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Abstract: Phononic crystals can be used to control elastic waves due to their frequency bands. This
paper analyzes the passive and active control as well as the dispersion properties of longitudinal
waves in rod-type piezoelectric phononic crystals over large frequency ranges. Based on the Love
rod theory for modeling the longitudinal wave motions in the constituent rods and the method
of reverberation-ray matrix (MRRM) for deriving the member transfer matrices of the constituent
rods, a modified transfer matrix method (MTMM) is proposed for the analysis of dispersion curves
by combining with the Floquet–Bloch principle and for the calculation of transmission spectra.
Numerical examples are provided to validate the proposed MTMM for analyzing the band structures
in both low and high frequency ranges. The passive control of longitudinal-wave band structures is
studied by discussing the influences of the electrode’s thickness, the Poisson’s effect and the elastic
rod inserts in the unit cell. The influences of electrical boundaries (including electric-open, applied
electric capacity, electric-short and applied feedback control conditions) on the band structures are
investigated to illustrate the active control scheme. From the calculated comprehensive frequency
spectra over a large frequency range, the dispersion properties of the characteristic longitudinal
waves in rod-type piezoelectric phononic crystals are summarized.

Keywords: piezoelectric phononic crystals; periodic composite rods; longitudinal waves; modified
transfer matrix method; method of reverberation-ray matrix; frequency spectra; band structures; high
frequency analysis; poisson’s effect

1. Introduction

Phononic crystal, which refers to natural or artificial materials characterized by periodic
modulations of elastic properties, was put forward about two decades ago [1]. Since then, it has
been widely investigated for applications based on controlling elastic waves [2], because it possesses
frequency bands.

To control longitudinal waves, rod-type phononic crystals have been proposed. For example,
Asiri et al. [3] and Asiri [4] devised periodic passive struts and mounts, which are essentially
rod-type elastic phononic crystals, to isolate undesirable longitudinal vibrations in the helicopters
and automobiles, respectively. The investigations of longitudinal waves in rod-type elastic phononic
crystals up to 2014 were reviewed in Guo and Fang [5]. Unfortunately, these periodic elastic rods can
only control the propagation of longitudinal waves in a passive mode. That is, their band structures
are totally fixed as long as the geometrical, material and boundary configurations of the unit cells
are determined. The frequency bands may not always fit to the external excitations. Therefore,
rod-type phononic crystals containing smart material components have been presented in order
to control the longitudinal waves in an active mode. Their frequency bands can be adjusted by
tuning the temperature [6,7], magnetic [8] or electric [9–26] field to suit the external excitations.
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Among these smart periodic rods, the periodic piezoelectric rods [9–26] have particularly been
paid more attention, because the piezoelectric materials are widely used and the electric field is
comparatively easier to control. Thus far, two kinds of rod-type piezoelectric phononic crystals
have been presented to actively control longitudinal-wave bands via electromechanical coupling.
One kind is formed by periodically bonding shunted piezoelectric patches on the host rod, and the
other is shaped through periodically arranging the piezoelectric constituent rods [9]. The attenuation
of longitudinal vibrations/waves in rods with periodic shunted piezoelectric patches have been
studied by Thorp et al. [10], Chen et al. [11] and Lossouarn et al. [12,13] using the transfer matrix
method (TMM). Here, we focus on the longitudinal vibrations/waves in periodically arranged
piezoelectric rods. After Baz [9] proposed the seminal concept about active control of periodic
structures, Singh et al. [14] illustrated the effectiveness of the periodic rod with piezoelectric actuators
by analyzing the frequency bands and responses with the TMM. Asiri et al. [15] and Asiri [16,17]
predicted the attenuation of longitudinal waves in periodic binary piezoelectric-elastic composite
rods using the combination of spectral element method and TMM, and validated their analysis by
experiment. Using the same TMM, Li et al. [18] and Wang et al. [19] analyzed the localization of
frequency bands in randomly disordered periodic binary piezoelectric-elastic rods without and with
initial stress, respectively. Recently, Degraeve et al. [20] proposed to use periodic electrical boundary
conditions realized by periodically embedded electrodes to tune Bragg bands in uniform homogeneous
piezoelectric rods. This kind of electrical charge Bragg band gap in cases of electric-open, external
capacitances and electric-short boundary conditions was studied by an analytical method (AM),
finite element method (FEM) and experimental measurements. The model of Degraeve et al. [20]
was extended by Kutsenko et al. [21] to consider the negative capacitance and by Ponge et al. [22]
to devise a tunable Fabry–Perot resonator whose performance was validated by TMM and FEM
analysis as well as experiment. Degraeve et al. [23] also extended their previous model by considering
the different electrodes in the unit cell with different electrical boundaries and studied the electrical
charge Bragg bands of the new phononic crystal with a semi-analytical method and experiment. The
extensions to a model with elastic rod insert in the unit cell and with negative external capacitance
were conducted in Reference [24] using the previous AM, FEM and experiment. Kutsenko et al. [25]
further studied the band structures of more general rod-type piezoelectric phononic crystals where
the unit cell consists of several piezoelectric or elastic-piezoelectric rods by TMM. The effective
constitutive parameters were also derived. Vasilenko and Rogacheva [26] provided the similar effective
modulus and the electroelastic state equations of periodic piezoelectric and adhesive rods by the
homogenization method.

