consequence,
the icosahedral phases have a low, but finite (~100 Ω−1·cm−1), metal-like conductivity, as well as low
values of the Pauli susceptibility and electronic heat capacity. These differences are reflected in the
hypothesis of the pseudogap. According to photoelectron spectroscopy experiments, the pseudogap
has a width of ~1 eV [1].

The main qualitative differences are associated with a significant variability of the number of
charge carriers at finite temperatures. The concentration of thermally induced charge carriers (TICC)
increases very rapidly with increasing temperature. At 1000 K, this concentration differs only slightly
from the atomic density of the substance; i.e., the average valence in the alloy at high temperatures is
e/a ~1. Consequently, an increase in the temperature leads to a very rapid increase in the electrical
conductivity (negative TCR—temperature coefficient of resistivity) and to a very rapid enhancement
in the paramagnetism. The amplitudes of these TICC-associated giant thermal effects are many times
larger than those of the corresponding parameters of metal-like ground state carriers [2].

Since there are various aspects of the lattice structure, three scenarios of the reduction nature of
the metallic properties in quasicrystals have been discussed in the literature. On the one hand, the
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quasilattice has no long-range periodic order in the arrangement of atoms. In the general case, this
means that quasicrystals are similar to disordered systems in which the Anderson localization can
play a significant role [3]. On the other hand, quasicrystals have a long-range quasiperiodic order.
Thus, they can be considered as a limiting case of the Hume-Rothery phases, where all wave vectors
of the ideal quasilattice are vectors of reflection. At the Fermi level, ideally, there arises an energy
gap, whereas in fact a pseudogap is formed. Finally, quasicrystals have an icosahedral short-range
order. The reduction in the metallic properties can be associated with the confinement of initially
valence electrons through the exchange coupling of electrons in the formation of chemically saturated
(covalent) bonds [4–6].

A large number of experimental studies into the physical properties of stable icosahedral (i)-phases
were performed soon after the discovery of these phases. The result of these studies was somehow
paradoxical: no physical properties of i-phases assumed from their long-range quasiperiodic nature
were identified [7]. Therefore, the long-range icosahedral order and the Hume–Rothery–Jones
mechanism (a contact between the Brillouin zone boundaries and the Fermi surface) should be excluded
from consideration, both based on the above mentioned paradox and on the fact that TICC-associated
thermal effects are observed at temperatures higher than the melting temperature where the zone
structure is destroyed [8,9]. The results of numerous experiments carried out to investigate the effect
of quasilattice structural perfection on the electrical properties of quasicrystals (see [2] and references
therein) also allow the structural disorder and the Anderson localization mechanism to be excluded
from consideration. The reasoning is quite simple. The effect exerted by a structural disorder on the
electrical conductivity of quasicrystals is opposite to that of the Anderson mechanism.

Insensitivity of TICC-associated effects to the aggregate state means also that the structure-forming
factor of these effects is the short-range order in the spatial arrangement of atoms. Along with that,
the following facts should be taken in consideration. Reference [10,11] provided a direct evidence of
covalent bonds in the electron density distribution of AlMnSi and AlReSi icosahedral quasicrystalline
1/1 cubic approximants using a combination of the maximum-entropy method and the Rietveld
method. In reference [12], the covalence in AlPdRe quasicrystals was experimentally confirmed
from the atomic density and the quasilattice constant. Based on the data obtained, a conclusion was
made that localization via exchange pairing is a dominant factor of the formation of the electronic
structure of phases with the icosahedral short-range order and that pseudogap is a consequence of
such localization.

Thus, among the above scenarios, the localization through the exchange coupling, which was
justly called neither recurrent [5] nor chemical [6], but the Heitler-London (HL) localization by the
authors of the first quantum mechanical theory of covalent binding [13], is considered to be the most
possible scenario. Accordingly, the distinctive properties of i-phases should be associated with spatially
localized electron excitations.

