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Abstract: Earthquakes are the result of slip along faults and are due to the decrease of rock frictional
strength (dynamic weakening) with increasing slip and slip rate. Friction experiments simulating the
abrupt accelerations (>>10 m/s2), slip rates (~1 m/s), and normal stresses (>>10 MPa) expected at
the passage of the earthquake rupture along the front of fault patches, measured large fault dynamic
weakening for slip rates larger than a critical velocity of 0.01–0.1 m/s. The dynamic weakening
corresponds to a decrease of the friction coefficient (defined as the ratio of shear stress vs. normal
stress) up to 40%–50% after few millimetres of slip (flash weakening), almost independently of
rock type. The microstructural evolution of the sliding interfaces with slip may yield hints on the
microphysical processes responsible for flash weakening. At the microscopic scale, the frictional
strength results from the interaction of micro- to nano-scale surface irregularities (asperities) which
deform during fault sliding. During flash weakening, the visco-plastic and brittle work on the
asperities results in abrupt frictional heating (flash heating) and grain size reduction associated
with mechano-chemical reactions (e.g., decarbonation in CO2-bearing minerals such as calcite
and dolomite; dehydration in water-bearing minerals such as clays, serpentine, etc.) and phase
transitions (e.g., flash melting in silicate-bearing rocks). However, flash weakening is also associated
with grain size reduction down to the nanoscale. Using focused ion beam scanning and transmission
electron microscopy, we studied the micro-physical mechanisms associated with flash heating and
nanograin formation in carbonate-bearing fault rocks. Experiments were conducted on pre-cut
Carrara marble (99.9% calcite) cylinders using a rotary shear apparatus at conditions relevant to
seismic rupture propagation. Flash heating and weakening in calcite-bearing rocks is associated with
a shock-like stress release due to the migration of fast-moving dislocations and the conversion of
their kinetic energy into heat. From a review of the current natural and experimental observations
we speculate that this mechanism tested for calcite-bearing rocks, is a general mechanism operating
during flash weakening (e.g., also precursory to flash melting in the case of silicate-bearing rocks) for
all fault rock types undergoing fast slip acceleration due to the passage of the seismic rupture front.
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1. Introduction

During an earthquake, at any distance away from the nucleation area, the passage of the rupture
front at a few km/s results in abrupt accelerations and fault slip reaching speeds up to several m/s
within a few milliseconds [1]. The seismic rupture propagates because the local friction coefficient
(µ, ratio of shear stress τ with normal stress σn) of the fault decreases from typical Byerlee’s values
(µ ~ 0.70) down to 0.05 with increasing slip and slip rates upon the activation of a series of weakening
mechanism [2,3]. In the last 20 years, the advent of the so called high-speed rotary shear machines,
allowed us to reproduce deformation conditions that approach those achieved at the rupture front during
seismic slip [4]. From these experiments it became clear that more or less independently of the lithology,
fault rocks undergo profound weakening when a critical slip rate Vw of 0.01–0.1 m/s is exceeded [2,5,6].

So far, the connection between slip rate and weakening has been studied in relation to the
frictional heat production at the asperity scale. Theoretical and experimental investigations [5,7–15]
on silicate-bearing rocks (gabbro, granite, peridotite, etc.) suggested that such frictional heat initiates
at highly stressed microscopic asperities, a process termed flash heating. When the velocity is such
that the contact time of the rubbing asperities is large compared to the time it takes for heat to diffuse
away from the asperities, the temperature can rise considerably resulting in instantaneous asperity
melting [16]. The entire process is defined as flash heating and melting and results in dramatic
weakening of the friction coefficient (>40%) after less than 1 mm of slip. With further slip, the entire
fault surface is completely molten [8,14,15].