Although the above-mentioned studies make the longitudinal-wave band structures of
periodically arranged piezoelectric or elastic-piezoelectric rods relatively clear, to the authors’
knowledge, pending problems still exist in four aspects: (1) Few studies have analyzed the longitudinal-
wave bands in the high frequency range. The first reason is that the analytical method, like the
conventional TMM, is proposed on the basis of classical rod theory valid only within pretty low
frequency range. The second one is that the numerical method, like the versatile FEM, may be
inefficient for the high frequency analysis since large amount of elements and very small time step
are required in this case. (2) The mechanical vibration of the electrodes and the Poisson’s effect of the
constituent rods are neglected without understanding their influences. The influence of the elastic rod
inserts on the band structures is not clear enough. (3) Two electrical control manners in general have
been proposed, i.e., setting the external voltage through the feedback control gain [14–17] and tuning
the external electric capacity [18–26], since the electric-open and electric-short conditions correspond
to zero and infinity electric capacities, respectively. The connection and difference of the influences
of the applied feedback control and of the applied electric capacity on the frequency bands are not
known. (4) The wave dispersion property has been solely represented by the frequency–wavenumber
dispersion curve. However, other forms of dispersion curves such as the frequency–wavelength and
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frequency–phase velocity spectra are also vital to convey wave dispersion properties in different
perspectives and engineering practices [5].

Aiming at solving the above four pending problems, this paper presents a modified transfer matrix
method (MTMM) to analyze the longitudinal waves in rod-type piezoelectric phononic crystals, whose
unit cell consists of any number of piezoelectric or elastic-piezoelectric rods with electrodes covered
on the ends of piezoelectric rods. The proposed MTMM combines the Love rod theory [27,28], [29]
(pp. 139–142), [30], the method of reverberation-ray matrix (MRRM) [5] and the transfer matrix
method (TMM) [14–19,21,22,25] to analyze the dispersion curves by considering the Floquet–Bloch
theorem [31,32] and to calculate the transmission spectra. The Love rod theory is adopted to model
the longitudinal wave motions in the piezoelectric, elastic and electrode constituent rods of the unit
cell. The MRRM is utilized to derive the member transfer matrices of the constituent rods. Therefore,
the proposed MTMM is effective over a large frequency range as long as the Love rod theory is
valid, as illustrated by the numerical examples. The influences of the electrode’s thickness, the rods’
cross-sectional dimension, the elastic rod inserts and the applied electric capacity and the applied
feedback control on the band structures are studied numerically. All the frequency-related dispersion
curves are calculated to show comprehensively the dispersion properties of characteristic longitudinal
waves in rod-type piezoelectric phononic crystals. This paper is organized as follows. Section 2 derives
the formulation of the proposed MTMM. Numerical examples are given in Section 3 to validate the
MTMM, to demonstrate the influences of the electrode’s thickness, the rods’ cross-sectional dimension
and the elastic rod inserts for the passive control, to illustrate the influences of the applied electric
capacity and feedback control for the active control, and to indicate all the frequency-related dispersion
curves in both low and high frequency ranges. Section 4 draws conclusions.