2. Features of the Electronic Specific Heat Capacity

Calorimetry has been traditionally considered an effective tool that provides information on
the mechanisms of energy absorption by elementary electronic and lattice excitations. Therefore,
calorimetric investigations were performed for a number of quasicrystalline compounds with
different chemical compositions and structural qualities in various temperature ranges from ultralow
temperatures to melting points [14–18]. Despite a large variety of objects, all these investigations share
a common trait. It has been assumed that the electronic component of the specific heat of quasicrystals
over the entire range of temperatures is determined by the contribution γT linear in the temperature,
where γ is the Sommerfeld coefficient. As is known, this contribution is rather small. For typical
metals at a charge carrier concentration of ~1023 cm–3 and room temperature, this contribution is no
more than 0.5% of the lattice specific heat [19]. For quasicrystals, the corresponding contribution is
even smaller and does not exceed 0.1%. This contribution was ignored, and the entire experimentally
measured specific heat was considered to constitute the lattice specific heat.
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Possibly, the approximation that the lattice plays a dominant role does not involve a large error
but requires the justification for quasicrystals. The point is that the Sommerfeld model describes
metal systems with a constant number of charge carriers. According to indications of a finite residual
resistance and a linear electronic contribution to the specific heat at low temperatures, the quasicrystals
are metals; however, they do not belong to systems with a constant number of charge carriers.
At moderate and high temperatures, the number of TICCs can be several tens of times larger than the
number of conduction band electrons in the ground state (T = 0 K) of the system [2].

Earlier we conducted a study of the specific heat capacity of quasicrystals of the Al-Cu-Fe
system, with icosahedral phase samples having the Al63Cu25Fe12 and Al62Cu25.5Fe12.5 nominal
compositions. The purpose of these experiments was to verify whether the linear-in-temperature
metal-like contribution γT is the sole contribution to the electronic heat capacity of quasicrystals, or
TICCs are capable of making their own contribution.

It is obvious that, if the heat capacity of singular electronic excitations exists, it will manifest itself
as the excess heat capacity with respect to the sum of the lattice heat capacity Clat and the metal-like
heat capacity of ground state conduction electrons Cml = γT, that is,

Cexc = Ctotal−Clat−Cml (1)

At the first stage, the measurements of the heat capacity and thermal expansion coefficient, which
is necessary to convert Cp into Cv, were performed in the temperature range from 1.5 to 400 K. It is
a well-studied region, where a noticeable increase in the electrical conductivity (negative TCR) and
an enhancement in the paramagnetism have been observed and where, consequently, a singular
contribution can manifest itself. It was found that the inclusion of the lattice heat capacity Clat within
the approximation of the Debye model leads to a very strong dependence of the final result on the
model assumptions. To avoid this difficulty, we assessed a contribution of the lattice heat capacity Clat
in the approximation of the empirical Gruneisen law, which implies a linear relation of the lattice heat
capacity to the linear expansion coefficient. Details can be found in [20,21].

The result turned out to be remarkable in two respects. On the one hand, the excess heat capacity
is a curve with a maximum at about 90 K (Figure 1), which is well approximated by the Schottky
function in the simplest case of two level excitations. This is shown by a solid line in Figure 1. On the
other hand, the excess heat capacity almost completely disappears at near room temperature, whereas
the singular thermal effects in both the electrical conductivity and the paramagnetism continue to
increase with increasing temperature up to 1000–1200 K [2].
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Figure 1. Temperature dependence of the excess electronic heat capacity of the Al63Cu25Fe12 
quasicrystalline alloy with respect to the Sommerfeld metallic contribution. Solid lines show the 
approximation of the curve by two Schottky contributions with excitation energies of 0.02 and 0.25 eV. 

Figure 1. Temperature dependence of the excess electronic heat capacity of the Al63Cu25Fe12

quasicrystalline alloy with respect to the Sommerfeld metallic contribution. Solid lines show the
approximation of the curve by two Schottky contributions with excitation energies of 0.02 and 0.25 eV.
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In order to clarify the situation, it was necessary to extend the calorimetric experiment to the
high temperature range of 300–1000 K. We discovered that the excess heat capacity also appears and
clearly manifests itself in the total heat capacity Ctotal at high temperatures significantly exceeding the
Dulong-Petit limit. We determined the excess heat capacity in this temperature range with respect to
this limit. The asymptotic approximation to this limit may be assessed using the Debye model, exactly
which we chose to perform. Details can be found in [8,18].

As a result, we have observed a peculiar pattern. The high temperature excess heat capacity
(see Figure 1) rather rapidly increases from 400 K, passes through an inflection point in the region
of 750 K, and then continues to increase more slowly to the boundary of the experiment at 920 K.
The experimentally revealed portion of the curve resembles the ascending branch of the Schottky
thermal anomaly, but the further course of the curve remains unclear [22].