Flash weakening was also observed in other rock types, including carbonate-bearing rocks (calcitic
marbles, limestones) which are not prone to melting [17–20]. After flash weakening, progressive
seismic slip triggered decarbonation reactions, CO2 emission and, possibly, the activation of grain size
dependent and crystal plastic processes [18,21–24]. In the case of quartz-rich rocks, especially under
wet conditions and low normal stresses (<5 MPa), weakening at the seismic slip was associated with the
production of lubricating silica gels [25,26]. Importantly, in natural fault zones high temperature fault
products like glasses and quenched melts (called pseudotachylites in the geological literature [27–29]),
vesiculated and recrystallized calcite grains (possibly associated with decarbonation reactions [30–32]),
and silica-gels were found [33]. However, experiments have also shown that the temperature itself is
not the unique cause for fault weakening. Rocks sheared at sub-seismic sliding velocities (<<1 mm/s)
but temperatures spanning the entire range typical of frictionally generated temperatures (bulk
estimates up to 1200 ˝C) typically had relatively large Byerlee’s friction coefficient values (µ = 0.6)
(e.g., [34]). Moreover, observations on natural and experimental faults reported grain size reduction up
to the nanoscale (i.e., [35–37]) and solid state amorphization [38] which could not solely be explained
by an increase in temperature. As a consequence, there must be a relation between temperature rise,
grain size reduction, and slip-rate having profound implications for the mechanics of earthquakes.
While temperature rise and grain size reduction may explain the triggering of mineral decomposition
reactions and phase changes, the relationships between slip-rate, intense grain fragmentation,
temperature rise, and flash weakening are still poorly understood. Insights may come from the
hypothesis that temperature increase is a macroscopic quantity resulting from the radiation emanated
by the rock volume due to electronic vibrations and nano- to micro-scale deformation mediated by
dislocations and crystal defects.

Lattice defects such as linear defect (dislocations) as well as microcracks and grain boundaries
have been previously studied in association with earthquake microphysics [39,40] and are responsible
for reduced rock strength well below the theoretical strength of crystalline materials [41]. Dislocations
moving at velocities as fast as earthquake deformation rates can be responsible for flash heating
and frictional strength reduction as depicted by theoretical models for shock impacts, high-speed
friction [42] and recent high-speed experiments on fault rocks [20].

The study presented here is based on recent experimental results on high-speed friction
experiments on carbonate-bearing rocks to build general constraints on the mechanics of fault flash
weakening [20].
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2. High Speed Friction Experiments in Rock Materials

The experiments discussed here were performed using SHIVA (Slow to High Velocity
Apparatus, [43] HP-HT laboratory of the INGV of Rome, Italy), a high velocity rotary shear
machine designed to simulate natural seismic deformation conditions in the uppermost Earth’ crust
(e.g., slip rates of 1 m/s and normal stress of 10 MPa). We selected Carrara marble (s769, 99% calcite)
as representative of the 20% of sedimentary carbonate-bearing rocks where intra-plate earthquakes
occur. Serpentinite (s735, 90% antigorite with minor magnesite and magnetite [12]) a quite common
hydrated silicate-bearing mantle rock. Microgabbro (s699, plagioclase 35%–45%, clinopyroxene
25%–35%, feldspathoids 10% and titanomagnetite 5%–15%), a common silicate-bearing rock ([13,14])
which constitutes most of the lower oceanic and part of the continental crust. For all experiments
(Figure 1), we used pre-cut hollow rock cylinders with an external and internal diameter of 50 and
30 mm, respectively. The cylinders were sheared under a constant normal stress (10 MPa) and room
humidity conditions by imposing a trapezoidal velocity function with an acceleration and deceleration
ramp of 6.5 to 65 m/s2. All the experiments in Figure 1 show (1) an initial stage of strengthening until
the achievement of an ultimate and reproducible peak in shear stress (which equals the peak in friction
coefficient of 0.8 for serpentinite, 0.7 for micrograbbro, 0.65 for Carrara marble for a constant normal
load) followed by (2) a pronounced weakening (~40%) after only 5 mm of slip. Independently of rock
lithology, the three rock types showed a pronounced weakening at Vw ~ 0.1 m/s.
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Figure 1. Frictional evolution of rocks in high velocity experiments simulating the passage of the
rupture front at point of a fault during an earthquake. The experiments were performed with the rotary
shear machine SHIVA. Samples were sheared at ambient conditions under a constant normal stress of
σn = 10 MPa and at seismic slip rates (>1 m/s). (a) Friction coefficient evolution with slip of cohesive
Carrara marble (99.9% calcite, s769), microgabbro (main mineral plagioclase, s699), and serpentinite
(main mineral antigorite, s735) resulting from high-velocity friction experiments. The slip rate of the
applied velocity ramp (dashed lines) is on the right y-axis; (b) Friction evolution with slip rate for the
same experiments reported in Figure 1a. The critical velocity Vw at the onset of the large dynamic
weakening was 0.103 ˘ 0.03 m/s.
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In the case of Carrara marble, coeval to the weakening, a substantial release of CO2 (8% increase
with respect to the atmospheric concentration) was measured with a quadrupole mass spectrometer
after the sample was slid for 1.5 mm and 5 mm. The Carrara marble samples from experiments
stopped after 1.5 mm, 5 mm and 50 mm of slip were recovered for microstructural analysis [20].
Microstructural investigations conducted with a scanning electron microscope (SEM) and transmission
electron microscope (TEM) on and just beneath the slip surface of the aforementioned samples
(Figure 2), suggest an intimate correlation between the evolution of the rock’s microstructure and the
fault weakening. TEM images (Figure 2a) of electron-transparent focused ion beam (FIB) SEM foils of
the experimental fault just beneath the slip surface at 1.5 mm of slip revealed dislocations patterns
similar to those in minerals recovered from impact craters that underwent shock metamorphism
(Figure 2b, [44]). Inter-cleavage crystal domains exhibit intense mosaicism, alternating between areas
that are nearly dislocation free to those that exhibit a high dislocation density. Micro-fractures are
closely spaced (200 nm apart). Selected area electron diffraction (SAED, inset in Figure 2b) indicates that
high dislocation density areas are polycrystalline, i.e., formed by individual nanograins. Nanograins
have a grain size of 5–100 nm and are dislocation free (Figure 2c). Relevant to this analysis is the
evidence of decarbonation reactions (CO2 detected by mass spectrometry: 8% after 5 mm of slip,
16% after 50 mm of slip) and the deposition of amorphous carbon (Figure 2d). Amorphous carbon
was identified by energy dispersive X-ray spectroscopy both in the porous network just beneath and
especially on the slip surface after 5 mm of slip (P1 in Figure 2d) but also after only 1.5 mm of slip
(see [20] for details). The deposition of amorphous carbon is associated with the breakdown of CO2