2. Analysis of Longitudinal Waves in Rod-Type Piezoelectric Phononic Crystals with the MTMM

2.1. Basic Model

Consider a periodic piezoelectric composite rod with its unit cell consisting of alternate
homogeneous piezoelectric and elastic rods as well as electrodes between them. The schematic
of the unit cell is shown in Figure 1, where m members and N joints (N “ m` 1) are denoted from
left to right by 1, 2, ¨ ¨ ¨ , i, j, ¨ ¨ ¨ , pm´ 1q, m and 1, 2, ¨ ¨ ¨ , I, J, K, ¨ ¨ ¨ , pN ´ 1q, N, respectively. All of the
components are assumed to be rigidly connected. The piezoelectric rods are polarized along the
length direction. The electrodes are covered at the ends of the piezoelectric rods, to which any of the
four electrical boundaries (electric-open, applied electric capacity, electric-short and applied feedback
control conditions) is imposed. Therefore, the longitudinal effect of the piezoelectric rods is utilized.
Figure 1 also shows the pertinent physical and geometrical parameters of some typical constituent
rods, where the Voigt notation (compressed matrix notation) is used for reducing the orders [33].

cpjqpq , epjqrq , α
pjq
rs , ν

pjq
rs (p, q “ 1, 2, 3, 4, 5, 6, r, s “ 1, 2, 3) and ρpjq are the elastic constants, the piezoelectric

constants, the dielectric constants, the Poisson’s ratios and the material density of the piezoelectric

rod j, respectively; Apjq, Ipjqy , Ipjqz and lpjq are the cross-sectional area, second moment of inertia about y

and z axis and the rod length, respectively; cphqpq , ν
phq
rs , ρphq, Aphq, Iphqy , Iphqz and lphq are the corresponding

parameters of the elastic rod h; and cpiqpq , ν
piq
rs , ρpiq, Apiq, Ipiqy , Ipiqz and lpiq are those of the electrode i.
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2.2. Coordinate Systems and Physical Variables

For the convenience of system and joint description, a global coordinates pX, Y, Zq is set up as
shown in Figure 2a. To facilitate the member description, a pair of dual local coordinates px JK, yJK, zJKq

and pxKJ , yKJ , zKJq is set up for any typical member j (also called JK or KJ in the pertaining coordinates),
as also indicated in Figure 2a.
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To make the later derivation clear, hereafter we use u, v and w to express the displacements of
a particle along x, y and z axes, respectively. fx, fy and fz are used to represent the specified forces
along x, y and z axes of a surface particle, respectively. The resulting axial force at a cross-section of
the constituent rod is denoted by N. uX and pX are the displacement and resulting external force at
the unit cell ends along X axis, respectively. For the electrical variables: ϕ is the electric potential at
a cross-section of the constituent rod; q is the electric charge density per surface area; and the total
electric charge on a cross-section is denoted by Q.

In general, the axial displacements and forces are the fundamental physical variables to analyze
the system, which are shown in Figure 2b. uXL (uXR) and pXL (pXR) denote the axial displacement and
force of joint 1 (N), respectively, which are described in coordinates pX, Y, Zq. The axial displacement
and force of a typical member j at cross-section x JK in px JK, yJK, zJKq are denoted by uJKpx JKq and
N JKpx JKq, respectively. Those physical variables can also be described in pxKJ , yKJ , zKJq as uKJpxKJq