We performed further heat capacity measurements up to the region of 1650 K, which significantly
exceeds the melting temperature of the substance (1280 K). The reason is that melting is preceded
by solid phase structural transformations. The endothermic effects of these transformations in the
temperature range of 1100–1280 K are so strong that the behaviour of the “base line” of the actual heat
capacity of the substance within the boundaries of the solid state becomes undefined. The extension
of the experiment further along the region of melts showed that the excess heat capacity of melts
is a decreasing function of the temperature, i.e., the excess heat capacity curve has a maximum at
about 1200 K and resembles the Schottky anomaly. The approximation by the Schottky function in the
temperature of 400–1650 K is also shown by a solid line in Figure 1. It is quite satisfactory. Details of
the experiment and the analysis results can be found in [8,9].

The results of all stages of the calorimetric experiment being generalized are shown in Figure 1.
The resulting CTLE (T) curve is double peaked. It is unlikely that the heat capacity is a continuous
function of the temperature. Rather, it consists of two functionally similar, but not interconnected parts;
therefore their sum can be approximated by two contributions of the Schottky type [23] in the form of
Equation (2) with excitation energies δE1 = 0.02 eV and δE2 = 0.25 eV, respectively.

CTLE = N1kB

(
δE1
kBT

)2
exp

(
δE1
kBT

)
(

1 + exp
(

δE1
kBT

))2 + N2kB

(
δE2
kBT

)2
exp

(
δE2
kBT

)
(

1 + exp
(

δE2
kBT

))2 (2)

According to the traditional treatment of the Schottky anomalies [23], the system under
consideration has a few types of two-level excitations. They can be phason excitations, electron
excitations or crystal field induced splitting of atom level excitations [14–17,22]. We noticed that the
two-level excitations (TLE) density determined from the excess heat capacity is very close to the TICC
density determined from the Hall-effect [20]. This is why we prefer electronic excitations to all other
possibilities. We thereby postulated that the system under consideration has a few types of two-level
electron traps—energetically and spatially well-localized states. The source of these traps may well be
covalent binding mentioned above. The source of two-level excitations (TLE) may well be the splitting
of the covalent binding state into “conjugated” (bonding/antibonding) levels.

In that case, the revealed features of the electron heat capacity turn out to be in good agreement
with the HL-localization scenario.

3. A Two-Component Model of the Electronic Structure

In order to see whether the TLE concept provides a better understanding of the quasicrystals
physics, we have considered a strongly structured density of states (DOS) model obtained by a formal
superimposition of two sort of electronic spectra—continual and discrete. The continual spectrum
is represented by the conduction band with a large pseudo-gap; the discrete one is represented by
a set of extremely narrow pairwise conjugated levels—ground and excited—centred with respect to
EF. By suggesting that HL-localization (not the pseudogap) is the electron stabilizing factor of the
quasilattice, we postulated also that the continual and discrete components are autonomic subsystems,
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i.e., the thermally activated carriers do not get into the conduction band. They propagate on the excited
levels of the traps by hopping or tunnelling.

It was surprising to discover that this naive model leads to highly interesting implications in
understanding a number of experimental observations [24,25]. Let us briefly consider the main
observations, which reveal the interconnection of the distinctive thermal effects with TLE density.

The heat capacity, as is known, reflects the rate of change in the internal energy of the system
and, accordingly, the number of TLEs with variations in temperature. Therefore, during each stage
of the investigation, we analysed the behaviour of the quantities that can be linearly related to the
TLE concentration, namely, the increment in the internal energy of the system ∆U, the increment in
the electrical conductivity ∆σ, the increment in the magnetic parameter ∆(χT), and the increment in
the inverse Hall effect ∆(1/RH) in the specified temperature range [22]. With the attainment of the
complete picture of the excess heat capacity and its approximation by two Schottky anomalies, there
appeared a unique possibility to demonstrate this relation as a whole.

Figure 2 shows the temperature-induced components of the electrical conductivity, magnetic
susceptibility and singular part of the internal energy UTLE(T). The latter dependence was obtained
by the numerical integration of the experimental curve CTLE(T). Well-coordinated behaviour of all
the curves is evident. On the other hand, the dependence U(T) differs by obvious signs of alternating
curvature, and the origin of this behaviour is clear enough. Since the singular heat capacity CTLE,
according to Equation (2), consists of two functionally similar parts, the temperature dependence of
the number of TLEs also consists of two functionally similar contributions in the form:

NTLE =
N1

1 + exp
(

δE1
kBT

) +
N2

1 + exp
(

δE2
kBT

) (3)
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Figure 2. Curves of temperature-induced increments in theelectrical conductivity Δσ (open circles), 
paramagneticsusceptibility Δχ (closed circles), and internal energy ΔU(solid line) of the Al63Cu25Fe12 
icosahedral phase in thetemperature range from 1.8 to 1000 K. 