released by the calcite grains due to thermal decomposition, analogous to observed reactions occurring
in the Earth interior under high pressures (more than 30 GPa) and temperature (more than 1500 ˝C)
conditions, respectively [45].
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Figure 2. Microstructural investigation of deformed cohesive Carrara marble samples. (a) Rock volumes
immediately below slip surfaces after 1.5 (a–c) mm and 5 mm of displacement (d). All images are
from FIB-SEM specimens cut perpendicular to the slip surface and perpendicular (a–c) and parallel
(d) to the slip direction. The slip surface is on top, coated with Platinum. (b) Inter-cleavage crystal
domains exhibit complex TEM diffraction contrast due to a high density of crystal defects, i.e.,
dislocations. High density of dislocations domains remain either crystallographically coherent or
develop a polycrystalline (see SAED pattern) mosaicism nanostructure. (c) Numerous nanograins
develop within the fracture volumes (bright-field TEM images); (c) Deposition of amorphous carbon at
5 mm of slip. P1 is amorphous Carbon from TEM-EDS analyses. P2 is calcite.
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3. The Macroscopic Flash Heating Model

The flash heating model predicts that in silicate-bearing rocks, the critical velocity Vw is related
to the size (~diameter) of the contact asperities d, the melting temperature Tw, and the contact shear
strength τc [2,46]:

Vw “
´παth

d

¯

»

–

ρCp

´

Tw ´ Tf

¯

τc

fi

fl

2

(1)

where Tf is the ambient temperature, αth the thermal diffusivity, ρ the rock density, and Cp the specific
heat capacity (Table 1).

Table 1. Thermal and physical properties from Schön [47] with M: Melnikov et al. [48], C: Cermak and
Rybach, [49]; B: Broz et al. [50]; Be = Beeler [9]. K: Koholi et al. [51].