and NKJpxKJq, respectively. For a piezoelectric constituent rod, say rod j, the electric field intensity
and displacement as vector quantities as well as the electric potential and charge as scalar quantities
are needed to be considered in the analysis. They are represented as EJK

x px JKq, D JK
x px JKq, ϕJKpx JKq

and QJKpx JKq in px JK, yJK, zJKq as well as EKJ
x pxKJq, DKJ

x pxKJq, ϕKJpxKJq and QKJpxKJq in pxKJ , yKJ , zKJq,
respectively, as also given in Figure 2b. It should be noted that all the physical variables are deemed as
positive when they are along the positive direction of the pertaining coordinate. During the following
analysis, the generalized displacements and forces are expressed by the wave amplitudes, which are
depicted in Figure 2c.

2.3. Governing Equations and Wave Solutions of a Constituent Rod

Based on the basic idea of Love rod theory [27,28], [29] (pp. 139–142), [30], which considers the
Poisson’s effect, the time-domain equations governing the longitudinal wave motions in any of the
constituent rods described in its dual local coordinates can be derived by Hamilton principle [29]
(pp. 126–131), [34]. The assumptions of the Love rod with considering the Poisson’s effect include:
(1) The axial displacement (electric potential) is uniformly distributed on any cross-section of the rod.
Hence, the axial displacement (electric potential) at the centroid is used to represent that of the whole
cross-section. (2) The two lateral displacements are linearly distributed on the cross-section. They are
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zero at the centroid and alter linearly with the corresponding coordinates. The proportional coefficients
are the multiplication of the corresponding Poisson’s ratios with the axial strain of that cross-section.
Apply these assumptions and the three-dimensional elasticity [33,34], [35] (pp. 57–60), the derivation
for a piezoelectric rod is detailed in Appendix A, and that for an elastic rod which representing any of
the elastic rods and the electrodes is briefed in Appendix B.

For any piezoelectric rod in the unit cell, say member j, applying Fourier transform [36] (p. 725) to
the time-domain governing equations and constitutive relations, as given in Equations (A12) and (A11),
leads to the frequency-domain counterparts as

”

pc` e2{αqA´ ρpν2
12 Iz ` ν2

13 Iyqω
2
ı d2û

dx2 ` ρAω2û “ 0 (1)

N̂ “

”

cA´ ρpν2
12 Iz ` ν2

13 Iyqω
2
ı dû

dx
` eA

dϕ̂

dx
, Q̂ “ ´eA

dû
dx
` αA

dϕ̂

dx
(2)

where ω is the circular frequency and a caret over a physical variable signifies the corresponding
quantity in the frequency domain here and after. û (N̂) and ϕ̂ (Q̂) are the axial displacement (force) and
the electric potential (charge) at any cross-section x, respectively. c, e and α, as given in Appendix A,
are the equivalent elastic, piezoelectric and dielectric constants, respectively; ρ is the material density;
ν12 (ν13) and Iy (Iz) are the Poisson’s ratio and the cross-sectional moment of inertia with respect to
y (z) axis, respectively; and A is the cross-sectional area. When Q̂ “ ´D̂x A is deemed as the scalar
electric charge at the initial end of the piezoelectric rod with D̂x the uniform electric displacement,
the second formula of Equation (2) leads to

dϕ̂
dx “

e
α

dû
dx `

Q̂
αA , V̂ “ ϕ̂plq ´ ϕ̂p0q “

r l
0

dϕ̂
dx dx “ e

α rûplq ´ ûp0qs ´
r l

0
D̂x
α dx “ e

α rûplq ´ ûp0qs ` Q̂l
αA (3)

where V̂ is the electric potential difference (electric voltage) between the two ends of the piezoelectric
rod. Consider the associated mathematical formulas to the four electric boundary conditions, as shown
in Table 1, the expressions of V̂, Q̂ and dϕ̂{dx as formulas of mechanical variables can be obtained
from Equation (3), which are also provided in Table 1. The specified electrical coefficients are external
capacitance C and control gain Kg for the applied electric capacity and the applied feedback control
conditions, respectively, while the electric-open and the electric-short conditions do not have specified
electrical coefficient.

