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Abstract: A facile fabrication of photonic crystals (PCs) with an eye pattern similar to peacock tail feathers
has been demonstrated by self-assembly of colloidal particles in a sandwich mode. The sandwich mode is
formed by superhydrophilic flat substrate sandwiching the poly(styrene-methyl methacrylate-arylic
acid) (Poly(St-MMA-AA)) latex suspension (2 wt%) by the hydrophobic one. The patterns are
characterized by optical microscopy images, reflection spectra, and the relative scanning electronic
microscope images. This work will provide beneficial help for the understanding of the self-assembly
process of colloidal crystals.
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1. Introduction

Colloidal photonic crystals (PCs) have attracted great interest due to their special light
manipulation properties [1,2], and have showed promising applications in various fields such
as chemical and biological sensors [3,4], optic devices [5], coating materials [6], and catalytic
supports [7]. Particularly, polymer colloidal PCs have demonstrated important applications ranging
from photonic papers [8], full-color displays [9] and UV protection [10], to responsive optic devices.
Various fabrication methods for colloidal PCs have been developed to meet practical application
requirements [11–13]. Self-assembly is a facile approach for the fabrication of colloidal PCs with
stopband at UV and visible ranges [14], and could be easily modified for widespread manufacturing
purposes. A series of self-assembly methods have been established for the achievement of various
unique functional materials. For example, crack-free colloidal PCs with narrow stopband were
achieved on the low-adhesive/superhydrophobic substrate as the three phase contact line (TCL)
reduced continuously [15,16]. Pattern colloidal PCs were manufactured from the printing technique by
using the pattern substrate [17]. Functional 2-D high sensing films were produced from liquid surface,
and magnetic Janus colloidal PCs were created from a microfluidic approach [18–20]. In the meantime,
some novel assembly theory has been developed. In particular, the influence of the wettability on
latex assembly is greatly understood in terms of the fabrication of specific functional PCs owing to its
influence on the wetting, spreading, and evaporation time of the colloidal suspension. For example,
superhydrophilic substrate was used for the continuous PCs [21], hydrophilic substrate was utilized for
coffee-ring structure [22], while the pattern substrate with both hydrophobic or hydrophilic substrate
was used for the pattern PCs [23]. In this paper, we present a facile fabrication of PCs with an eye
pattern similar to peacock tail feathers by self-assembly of colloidal particles in a sandwich mode,
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with superhydrophilic flat substrate sandwiching of poly(styrene-methyl methacrylate-acrylic acid)
(Poly(St-MMA-AA)) latex suspension by the hydrophobic one. The eye pattern is a concentric circle,
with a green central circle and yellow circle brim. This may be aroused from different assembly
structures of latex particles owing to the pinning TCL. The pattern is characterized by optical
microscopy images, reflection spectra, and the relative scanning electronic microscope (SEM) images.
A suitable concentration of Poly(St-MMA-AA) latex of 2 wt% is required for the production of a pattern
structure. This work will provide an important insight for the self-assembly process.