Thermal and Physical
Parameters Calcite Antigorite Plagioclase

αth (m2/s)*10´6 1.5–1.74 1–1.75 0.9
Cp (kJ¨ kg´1¨ K´1) 0.8–0.83 (M) 0.65 (M) 1.01 (C)
ρ (kg¨ m´3)*103 2.7 2.54 2.95
Λ (Wm´1¨ K´1) 3.25–3.9 (M) 1.8–2.9 (M) 2.63 (C)

G (GPa) 35 40 34
H (GPa) 2.21 (B) 4 (K) 6.24 (Be)
b (nm) 0.49 0.53 0.5 (diopside)

Grain size Fine grained,
average 100 µm

Very Fined Grained,
average 10 µm

Coarse grained,
average 3 mm

Given the thermal parameters presented in Table 1, for d = 10 µm and a minimum and maximum
value for τc (GPa) estimated as τc = 0.5 H (indentation hardness) and τc = 0.1 G (shear modulus)
respectively [52], it is possible to determine from Equation (1) a range of temperatures associated with
Vw (Figure 3). The diagram reports—as red dashed lines—the temperature of 800 ˝C for breakdown
of calcite (CaCO3 Ñ CaO + CO2, calcite being the main constituent of Carrara marble), of 1200 ˝C
for melting of plagioclase (main constituent of microgabbro, but clinopyroxene has a quite similar
melting temperature), of 500 ˝C for breakdown of antigorite (dehydration reaction to talc and olivine:
Mg3Si2O5(OH)4 Ñ Mg3Si4O10(OH)2 + Mg2SiO4 + H2O, antigorite being the main constituent of
the serpentinite).
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Figure 3. Temperature estimation at the asperities as a function of the ultimate shear strength and
velocity resulting from the flash heating model (Equation (1)) using the thermal parameters in Table 1.
From left to right, case for calcite (most abundant mineral in Carrara marble), antigorite (most abundant
mineral in the tested serpentinite), and plagioclase (most abundant mineral in microgabbro).

The results of the numerical simulation in Figure 3 are consistent with weakening at Vw

greater than few cm/s where the temperatures at the asperity contacts reach the conditions for
the triggering of chemical reactions and phase transitions for the three lithologies examined here.
Decomposition reactions (e.g., formation of amorphous carbon) and phase transitions (e.g., melting)
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may contribute to lubrication at the asperity scale. The dependency of Vw on material properties, e.g.,
the contact stress (also of the newly formed minerals), and on microstructural characteristics, e.g.,
the grain size, show the relevance of mechano-chemical reactions in fault weakening.

4. Moving Dislocations at the Ductile-Brittle Transition

The deformation of crystalline solids is often accommodated by the movement of dislocations
and creation of new ones. The concept of dislocations in a solid was first mechanistic connected to
plasticity in the early 1930s to explain the ease of solids to flow with respect to theoretical predictions,
i.e., [53]. The nature and theory of dislocations and their connection to Earth materials is well discussed
in a number of previous works [41,54–56]. Under an applied stress, pre-existing or newly formed
dislocations move inside the crystal lattice until encountering an obstacle. When the obstacle is a grain
boundary, a large atomic mismatch opposes a stress field to dislocation motion. This repulsive stress,
including phonon scattering, impurity drag, and lattice periodicity (e.g., the Peierls potential) acts as
an energetic barrier. The energy barrier can be overcome by thermal fluctuations, or when a number of
dislocations pile-up to generate a collective repulsive stress field (e.g., [57]). The rate at which obstacles
are overcome by thermal fluctuations depends on the vibration frequency of a dislocation fd, which in
turn depends on the length of the dislocation. Thus, the strength of the material and its viscous-plastic
flow depends on how easily dislocations are formed and destroyed, on the amount of energy required to
move them in the lattice, and on the time needed to overcome the energy barrier by thermal fluctuations.

As the strain rate increases, there is less time available for the moving dislocations to overcome
the energetic barrier until, above a critical strain rate

.
γ
˚, thermal activation is rendered ineffective.

At high strain rates stress relaxation—occurring by the collective motion of discrete newly formed or
pre-existing dislocations—is inhibited and an effective applied stress equal to the full obstacle strength
has to be provided to overcome the obstacle [58,59]. As a consequence, dislocations pile-up in arrays
distributed along the microstructural obstacle, as schematized in Figure 4a, where the stress increases
until it reaches the yield point (see also Section 7). The onset of brittle failure (and dynamic weakening)
occurs when the stress is instantaneously released resulting in catastrophic dislocation avalanches
(Figure 4b, [60,61]). These avalanches result in an ultrafast dissipation of dislocation kinetic energy
into heat for generation of so-called "hot-spots", the emission of newly formed dislocations and fast
stress release [58–62]. The ductile failure behavior typical of low strain rates turns into a brittle failure
under highly dynamic conditions [63].
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Figure 4. Evolution of microstructures and shear stress with slip. At slip initiation (panel a),
the asperities are strained: new dislocations are emitted and pile up at microstructural obstacles
(e.g., cleavage planes, grain boundaries). With progressive slip (and strain, panel b) the stress exerted
by the piled-up dislocations overcomes the yield strength of the obstacle and the dislocations are
released in “avalanches” causing brittle failure, formation of nano-grains, and temperature increase
(flash heating) [20].
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5. Fast-Moving Dislocations Trigger Flash Heating in Fault Rocks