According to the theory of ordinary differential equations [36] (p. 503), the solution to the spectral
axial displacement can be obtained directly from Equation (1). Substituting the above expressions of
dϕ̂{dx into the first formula of Equation (2) and then introducing the solution to the spectral axial
displacement, one obtains the wave solution to the spectral axial force. These solutions are expressed as

ûpxq “ a1eik1x ` d1e´ik1x, N̂pxq “ ζ1a1eik1x ´ ζ1d1e´ik1x ` B rûplq ´ ûp0qs (4)

where i “
?
´1 is the imaginary unit. The first and the second terms in the two formulas of Equation (4),

when combining with the kernel function eiωt of the Fourier transform [36] (p. 725), represent waves
traveling along the negative and positive x-axis that are called as the arriving and departing waves,
respectively. a1 and d1 are the corresponding undetermined wave amplitudes. k1 “ ω{c1 and

c1 “
b

rpc` e2{αqA´ ρpν2
12 Iz ` ν2

13 Iyqω2s{ρA are the wave number and wave speed, respectively.

ζ1 “ ik1rpc` e2{αqA´ ρpν2
12 Iz ` ν2

13 Iyqω
2s “ iω

b

ρArpc` e2{αqA´ ρpν2
12 Iz ` ν2

13 Iyqω2s and B are the
axial-force influence coefficients of the piezoelectric rod that are irrelative and relative to the electrical
boundary condition, respectively. The expressions of B for the four electrical boundary conditions are
also shown in Table 1. It should be noted in Table 1 that as (C “ 8 or Kg “ 0), all the solutions to V̂, Q̂,
dϕ̂{dx and B for the applied electric capacity (applied electric capacity or applied feedback control)
condition are degenerated to the corresponding ones for the electric open (short) circuit condition.
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Table 1. The expressions of involved electrical variables as formulas of mechanical variables.

Electrical Boundary
Conditions

Associated
Mathematical Formulas Expressions of V̂ Expressions of Q̂

Electric-open Q̂ “ 0 e
α rûplq ´ ûp0qs 0

Applied electric capacity Q̂ “ ´CV̂ eA
αA`Cl rûplq ´ ûp0qs ´ eCA

αA`Cl rûplq ´ ûp0qs

Electric-short V̂ “ 0 0 ´ eA
l rûplq ´ ûp0qs

Applied feedback control V̂ “ ´Kg rûplq ´ ûp0qs ´Kg rûplq ´ ûp0qs ´ αA
l
` e

α ` Kg
˘

rûplq ´ ûp0qs

Electrical Boundary
Conditions Expressions of dϕ̂{dx Expressions of B

Electric-open e
α

dû
dx 0

Applied electric capacity e
α

dû
dx ´

e
α

C
αA`Cl rûplq ´ ûp0qs ´ e2CA

α2 A`αCl

Electric-short e
α

dû
dx ´

e
αl rûplq ´ ûp0qs ´ e2 A

αl

Applied feedback control e
α

dû
dx ´

1
l
` e

α ` Kg
˘

rûplq ´ ûp0qs ´ eA
l
` e

α ` Kg
˘

For any elastic rod (or electrode) in the unit cell, say member h (or i), the frequency-domain
governing equation and constitutive relation are obtained by Fourier transform [36] (p. 725) to their
time-domain counterparts, as given in Equations (A17) and (A18)

”

cA´ ρpν2
12 Iz ` ν2

13 Iyqω
2
ı d2û

dx2 ` ρAω2û “ 0 (5)

N̂ “

”

cA´ ρpν2
12 Iz ` ν2

13 Iyqω
2
ı dû

dx
(6)

respectively. From these equations, the wave solutions to the axial displacement and force of an elastic
rod (or electrode) are directly obtained as

ûpxq “ a1eik1x ` d1e´ik1x, N̂pxq “ ζ1a1eik1x ´ ζ1d1e´ik1x (7)

where k1 “ ω{
b

rcA´ ρpν2
12 Iz ` ν2

13 Iyqω2s{ρA and ζ1 “ ik1rcA´ ρpν2
12 Iz ` ν2

13 Iyqω
2s should be noted,

and all the other quantities are identical to those for the piezoelectric rod.