To make sure whether a change in the activation regimes takes place, we do not have to know 
each contribution separately. It is sufficient to construct the total curve U(T) in the lnU(T) vs. T–1 
coordinates, as shown in Figure 3a for the Al63Cu25Fe12 icosahedral phase. A change in the activation 

Figure 2. Curves of temperature-induced increments in theelectrical conductivity ∆σ (open circles),
paramagneticsusceptibility ∆χ (closed circles), and internal energy ∆U(solid line) of the Al63Cu25Fe12

icosahedral phase in thetemperature range from 1.8 to 1000 K.

To make sure whether a change in the activation regimes takes place, we do not have to know
each contribution separately. It is sufficient to construct the total curve U(T) in the lnU(T) vs. T−1

coordinates, as shown in Figure 3a for the Al63Cu25Fe12 icosahedral phase. A change in the activation
regimes manifests itself in the fact that the curve has two linear portions. If the temperature dependent
components of the electrical conductivity, the magnetic susceptibility, and the inverse Hall-effect,
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where these contributions are very difficult or impossible to separate, are represented in the same
coordinates, then, as seen in Figure 3b–d, there appear patterns that are identical to that in Figure 3a.
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(a); conductivity (b); magnetic susceptibility (c); and inverse Hall effect (d) in the Al63Cu25Fe12 phase.

The well-coordinated behaviour of all the curves on Figure 2 and the activation regime changes
on Figure 3 mean a direct dependence of the thermally-induced giant effects on TLEs.

The singular heat capacity and singular paramagnetism are trivial implications of TLEs.
The understanding of this phenomenon does not require new knowledge. It is sufficient to remember
that the ground state of each trap is diamagnetic. The excited state of each trap is paramagnetic.
The rest are determined by the population of the states according to Equation (2). A different situation
occurs with the TLE conductivity. The case in point is the conduction over the excited states of the
same type traps is carried out by of hopping or tunnelling. We have not found a theoretical justification
of such conductivity in the literature. From the experimental point of view, there is no difficulty
in justifying this conductivity. If the conductivity of this type exists, it should manifest itself as an
additive component to the conductivity of residual carriers, σml. Qualitatively, this implication is
confirmed by the empirical relationship known as Inverse Matthiessen Rule [26]. According to this
rule, the electronic transport in quasicrystals is determined by additive contributions to the electrical
conductivity, rather than to the electrical resistivity as in metals, i.e.:

σ (T) = σml + σTICC. (4)

Strange as it may seem, the most unusual postulate of our model that the continual and discrete
components being autonomic subsystems coincide in energy is in agreement with experiment. Indeed,
the threshold excitation energy obtained from the description of the low temperature part of the excess
heat capacity is δE1 ~0.02 eV and, as follows from the description of the high-temperature part of the
excess heat capacity, it is δE2 ~0.25 eV. The pseudogap width, according to photoelectron spectroscopy,
as was noted above, is equal to ~1 eV. The Fermi energy of residual metal like carriers in the free
electron approximation and at a charge carrier concentration of 1020 cm–3 is EF ~0.3 eV. It is easy to see
that spatially localized states, if they exist, coincide in energy with the continuum of residual carriers.
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In the framework of homogeneous localization models, such a coincidence is impossible [27]. It may
mean that in quasicrystals, we are dealing with a special sort of inhomogeneous electronic system with
a dual manifestation of inhomogeneity, namely, in the form of several generations of electron traps
and in the form of the coexistence of extended and spatially localized states with the same energies.
In any case, it means definitely that the conjugated levels of the traps should be separated by real
gaps, not pseudogaps. To verify how realistic this implication we turned to the analysis of the spectral
characteristics of quasicrystals.

4. Correlations between TLE Heat Capacity and Tunnelling Spectra

Icosahedral phases in aluminium alloys with transition metals have been actively studied in
the last two decades by scanning tunnelling spectroscopy and point contact spectroscopy methods
with various types of junctions-planar [28,29], point [30,31], and break [31,32]. It was shown that the
dependences of the tunnel conductance (G = dI/dV) on the bias voltage (V) are strongly nonlinear
characteristics exhibiting numerous features such as zero bias anomalies (ZBA), maxima, humps, and
inflection points with a characteristic scale of several units to several hundred meV.