The consequence of fast dislocation motion is to separate highly compressed from uncompressed
regions inducing grain fragmentation and mosaicism within the lattice as observed in Carrara marble
(Figure 2b) and in the case of impact structures [44]. The separation between physical parameters in
front and behind the so called shock-front represents a violent discontinuity in all state parameters like
temperature, density, pressure, and internal energy [64,65], which is accomplished by an instantaneous
reorganization of the internal strain. Moreover, a vast amount of kinetic motion is dissipated into heat
from dislocation avalanches in an extremely narrow (~20–30 Burgers vectors in thickness, [57]) shear
zone and in a time shorter than 100 ms. The extreme localization and the short time causes a large and
adiabatic (the heat is produced faster than it is conducted away via diffusion) temperature increase
(several hundred ˝C) at the asperity contacts. The abrupt temperature rise leads to decarbonation
reactions and deposition of amorphous carbon in the case of the experiments performed on Carrara
marble (Figure 2d, see also [20]).

The fast-moving dislocation model thus explains a number of experimental observations
occurring at the onset of dynamic weakening in particular the abrupt temperature increase leading to
decarbonation reactions in calcite-bearing rocks for instance, phase transformations in silicate-bearing
rocks (possibly melting), but also the grain size reduction to the nanoscale [20]. Moreover, as discussed
below, given the existence of a strain rate threshold for the inhibition of thermal relaxation by
moving dislocations, microphysical processes governed by dislocation motion could also explain the
velocity threshold observed for dynamic weakening in experiments performed on different lithologies,
including microgabbro, serpentinite, and Carrara marble as shown in Figure 1 [3,20]).

6. Prediction of Vw and T at the Asperity Scale Based on the Fast-Moving Dislocation Model

Assuming that the fast-moving dislocation model is applicable to fault rocks under seismic
deformation conditions, it is possible to estimate the critical strain rate above which a thermal instability
should occur. An estimate of the critical strain rate is given by setting the rate at which moving
dislocations overcome the Peierls hill which is equal to the vibrational frequency of the dislocation fd:

.
γ
˚
“

V
h
“

fdρdisb2

4
(2)

where V is the applied velocity and h the thickness of the shear zone, with the assumption that only
25% of the total dislocations are moving under the applied stress field. The fd in Equation (2) is [66]:

fd “
1

dx

b

G{ t2π p1´ νq ρu (3)

where dx is the dislocation length, G the shear modulus, ν the Poisson ratio, and ρ the mineral density.
Using the properties for calcite (Table 1) and for a minimum dislocation length dx = b, where b is the
Burgers vector, the expected values of fd are „1011 s´1 in agreement with previous estimates [67].
Though there is not large variation in fd between minerals, the dislocation density ρdis may vary
considerably (e.g., [68,69]). The critical strain rate was thus determined from Equation (2) using
a range of ρdis = 1010–1014 m´2, as shown in Figure 5 for calcite, serpentinite, and plagioclase (based on
data in Table 1). From Equation (2), the critical strain rate is

.
γ
˚ ~ 103–105 s´1 in the case of calcite and,

given a homogeneously distributed strain in a slipping zone of thickness h = [0.5–10] µm, V* =
.
γ
˚h

is approximatively in the range of 0.05–1 ms´1. The lower estimate of V* is compatible with the Vw

measured in our experiments performed on calcite (~0.10 m/s) and with Vw resulting from experiments
on other rocks, including silicate-bearing ones (e.g., Figure 1b; [5]). The temperature rise inside the
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lattice can be estimated considering the work done by n dislocations moving at velocity νdis under the
shear stress σ [60]:

∆T ď

$

’

&

’