2.4. Transfer Matrix of a Member

Based on the concept of MRRM [5], the transfer matrix of a structural member, which relates the
axial displacement and force of one end with those of the other, can be derived.

For any piezoelectric rod in the unit cell, say member j, the wave solutions to the axial
displacements and forces in the dual coordinates px JK, yJK, zJKq and pxKJ , yKJ , zKJq can be written
from Equation (4). When the constants satisfying ΓJK “ ΓKJ “ Γpjq (Γ “ k1, ζ1, B, l) is noticed, these
wave solutions are expressed as

#

ûJKpx JKq

N̂ JKpx JKq

+

“

«

1 1

ζ
pjq
1 ´ζ

pjq
1

ff

»

–

eikpjq
1 x JK

0

0 e´ikpjq
1 x JK

fi

fl

#

aJK
1

dJK
1

+

`

«

0 0
´Bpjq Bpjq

ff#

ûJKp0q
ûJKplpjqq

+

#

ûKJpxKJq

N̂KJpxKJq

+

“

«

1 1

ζ
pjq
1 ´ζ

pjq
1

ff

»

–

eikpjq
1 xKJ

0

0 e´ikpjq
1 xKJ

fi

fl

#

aKJ
1

dKJ
1

+

`

«

0 0
´Bpjq Bpjq

ff#

ûKJp0q
ûKJplpjqq

+

(8)
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Due to the uniqueness of the physical variables at any cross section (x JK “ lpjq ´ xKJ) of a typical
member JK, compatibility conditions exist between the displacement (force) expressed in the dual
local coordinates

ûJKpx JKq “ ´ûKJplpjq ´ x JKq, N̂ JKpx JKq “ N̂KJplpjq ´ x JKq (9)

Substituting Equation (8) into Equation (9) gives the phase relations of the typical member j

aJK
1 “ ´e´ikpjq

1 lpjq
dKJ

1 , aKJ
1 “ ´e´ikpjq

1 lpjq
dJK

1 (10)

By noticing ûJKplpjqq “ ´ûKJp0q and ûKJplpjqq “ ´ûJKp0q, letting x JK “ 0 and xKJ “ 0 in
Equation (8), and then introducing Equation (10) into the resulting equation, one obtains the relations
between the displacements/forces at the member ends and the departing wave amplitudes

#

ûJKp0q
N̂ JKp0q

+

“

»

–

1 ´e´ikpjq
1 lpjq

rBpjqe´ikpjq
1 lpjq

´ pζ
pjq
1 ` Bpjqqs r´pζ

pjq
1 ´ Bpjqqe´ikpjq

1 lpjq
´ Bpjqs

fi

fl

#

dJK
1

dKJ
1

+

#

ûKJp0q
N̂KJp0q

+

“

»

–

´e´ikpjq
1 lpjq

1

r´pζ
pjq
1 ´ Bpjqqe´ikpjq

1 lpjq
´ Bpjqs rBpjqe´ikpjq

1 lpjq
´ pζ

pjq
1 ` Bpjqqs

fi

fl

#

dJK
1

dKJ
1

+

(11)

Eliminating the departing wave amplitudes from Equation (11), one obtains the transfer relation
of the typical piezoelectric member j

#

ûKJp0q
N̂KJp0q

+

“ Tpjq
#

ûJKp0q
N̂ JKp0q

+

“
1
∆

«

t11 t12

t21 t22

ff#

ûJKp0q
N̂ JKp0q

+

(12)

where Tpjq is the transfer matrix of piezoelectric member j. The quantities forming Tpjq are