The fine structure of G(V) curves is usually explained by the fact that it is the image of the
fine structure of the electron density of states near the Fermi level. In other words, it is implicitly
assumed that the tunnel current through a quasicrystal junction is due to quantum transitions between
delocalized states on different sides of the barrier. In the one-electron approximation, a quite reasonable
picture of the electron density of states of the icosahedral structure is obtained in the form of a comb of
extremely narrow peaks separated by pseudogaps [28–32].

At the same time, another remarkable feature of tunnel experiments remains neglected. The fine
structure of G(V) curves in quasicrystals strongly depends on the effective area of a tunnel junction.
In the case of a large area of the junction (>10 nm2), G(V) curves have an “averaged” shape with a
sign-alternating curvature, but smoothly increase with V. In the case of a small area of the junction
(<1 nm2), G(V) curves have a “local” oscillatory shape.

In view of the pronounced topographic aspect of tunnel spectra, the authors of [33–36] concluded
that an additive scheme of the tunnel conductance is implemented in quasicrystals. A G(V) curve
consists as if of two independent components: the field-independent part G0, which is due to remaining
delocalized conduction electrons, and the field-dependent part Gv, which is due to energetically and
spatially well localized electrons:

G(V) = G0 + Gv (5)

It turns out that the fine structure is inherent only in the component Gv. It is obvious that, in view
of the spatial localization of the features of Gv, extremely narrow peaks of the density of states should
be separated by real gaps rather than by pseudogaps. Consequently, multiple ZBA would be expected
in the spectrum. However, this is not the case in experiments. A single ZBA is always observed near
V = 0. This specificity of real spectra was the first reason for doubt that the fine structure of G(V) curves
is the direct image of the electron density of states [36] and for the possibility of another mechanism.

A topographic similarity of electronics states from the excess specific heat and from the field
dependent part of tunnel spectra stimulated us to seek correlations between these characteristics.
We directly compared the local and averaged G(V) curves obtained in the experiments with break
junctions for i-phase of Al64Cu23Fe13 in [32] and the CTLE (T) curve that we obtained for the i-phase of
Al62Cu25Fe12 and obtained the picture shown in Figure 4. All results in this figure are in situ, but all
curves are represented in the same energy format. It is seen that the tunnel and thermal characteristics
have visually similar maxima (they are indicated by arrows in Figure 4) at close energies.
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Figure 4. Visual comparison of the local and averaged tunnel spectra obtained in [32] and the excess 
electronic specific heat obtained in [25]. Arrows indicate features similar in shape and energy. 
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Figure 4. Visual comparison of the local and averaged tunnel spectra obtained in [32] and the excess
electronic specific heat obtained in [25]. Arrows indicate features similar in shape and energy.

It was hypothesized that maxima of the tunnel conductance, as well as maxima of the excess
specific heat, can be attributed to two-level excitations of electron traps. To this end, it should be
assumed that quasicrystals contain charge carriers whose density depends on the electric field as the
population of the upper level in the Schottky model depends on the temperature [23]:

NVi = N0i/(1 + exp(δEi/V)) (6)

Under the assumption that the mobility (µe) of these carriers slightly depends or does not depend
on the field, it is easy to show that the conductance depends on V as:

Gi (V) = µedNVi/dV = µeN0ikB
(δVi/V)2 exp (δVi/V)

(1 + exp (δVi/V))2 (7)

Because of the mathematical identity expressions, Equations (2) and (7), simple and clear
understanding of the identity of heat and tunnel maxima is achieved.

This identity gives a key to the understanding of a microscopic mechanism of elementary electric
terms. The thermal terms given by Equation (2) are by definition due to the internal thermal emission
of electrons between conjugate levels of electron traps. Consequently, electrical terms given by
Equation (7) are due to the internal field emission (Zener effect) [37] between the same levels. This fact
is fundamentally changing the understanding of the fine structure of the tunnelling spectra.

By analogy with the excess specific heat, it is reasonable to expect that the field-dependent
components Gv should generally be sums of numerous elementary terms given by Equation (7),
differing in the splitting energy of conjugate levels of traps. Under this assumption, we analysed in
detail the local and averaged Gv(V) curves using Equation (7) as a trial function [38].