%

ks d
1
2 vdis

16πK ln
´

Λ
λ

¯

for Λ ą λ

ks d1{2vdis
16πK

´

Λ
λ

¯1{2
for Λ ď λ

(4)

where λ is the mean spacing of the dislocations, Λ “ 2K
ν , ks “

π G b
4a

a

1{λ is the microstructural
shear stress intensity factor at the pile-up, d is the average grain size, a = 2(1 ´ v)(2 ´ v) with v the
Poisson’s ratio, vdis is the average velocity of dislocations inside the grain. It worth noting that ks

?d
in Equation (4) introduces the dependency of the critical shear stress on the grain size, as discussed in
Section 7. Using Equation (4) with the thermal parameters listed in Table 1 for λ “ b, v = 0.3 and
d = 0.3 mm, ∆T can be of 104 ˝C already after only 1.5 mm of slip.Crystals 2016, 6, 83  8 of 13 
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Figure 5. The fast moving dislocation model predicts the existence of a critical strain rate that
determines the transition from ductile to brittle behavior. The critical strain rate depends on the
dislocation velocity. The box indicates the region where dynamic weakening was observed in fault
rocks deformed at seismic slip rates. The slip rate is calculated from the strain rate assuming a slipping
zone deformation thickness of 0.5 µm, consistent with the microstructural observations in the case of
experiments performed on Carrara marble, Figure 2a).

7. The Effect of Rock Texture on the Mechanism of Flash Heating

Generation and pile-up of mobile dislocations inside individual grains is controlled by the
structure of the boundaries of the grains. Grain boundaries adjoin grains of different orientation so
that more energy is required for a dislocation to pass into another grain. If dislocation motion is
hindered, the onset of plasticity is inhibited resulting in an increase in yield strength. For this reason,
pile-ups and brittle failure can initiate in a variety of ways depending on the combination of preferred
planes where dislocations move (slip planes), grain size, and dislocation density.

The dislocation density and the grain size are interlaced by the size of a dislocation, because only
a limited number of dislocations can fit within a submicron-sized crystal. The number of dislocations
at the pile-up is relevant because dislocations generate a repulsive stress that reduces the energy barrier
decreasing the amount of stress required to overcome the obstacle (the yield strength). Thus, the effect
of a small grain size, which results in a low dislocation density, is to increase the yield strength at
the obstacle. This behavior is ratified by the Hall-Petch relationship which states that dislocations
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blocked at the strongest obstacle will increase the stress at the head of the pile-up till the yielding
point (τp):

τp “ τ0 ` ky{
?d (5)

where τ0 is the flow stress expected at a hypothetical infinite grain size d and ky is a constant (i.e.,
the strengthening coefficient) derived empirically for each material, also known as the Hall-Petch
parameter [70]. By rearranging Equation (1), the weakening temperature is:

Tw “ Tf `

˜

1
ρc
?

kπ

¸

τc
?

d ˚
a

Vw (6)

where the rate of heat generation on the sliding interfaces is essentially the product of the sliding
velocity times a measure of the shear strength. From the comparison of Equation (5) with Equation (6),
and assuming τc = τp ´ τ0, it results that the heat production is a function of the grain size that
impedes dislocation motion. If Vw = V* =

.
γ
˚h, Equation (6) can be interpreted as a measure of the heat

produced by existing and newly generated dislocations moving under the applied stress field against
the strongest obstacles.

Another important textural control on either hindering or facilitating dislocation motion is the
orientation of the slip planes with respect to the applied stress field. In case of polycrystalline materials
(i.e., microgabbro), the orientation of individual mineral grain boundaries can hinder dislocation
motion whereas the existence of preferred crystallographic planes (i.e., cleavages in calcite) can help
reducing the energy barrier at the pileup and in turn, the yield strength. The intervention of cleavage
planes in the deformation of Carrara marble at short slips is shown by the river lines in Figure 6a [71,72]
which are steps on the fractured surface between cleavage planes (Figure 6b). When a cleavage crack
intersects a dislocation a step, a Burgers vector one unit high, is generated in the surface. Depending on
the dislocation density and on the magnitude and orientation of the stress field the crack can split
up into arrays of individual cracks as shown in inset of Figure 6b. The importance of cleavages and
textural properties in controlling the brittle behavior of rocks was already recognized for dolomite [73],
calcite [74], and feldspar [75]. The presence of exposed cleavage surfaces suggests that the initiation
of weakening is also controlled by the amount of energy which can be converted into surface energy
during brittle failure along cleavage planes.
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Figure 6. Exposed cleaved surfaces from SEM investigations on the slip surface of Carrara marble
after 1.5 mm of slip. (a) River lines prevalent in the vicinity of the slip surface along cleavage, see also
Figure 2b; (b) steps on the fracture surface between cleavage on parallel planes often indicated as
resulting from intersection between cleavage fractures and moving dislocations [72]. The detail in the
insert shows the splitting of a crack to form steps onto separate surfaces expanding past each other and
then curving under the effect of mode II or mode III component in the stress field [71].
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8. Implications for Earthquake Mechanics