∆ “ ´Bpjqpe´2ikpjq
1 lpjq

´ 1q ` 2ζ
pjq
1 e´ikpjq

1 lpjq
, t11 “ ´t22 “ ´pζ

pjq
1 ´ Bpjqqe´2ikpjq

1 lpjq
´ pζ

pjq
1 ` Bpjqq

t12 “ e´2ikpjq
1 lpjq

´ 1, t21 “ ´pζ
pjq
1 q

2
pe´2ikpjq

1 lpjq
´ 1q ` 2ζ

pjq
1 Bpjqpe´ikpjq

1 lpjq
´ 1q

2 (13)

The transfer relation of any elastic rod (electrode) in the unit cell, say member h (i), can be derived
by starting from Equation (7) and then using a similar way as that for the piezoelectric member j. It can
be expressed as the same form as Equation (12), but the quantities building the member transfer matrix
TpΠq (Π “ h, i) should be

∆ “ 2ζ
pΠq
1 e´ikpΠq

1 lpΠq

, t11 “ ´t22 “ ´ζ
pΠq
1 pe´2ikpΠq

1 lpΠq

` 1q, t12 “ e´2ikpΠq

1 lpΠq

´ 1, t21 “ ´pζ
pΠq
1 q

2
pe´2ikpΠq

1 lpΠq

´ 1q (14)

Please note that if the single local coordinates (other than the dual local coordinates) is used
to describe a structural member, the conventional member transfer matrix can be derived. Its
components are

∆ “ ´Bpjqpe´ikpjq
1 lpjq

´ eikpjq
1 lpjq

q ` 2ζ
pjq
1 , t11 “ t22 “ pζ

pjq
1 ´ Bpjqqe´ikpjq

1 lpjq
` pζ

pjq
1 ` Bpjqqeikpjq

1 lpjq

t12 “ ´pe´ikpjq
1 lpjq

´ eikpjq
1 lpjq

q, t21 “ ´pζ
pjq
1 q

2
pe´ikpjq

1 lpjq
´ eikpjq

1 lpjq
q ` 2ζ

pjq
1 Bpjqpe´ikpjq

1 lpjq
` eikpjq

1 lpjq
´ 2q

(15)

for the typical piezoelectric rod j and

∆ “ 2ζ
pΠq
1 , t11 “ t22 “ ζ

pΠq
1 pe´ikpΠq

1 lpΠq

` eikpΠq

1 lpΠq

q, t12 “ ´pe´ikpΠq

1 lpΠq

´ eikpΠq

1 lpΠq

q

t21 “ ´pζ
pΠq
1 q

2
pe´ikpΠq

1 lpΠq

´ eikpΠq

1 lpΠq

q

(16)
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for the typical elastic rod h or electrode i (Π “ h, i). Although the derivation of member transfer
relations on the basis of members’ dual local coordinates in our MTMM seems tangled when compared
with the process based on single local coordinates, it is noticed from the comparison of Equations (13)
and (14) with Equations (15) and (16), respectively, that the so-derived member transfer matrices abstain
from exponentially function in form of e`ik1l . Namely, in Equations (13) and (14), only exponential
function in form of e´ik1l is involved. However, in Equations (15) and (16), the exponential functions
in form of e´ik1l and e`ik1l appear simultaneously.

2.5. Transfer Matrix of a Joint

At the external joint 1, where the current unit cell is connected to the left adjacent unit cell,
the compatibility condition between the member displacement and the joint displacement and the
equilibrium condition between the member force and the joint force are combined to give the joint
transfer relations
#

û12p0q
N̂12p0q

+

“

«

1 0
0 1

ff#

ûXL
´p̂XL

+

“ T1

#

ûXL
´p̂XL

+

“

«

1 0
0 ´1

ff#

ûXL
p̂XL

+

“ rT1

#

ûXL
p̂XL

+

(17)

where T1 “ I2 “ă 1, 1 ą is the transfer matrix of external joint 1 with I2 denoting the identity matrix
of second order, and ă ¨ ą here and after denotes diagonal (or block diagonal) matrix. rT1 “ă 1,´1 ą
is a variant of T1 as p̂XL other than ´p̂XL is used in the transfer relation.