The thin solid line in Figure 5 is the local spectrum from [32] in direct energy coordinates.
This curve clearly demonstrates the typical discussed features—ZBAs, pronounced maxima, and
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pronounced humps. First, we approximate the maximum as the best-defined feature with the reference
at the point of maximum. The result is shown by dash-dotted line 16. The description is not the
best, but the reference to the maximum point gives the characteristic energy of two-level excitations
δE = 16 meV, which is close to δE = 19 meV obtained from the specific heat [25].The result is close to the
expected one and is not unique. It is easy to see that dependence Equation (7) near V = 0 reproduces
the ZBA feature of the tunnel spectrum.
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Figure 5. Deconvolution of the local G(V) curve into elementary terms with the characteristic splitting
energies of the levels δEi = 5, 16, 80, and 260 meV. The thin solid line is the experimental curve [32].
The dash-dotted lines are the elementary terms. The thick solid line is the sum of the terms. The dotted
lines are residuals after subtraction of the terms.

We apply Equation (7) to approximate the difference between the local experimental curve and
the calculated curve 16. This residual is shown in Figure 5 by the dotted line. It has a small maximum
near 2 meV and a hump near 30 meV. The approximations of these two features by Equation (7) are
shown by dash-dotted lines marked by the numerals 5 and 80 meaning δEi corresponding to the best
fit. The dotted line is a similar residual after the subtraction of lines 5, 16, and 80. This line has only
one characteristic feature, ZBA, which is described by the dash-dotted line marked by the numeral 260.
This residual is best approximated with the parameter δEi = 260 meV, which almost coincides with the
second characteristic energy of two-level excitations from the specific heat δEi = 250 meV [25].

As is seen, the tunnel curve in the range 0 < V < 65 meV is deconvoluted into four elementary
terms with the energies 5, 16, 80, and 260 meV. The thick solid line in Figure 5 is the sum of these terms.
The sum generally approximates the experimental data well. It is seen also that this sum leads to the
hump features and to the fact that only a single ZBA with the smallest δEi is visible. The remaining
ZBAs become hidden.

Figure 6 shows the average spectrum from [32] in the energy range 0 < V < 850 meV, which is
significantly wider than the capabilities of a thermal experiment. The high-energy part of the curve
exhibits two pronounced features: maximum and hump.
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Figure 6. The averaged experimental G(V) curve (thin solid line [32]) and its description (thick solid line)
by the sum of the elementary terms with δEi = 5, 16, 80, 260, 400, 1400, and 5300 meV. The dash-dotted
lines are the low-energy (LE) part of the spectrum and additional terms. The dotted lines are residuals
after subtraction of the calculated curves.

The results of the analysis using Equation (7) are shown as dash-dotted lines in Figure 6.
Additional elementary terms with the characteristic energies δEi = 400, 1400, and 5300 meV are
detected. The procedure of their separation is similar to that described above. The only explanation
that needs to be done relates to accounting the low-energy part of the spectrum in order to obtain a
residual. The averaged curve in this part of the spectrum is strongly smoothed but is due seemingly
to the same elementary terms as the above local curve. In view of this circumstance, to approximate
the low-energy part of the spectrum at V < 70 meV, we used the entire set of “local” characteristic
energies in the form of the LE contribution. This is the reason why the “high energy” residual shown
by the dotted line in Figure 6 exhibits “dips” near V = 0. This does not affect the approximation of
the high-energy residual of the averaged curve and this entire curve by the set of elementary terms
(Equation (7)) with the characteristic energy gaps δEi = 5, 16, 80, 260, 400, 1400, and 5300 meV. The latter
is shown by a thick solid line in Figure 6.

One may think that such a large number of gaps were used solely for the purpose of a qualitative
fit. However, this is not exactly so.

5. Two-Level Excitations and Optical Spectra

It is well known that optical investigations, performed across a broad spectral range, are a
powerful experimental tool for identifying the spectrum of excitations. We were able to identify a set
of δEi values as the real gaps. If so, a distinctive feature of the behaviour of optical conductivity σ (ω)
in quasicrystals should be the summary effect of the same set of resonance absorption peaks.

The optical conductivity σ(ω) of Al63Cu25Fe12 at room temperature is shown in Figure 7 in
accordance with experimental data [39]. It presents an intense, broad and practically featureless
(except for maximum) band occupying virtually the all range of frequencies from 40 up to 25,000 cm−1.
A number of authors have reported the existence of the similar bands in various icosahedral systems:
AlPdMn [40], AlMnSi [41], AlPdRe [42], and AlCuFeB [43]. Accordingly, there exist three possible
explanations for the band. It may be associated with strong scattering of electrons and then the
maximum occurs atω = 1/τ [44]; it may be associated with the direct gap in the zone structure and
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then σ(ω) = const x(ω− Eg)1/2/ω [42]; and, finally, it may be associated with resonance absorption [43]
in the form of:

σ (ω) ∝ ∑
i

ω2ω2
i γi(

ω2
0i − ω2

)2
+ ω2γ2

i

(8)
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Figure 7. (a) Experimental optical conductivity of icosahedral Al63Cu25Fe12 (thin solid line [39]). The 
dash-dotted line (1400) is a fit with the Lorentzian peak according to Equation (8). The dotted line is 
a residue after subtraction of the peak. Dash-dotted line (5300) is a fit with the Lorentzian peak 
according to Equation (8). Thick solid line is a fit with a sum of this Lorentzian peak and peaks in 
(b). (b) The residue shown in (a) but on an enlarged scale (solid line). Dash-dotted lines (20, 90, 250, 
and 420) are the fit with the Lorentzian peaks according to Equation (8). 

First, we approximate the maximum as the best-defined feature with the reference at the upper 
part of the curve. The result is shown by dash-dotted line on Figure 7a. Intriguing was the 

Figure 7. (a) Experimental optical conductivity of icosahedral Al63Cu25Fe12 (thin solid line [39]).
The dash-dotted line (1400) is a fit with the Lorentzian peak according to Equation (8). The dotted
line is a residue after subtraction of the peak. Dash-dotted line (5300) is a fit with the Lorentzian
peak according to Equation (8). Thick solid line is a fit with a sum of this Lorentzian peak and peaks
in (b). (b) The residue shown in (a) but on an enlarged scale (solid line). Dash-dotted lines (20, 90, 250,
and 420) are the fit with the Lorentzian peaks according to Equation (8).

Here,ω0i,ωi, and γi are the ith mode resonance frequency, damping, and mode strength of the
ith harmonic oscillators, respectively.

In the latter case, the maximum occurs at ω0 = δEi directly. It was not so hard to see that the
band maximum in Al63Cu25Fe12 i-phase at about 1.4 eV coincides very well with δEi = 1400 meV from
tunnelling experiment. We used this coincidence to deconvolute the broad band for a set of elementary
optic terms using a Lorentzian peak (Equation (8)) as a trial function.

First, we approximate the maximum as the best-defined feature with the reference at the upper
part of the curve. The result is shown by dash-dotted line on Figure 7a. Intriguing was the difference
between the experimental curve and the calculated curve ”1400”. This residual is shown in Figure 7a by
dotted line and in Figure 7b at an enlarged scale by the solid line. Surprisingly, the visual revealed three
peaks at about 420, 250 and 20 meV. There is a small residue in the high energy part of the spectrum.
It is shown in Figure 7a by dotted line. The dash-dotted line shows the description of this residue
by elementary term Equation (8) with δEi = 5300 meV. Unfortunately, the maximum of the peak, if it
exists, takes place outside the experimental range. As to the peak with the smallest excitation energy
at about 5 meV in tunnelling experiment, it could not be observed at room temperature. To achieve
the best description, shown by a thick solid line in Figure 7a, we needed yet another peak at 90 meV
shown by dash-dotted line in Figure 7b.

Therefore, it can be considered that practically all the gaps identified in the tunnelling experiment
were confirmed by an independent optical experiment.
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6. TLEs and Giant Thermally Induced Effects in Magnetic Susceptibility and dc Conductivity

By analogy with the excess specific heat, it is reasonable to expect that the thermally induced
components in conductivity and magnetic susceptibility can also be calculated by adding numerous
elementary terms. Under this assumption, we analysed these components using the simplest
supposition that σt(T) = ∑σi and χt(T) = ∑χi , as well as that the elementary terms σi and χi are the
linear functions of TLE density, i.e., σi ∞ NTLEi (see Equation (3)) and χi ∞ T−1NTLEi. These terms were
used as trial functions. The final results of this analysis are shown in Figures 8 and 9. An almost perfect
curve fitting was achieved using the above-mentioned set of characteristic energies. It is surprising
that such high-energy TLEs of up to 1400 meV were shown to be effective in a physical experiment.
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Figure 8. Temperature-dependent part of the magnetic susceptibility of the ordered Al63Cu25Fe12phase: 
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terms (dash-dotted lines) with δE = 5, 16, 80, 260, 400, and 1500 meV, respectively. 