2. Results and Discussion

The PCs with an eye pattern similar to peacock tail feathers was fabricated from the sandwich
approach. That is, the Poly(St-MMA-AA) latex with concentration 2 wt% was sandwiched between the
FAS silanized hydrophobic glass substrate and the superhydrophilic flat substrate treated by oxygen
plasma. The samples were obtained after keeping the sandwich assembly system at 20 ◦C for 12 h.
The colloidal particles are self-assembled and driven by the capillary force between the interface of the
glass substrate and the convective force aroused from the solvent evaporation. Figure 1a,b present
the optical microscopy images of as-prepared samples. Figure 1a is a bright-field optical microscopy
image of the front side of the samples that is exposed toward the air. Clearly, some crossed cracks are
observed on the sample, a typical feature for the colloidal crystals from the assembly method. It is
well known that the crack is formed by the compete effect of the shrinkage force of latex particles and
resistance force of substrate toward the latex during the solvent evaporation process. Interestingly,
an obvious eye pattern can be found on the back side of the samples as shown in Figure 1b, the side is
cling to the superhydrophilic glass substrate (more images are in Figure S1). The eye pattern is similar
to that of a peacock tail feather as shown in Figure 1d [24,25]. By further observing the eye pattern in
Figure 1b (bright-field optical microscopy image of the sample), it was found that the eye pattern is
formed on the crack fraction of the sample. Furthermore, these eye pattern structures are grass-green
in the middle of core, the structure color turns to yellow or orange around the green central part.
Just like the eye pattern of peacock tail feathers, the color of the bulk PCs is grass-yellow color. In most
cases, one eye pattern is formed for one fraction, while in very few cases, two eye patterns are seen in
one fraction. The eye pattern can be found on many fractions, but it never crosses the cracks region as
shown in Figure 1c.
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Figure 1. Optical microscope images of as-prepared sample. (a) Front side of the sample; (b) Back side
of the sample; (c) Scheme for the as formed sample; (d) Eyes pattern of peacock tail feather (The picture
was obtained from [25]). The front side of the sample shows crossed crack, while the back side of the
sample shows plenty of the eyes pattern similar to the peacock tail feathers.
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Figure 2 showed the UV-vis reflection spectra of the eye pattern. It was generated by combining
the optic fiber spectrometer with the optical microscopy. As expected, the distinct reflection spectra
is captured for the sample at the different positions of the eye pattern. At the core part of the eye
pattern, the reflection spectra of the sample is centered at 520 nm (as shown in 3 in the Figure 2b).
Some red shift of the spectra is observed when the detecting position moved from the core to the
exterior part of the eye pattern. Concretely, the centered position reflection spectrum changed to
525 nm (as shown in 2 in the Figure 2b). Finally, the sample demonstrated a reflection band centered
at 556 nm (as shown in 1 in the Figure 2b) toward the whole PCs. That is, the eye pattern mainly
originated from the different spectra position. It is known that coloration of peacock feather is mainly
controlled by the lattice constant and the periodic number; varying the lattice constant and the number
of periods brings about additional colors [24]. This implies that varying assembly structure should be
captured for the different part of the eye pattern. Accordingly, we detected the assembly morphology
of the sample by SEM images as shown in Figure 2c,d (more information is in supporting information
Figures S3 and S4), it was found that a close-packed arrangement is taken for the green core region
in Figure 2c, while the non-close packed, and more loose arrangement is observed for the circle brim
(yellow or orange) region of the sample in Figure 2d. These different assembly structures correspond
to the distinct spectra position in Figure 2b based on the simulation calculation from Bragg-diffraction
equation [26], a clear red-shift of spectra position arose from the non-close packed structure (brim
region) comparing the close-packed structure (core part). This corresponds to the measured result in
Figure 2a,b. The assembly structure change from close packed to non-close packed can be confirmed
from cross-section SEM image in Figure 2e (relative images are in Figure S5). In short, three colors
are observed for the formation of the eye pattern, one grass-green core region, the yellow or orange
brim region, and the grass-yellow bulk region(relative reflection spectra is in Figure S6). Similar to
the nature of peacock feather, the distinct color is originated from the lattice constant and the periodic
number [24]. And we built schematic illustration for the general strategy to self-assembly of these
samples in Scheme 1.
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Figure 2. (a) Optical microscope image of the assembly sample with eye pattern; (b) UV-vis spectra of
different parts of the peacock eye pattern structure; (c,d) SEM images of assembled photonic crystals
(PCs) with close-packed arrangement (c) and non-closed packed region (d); (e) Cross section SEM
image of sample in red rectangle part indicates the transverse of yellow and green connection part of
the eye pattern.
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Scheme 1. Schematic illustration for the general strategy to self-assembly of PCs with eye pattern
similar to the peacock tail feather. (a) Carefully dropping poly(styrene-methyl methacrylate-arylic
acid) (Poly(St-MMA-AA)) latex onto the bottom glass and covered by the hydrophilic glass substrate,
forming a sandwich assembly; (b) As solvent evaporating, latex assembly at the interface of gas-liquid;
(c) The orderly arrangement (yellow particles) and disclose-packed regions (blue particles) assembled
and forming cracks; (d) After removal of the bottom glass, the PCs with eye pattern of the peacock tail
feathers can be generated. Black curves in (b) and (c) are receding three phase contact line (TCL).