The fast-moving dislocation model is in agreement with a number of natural and experimental
observations of dynamic weakening of fault rock materials and may constitute the physical foundation
of flash heating during frictional sliding. Though microstructural investigations are needed for feldspar-
and serpentine-bearing rocks, we suggest the occurrence of a similar micro-mechanism operating at
the onset of dynamic weakening during earthquakes in fault rocks.

Temperature-dependent deformation of polycrystalline materials can occur mainly by
processes involving diffusional creep (stress-directed diffusion of vacancies, e.g., Coble creep,
Nabarro-Herring creep, and pressure solution) and dislocation motion (dislocation creep and glide).
The former tends to be the predominant deformation mode at lower stress level; both are typical
deformation mechanisms of the viscous-plastic regime at crustal and mantle sub-seismic strain rates
(10´14–10´10 s´1, e.g., [76–78] and references therein). Little is known about micromechanics associated
with the high velocity side (101–104 s´1 or seismic conditions) of the natural strain rate spectrum [79].
Our observations seem to suggest that the high velocity spectrum is likely dominated by brittle
mechanisms over ductile mechanisms. The existence of a critical velocity for dynamic weakening
and the fact that this critical velocity matches the prediction of a critical strain rate by a fast-moving
dislocation model proposed here, seems to suggest that the transition to the brittle deformation
mechanism is regulated by dislocation motion. In this view, dislocation motion gives continuity and
generality to the frictional behavior of fault rock materials over the entire slip velocity spectrum from
slow, sub-seismic to high seismic slip rates. The continuity is useful for earthquake modelling purposes
where constitutive laws for frictional behavior need to account for the transition from the higher
frictional resistance at sub-seismic slip rates towards the large dynamic weakening at seismic slip rates.

However, the strong relation between fast moving dislocations and fault weakening has another
important consequence on earthquake mechanics. The deformation near a crack tip occurs over
a region known as the plastic process zone (e.g., [78]). The process zone was described in terms
of dislocation generation and motion at high strain rates [80]. It was found that the extent of the
process zone decreased with increasing crack velocity indicating that the faster the material is stressed,
the more brittle its behavior is. The dependency of the process zone on the microstructural evolution
has two major implications: (1) part of the energy required to form new surface (and to propagate the
rupture) comes from the strain energy stored within crystal dislocations and thus can be quantified;
(2) the characteristic length scale of the constitutive laws in fracture mechanics depends on the loading
rate, as a consequence of fast dislocation motion, and on the amount of energy stored within the crystal
free for conversion in new surface energy. The balance between the available strain energy and the
energy needed to propagate the slip (fracture energy) regulates seismic rupture on faults, controlling
the earthquake magnitude and the amount of energy (seismic waves) radiated to the Earth’s surface.

9. Conclusions

Earthquake mechanics is controlled by physical process taking place also at the nanoscale,
though the underlying mechanisms are not well understood and may change over length scale
and time (e.g., transition from flash melting to bulk melting). In this study we summarized recent
results from high velocity friction experiments that simulate the passage of a rupture front on a point
of a fault during earthquakes. We identify fast-moving dislocations as a possible micro-physical
mechanism responsible for the high temperature rise associated with seismic slip and for the intense
grain size reduction to the nanoscale in natural and experimental faults. We suggest that the
fast-moving dislocation model is in agreement with flash-heating which was introduced in earthquake
mechanics as a macro-physical description for fault weakening. Our investigations suggest that
fast-moving dislocations and associated physico-chemical rock alterations may significantly contribute
to fault weakening during earthquakes. However, further experiments and detailed microstructural
investigations are needed.
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