Figure 8. Temperature-dependent part of the magnetic susceptibility of the ordered Al63Cu25Fe12phase:
(o), experimental results [2]; and solid line, description of the results by a sum of the magnetic
elementary terms (dash-dotted lines) with δE = 5, 16, 80, 260, 400, and 1500 meV, respectively.
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As is well known, the Inverse Matthiessen Rule is difficult to understand from the classical
thermally-activated mechanism point of view, since the temperature dependence of σ(T) does not
follow an exponential law having the form of exp(−Eg/kBT) [45]. We argue that the reason for this is
the multigap spectrum of threshold excitations.

7. Conclusions

Such, in general terms, are the implications of our supposition that an excess heat capacity in
quasicrystals is electronic in nature and is a sum of the Schottky thermal anomalies. To complete the
above, remains to update the model of the electronic structure proposed earlier [24,25], taking into
account the new data. The most comprehensive spectrum of two-level excitations (seven terms) in
the range of 5 to 5300 meV was achieved by analysis of the tunnel characteristics. A slightly narrower
spectrum (six terms) from 20 to 5300 meV was produced by the analysis of the optical conductivity.
Finally, excess heat capacity analysis revealed two types of excitations. It is remarkable that a variety of
experimental tools have revealed, to a greater or lesser extent, the same row of characteristic energies.
This evidences that this row is an essential feature of the systems discussed. For the Al-Cu-Fe i-phases
studied, such a row is a set of characteristic energies 5, 19, 80, 250, 400, 1400 and 5300 meV. With this
knowledge, the updated scheme of the two-component model of the electronic structure is presented
in Figure 10.
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Figure 10. An updated version of the electronic structure model. Shown schematically is the 
superposition of two types of spectra: the continuum spectrum with a pseudogap and the discrete 
spectrum with seven types of two-level states. The Fermi level is fixed at the centre of the smallest gap 
separating the symmetric and antisymmetric states. For the sake of representativity, a nonlinear scale E1/2 
is used. To simplify, only the smallest (δE1) and the largest (δE7) gaps are indicated by arrows. 

On the other hand, the supposition that the continual and discrete components in our model 
are autonomic subsystems is confirmed firmly enough by Ziner’s mechanism of the fine structure of 
tunnel spectra. 

Thus, the idea of designing the electronic structure with a simple (non-hybridizing) 
superimposition of continual and discrete components is confirmed by numerous experiments. 
Earlier, the idea was used in the theoretical model [46]. Discrete component has been included in 
the DOS model by means of a self-similar Dirac comb along with a parabolic pseudogap. There is 
impressive external similarity between Figure 10 and Figure 1 in [46]. The physical relevance of this 
similarity requires a further study. 

To conclude, the purpose of this investigation was to see what new knowledge calorimetric 
experiments can provide to the solution of the problem of singular electronic states in quasicrystals. 
Within the traditional understanding of the Schottky thermal anomalies, it can be definitely said 
that singular electronic states are a source of local two-level excitations and that the system of these 
excitations is not homogeneous. It should also be noted that with the present understanding of the 
nature of the residual metal-like carriers in quasicrystals, singular electronic states can coexist with 
the continuum of the conduction band states. The physicality of this implication also requires 
additional study. 
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Figure 10. An updated version of the electronic structure model. Shown schematically is the
superposition of two types of spectra: the continuum spectrum with a pseudogap and the discrete
spectrum with seven types of two-level states. The Fermi level is fixed at the centre of the smallest gap
separating the symmetric and antisymmetric states. For the sake of representativity, a nonlinear scale
E1/2 is used. To simplify, only the smallest (δE1) and the largest (δE7) gaps are indicated by arrows.

On the other hand, the supposition that the continual and discrete components in our model
are autonomic subsystems is confirmed firmly enough by Ziner’s mechanism of the fine structure of
tunnel spectra.

Thus, the idea of designing the electronic structure with a simple (non-hybridizing)
superimposition of continual and discrete components is confirmed by numerous experiments. Earlier,
the idea was used in the theoretical model [46]. Discrete component has been included in the DOS
model by means of a self-similar Dirac comb along with a parabolic pseudogap. There is impressive
external similarity between Figure 10 and Figure 1 in [46]. The physical relevance of this similarity
requires a further study.

To conclude, the purpose of this investigation was to see what new knowledge calorimetric
experiments can provide to the solution of the problem of singular electronic states in quasicrystals.
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Within the traditional understanding of the Schottky thermal anomalies, it can be definitely said
that singular electronic states are a source of local two-level excitations and that the system of these
excitations is not homogeneous. It should also be noted that with the present understanding of
the nature of the residual metal-like carriers in quasicrystals, singular electronic states can coexist
with the continuum of the conduction band states. The physicality of this implication also requires
additional study.
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