To understand the influence of different assembly structures on spectra shift, we calculate the
spectra position by Bragg diffraction equations as follows:

λmax = 2dhkl

[
n2

e f f − sin2θ
]1/2

(1)

λmax is the wavelength of the diffraction peak, dhkl is distance of between (h k l) plane, and can be
assumed by Equation (2):

dhkl =
a√

h2 + k2 + l2
(2)

a is lattice parameters( in FCC (close packed structure), a = 2
√

2r; in BCC (non-close packed structure),
a = 4r/

√
3), in our experiment r = 100 nm, d111 = 163.3 nm d100 = 231.0 nm; θ is the angle of incidence

θ = 90◦, sinθ = 1, and the Equation (1) can be simplified as λmax = 2dhklne f f . Parameter neff is the
effective refractive index of structures. Figure 2c shows (1 1 1) plane in face-centered cubic (FCC)
structure, and Figure 2d shows (1 0 0) plane in body-centered cubic (BCC) structure. It is given by
Equation (3):

ne f f = (n2
sphere f + n2

air(1− f ))
1/2

(3)

where nsphere and nair are refractive index of Poly(St-MMA-AA) sphere and air respectively
(nsphere = 1.5916 and nsphere = 1.0); f is the filling ratio of spheres (in FCC f = 0.74 and in BCC f = 0.68).
neff of FCC is 1.42920 and neff of BCC is 1.461.

Through the calculation we can estimate the site of spectrum. The green part of FCC (1 1 1) should
be at 477 nm, and the yellow part of BCC (1 0 0) at 660 nm. The calculation result proves that the
red-shift of spectra can be aroused from close-packed to non-closed packed structure.

More investigation of eye pattern PCs is conducted by peeling the glass substrate off the sample
as shown in Figures S2–S4. There are distinct adhesion forces between different regions of sample and
substrate. A higher adhesion force is observed for the brim region of the eye-pattern, leading to plenty
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of remaining particles on the glass substrate (Figure S3e,f). In contrast, little particle can be found on
the substrate for the core-part of the eye pattern (Figure S3e,f), indicating less adhesion force between
the core part and substrate.

To clearly understand the formation process of PCs with eye pattern similar to the peacock
tail feather, Scheme 1 puts forward a possible formation mechanism for the whole assembly
process. At first, the Poly(St-MMA-AA) latex was sandwiched between the pre-treated hydrophobic
and the superhydrophilic one. The latex suspension will spread fully onto the superhydrophilic
substrate, keeping away from the hydrophobic one. During the evaporation process, TCL pins at the
superhydrophilic substrate [27], but keeps continuously receding at the hydrophobic one. As TCL is
pinned at the superhydrophilic substrate, hexagonal close-packed structures are obtained. However, as
TCL receding continues with increased evaporation time, non-close-packed assembly structure can be
formed [28] by the trace of the receding path. The change of the assembly structure from close-packed
to non-close packed resulted in a red-shift of the optic signal as shown in Figure 2b. Generally, three
assembly steps occur in the whole process based on distinct assembly concentration and evaporation
time as shown in Scheme 1. The first assembly step takes place when TCL of the latex pins at the
superhydrophilic substrate with the solvent evaporation, implying an initial assembly of latex particles
at the interface of gas-liquid and solid-liquid in Scheme 1b. In this process, the close-packed assembly
can be observed at the interface of the solid-liquid accompanied with the outward reflux of the
latex owing to the fastest evaporation rate at the brim region. In the second assembly step, pinned
TCL will recede owing to the increased assembly concentration accompanied with the evaporation
time. Simultaneously, the non-close-packed assembly is observed at the solid-interface as shown
in Scheme 1c resulting from the receding process of TCL [28,29], corresponding to the red-shift at
Figure 2b. The transformation from close packed to non-closed packed structure can be proved from
cross-section SEM images in the red rectangle shown in Figure 2e. In the third assembly, TCL of the
latex pinned again at the superhydrophilic substrate means that it was close-packed assembly again.
However, owing to the outward transfer of the latex at the assembly I, less latex is left at the core part,
resulting in a decreased periodic number of close-packed structure and blue-shift spectra signal than
the bulk PC, which is consistent with the grass-green core of the eye-pattern. The presumption that
less latex remained at the core part can be confirmed from the low adhesive property on core-part
and high adhesion property on the brim part as shown in Figures S3 and S4. As a result, all of
these contribute to the formation of an eye pattern similar to that of a peacock tail feather on the
superhydrophilic substrate.

Table 1 summarizes the impact of different concentrations of Poly(St-MMA-AA) latex and different
wettability of the top substrate on the as-formed PCs with or without eye pattern. It was found
that suitable concentration is necessary for the formation of PCs with eye pattern. Higher latex
concentration (i.e., 20 wt%) will result in coffee-ring structure, while low latex concentration (i.e.,
0.2 wt%) will lead to discontinuous assembly. Only at the latex concentration of 2 wt% the film with
eye pattern can be obtained. Otherwise, the wettability of the substrate plays an important role on the
formation of eye pattern in the film. When the top substrate is superhydrophilic or hydrophilic, the PC
with eye pattern can be obtained. In contrast, no eye pattern formed when the wettability of the top
substrate is superhydrophobic.
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Table 1. The impact of different concentration of Poly (St-MMA-AA) latex and wettability of the
top substrate.

PS Concentration Substrate Wettablity

20%
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3. Materials and Methods

Preparation of Poly(St-MMA-AA) latex. The monodispersed latex particles of
Poly(St-MMA-AA) were chosen. We prepared it by modified emulusion polymerization with
our previous method [30]. Aqueous solution of sodium dodecyl benzenesulfonate (0–0.072 mM)
and ammonium bicarbonate (6.30 mM), and monomer mixture of methyl methacrylate (MMA,
10.00 mM), acrylic acid (AA, 13.89 mM), and styrene (St, 182.60 mM), were added into a four-necked
flask. Subsequently, the above mixture was stirred at 70 ◦C for 10 h after charging the initiator of
ammonium persulfate. The as-prepared latex particles can be used directly without purification.
Through GPC, molecular weight of the sample found that the value of Mn = 111,036, Mw = 299,265,
the polydispersity is 2.6952. Otherwise, the free-radical emulsion polymerization with the three
monomer was simultaneously added into the system, the as-prepared sample is a random polymer.
The latex concentration can be varied by diluting the solution by deionized water.

Surface Modification for Different Glass Substrate. The hydrophobic treatment glass substrate
was generated by silanizing it with heptadeca-fluorodecyltrimethoxysilane (FAS). Firstly, we put the
substrate and FAS in a decompression environment at room temperature for 0.5 h, and then kept the
vacuum heated at 80 ◦C for 8 h, which yielded our hydrophobic glass surfaces. Superhydrophilic
glass substrates were obtained by oxygen plasma treatment. The relevant operating parameters are as
follows: feed gas is oxygen; gas flow is 40 SCCM; backing vacuum degree (working pressure) is 40 Pa;
discharge power (working power) is 200 W; working time is 10 min. The water contact angle (CA) of
the treated superhydrophilic substrate is 0◦, and the obtained hydrophobic substrate is 130 ◦.

Generation of Colloidal Pattern. A FAS treated hydrophobic glass substrate was first held
horizontally. Then droped Poly(St-MMA-AA) latex with the colloidal suspension’s weight concentration
of 2% was put carefully onto the glass and covered with a plasma treated superhydrophilic glass
substrate, forming a sandwich mode assembly. Keeping the assembly system at 20 ◦C for 12 h, the
Poly(St-MMA-AA) microsphere assemblies containing eyes pattern of peacock tail feathers were
obtained on the hydrophilic glass substrate.

Characterization. Bright-field optical microscopy images were taken by system microscopy
(Olympus BX51, Osaka, Japan). The morphologies of aligned colloidal assemblies were investigated
by SEM (JEOL, JSM-7500F, Tokyo, Japan) at an accelerating voltage of 5.0 kV. The oxygen plasma
instrument (DT-03) is purchased from Suzhou OPS oxygen plasma Technology Co., Ltd (Suzhou,
China). Static CAs were measured on a DataPhysics (Stuttgart, Germany) OCA20 contact-angle system
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at ambient temperature. UV-vis spectra were determined by combining the optic filber spectrum
(NOVA, Idea Optics, Shanghai, China) and the optical microscopy.

4. Conclusions

In conclusion, we fabricated PCs with eye pattern similar to that of peacock tail feathers
by sandwiching the Poly(St-MMA-AA) suspension between the superhydrophilic substrate and
hydrophobic substrate. The eye pattern is a concentric circle, with a grass-green central circle and
yellow or orange circle brim. This can be attributed to the distinct accumulation of micro-structure and
the corresponding different reflection spectrum. This result will provide beneficial understanding for
the self-assembly process of colloidal crystals.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/6/8/99/s1,
Figure S1: Optical microscope images of as-prepared sample, Figure S2: Scheme for the further investigation of
the eye pattern PC, Figure S3: Optical microscope images and SEM images of as-prepared sample, Figure S4:
SEM images of as-prepared eye-pattern sample after being peeling off the substrate, Figure S5: SEM images of
cross-section of as-prepared sample, Figure S6: Reflection UV-vis spectra of different part of the peacock eye
pattern structure.
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