At any internal joint that connects the neighboring constituent rods, the typical joint K (2 ď K ď
N´ 1) for instance, the continuous conditions of the axial displacements and forces lead to the transfer
relations thereof

#

ûKLp0q
N̂KLp0q

+

“

«

´1 0
0 1

ff#

ûKJp0q
N̂KJp0q

+

“ TK

#

ûKJp0q
N̂KJp0q

+

(18)

where TK “ă ´1, 1 ą is the transfer matrix of internal joint K.
The transfer relations of the external joint N connecting the current unit cell with the right adjacent

unit cell can be derived similarly as that of joint 1

#

ûXR
p̂XR

+

“

«

´1 0
0 1

ff#

ûNpN´1qp0q
N̂NpN´1qp0q

+

“ TN

#

ûNpN´1qp0q
N̂NpN´1qp0q

+

(19)

where TN “ă ´1, 1 ą is the transfer matrix of external joint N and is obviously different from T1.

2.6. Global Transfer Matrix of the Unit Cell

Considering the joint and member transfer relations alternately from joint 1, member 1¨ ¨ ¨ , till to
joint N gives the global transfer relations of the unit cell

#

ûXR
p̂XR

+

“ T

#

ûXL
´p̂XL

+

(20)

where T “ TNTpmqTN´1Tpm´1qTN´2 ¨ ¨ ¨TpkqTK ¨ ¨ ¨Tp2qT2Tp1qT1 is the global transfer matrix of the
unit cell, and N “ m` 1 is implied.

2.7. Dispersion Relation of Infinite Periodic Structures

Due to the Floquet–Bloch principle for infinite periodic structures [31,32], the axial displacement
and force of external joint N are related to those of external joint 1 by

#

ûXR
p̂XR

+

“ eiqL

#

ûXL
´p̂XL

+

(21)
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where q is the complex wavenumber of the characteristic longitudinal waves in the periodic
piezoelectric composite rod, and L is the length of the unit cell.

The combination of Equations (20) and (21) gives

T

#

ûXL
´p̂XL

+

“ eiqL

#

ûXL
´p̂XL

+

or
´

T´ eiqLI2

¯

#

ûXL
´p̂XL

+

“

#

0
0

+

(22)

which indicates that eiqL ” µ is the eigenvalue of the global transfer matrix T with referring to the
definition of the eigenvalues of a matrix [36] (pp. 278–279). The eigenvalue eiqL ” µ can be solved
from the dispersion relation

eiqL “ EigenvaluesrTs or detrT´ eiqLI2s “ 0 (23)

by first specifying the frequency ω. Eigenvaluesr¨s and detr¨s denote solving the eigenvalues and
the determinate of a matrix, respectively. The real part qRL and the imaginary part qI L of the
dimensionless complex wavenumber qL, which are called as the phase constant and the attenuation
constant [5,32,37], are further computed from the phase and the amplitude of eiqL ” µ, respectively.
The wavelength λ “ 2π{q and the phase velocity c “ ω{q are then obtained through the corresponding
algebra calculations. Finally, the comprehensive frequency spectra including the |µ| pωq spectra, the
qpωq spectra, the λpωq spectra and the cpωq spectra can thus be drawn, where |¨| here and after
denotes the amplitude of a quantity. These frequency spectra represent the properties of characteristic
longitudinal waves in the periodic piezoelectric composite rod from different viewpoints. From them,
the pass-bands and the stop-bands are easily differentiated.

2.8. Global Transfer Relation of Finite Periodic Structures

For a finite periodic structure consisting of M unit cells, the spectral axial displacement ûXM and
force p̂XM of the very right end are related to the spectral axial displacement ûX0 and force p̂X0 of the
very left end by

#

ûXM
p̂XM

+

“

M times
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

M th
hkkkkkkkkkkikkkkkkkkkkj

TNTpmq ¨ ¨ ¨T2Tp1q
M´1 th

hkkkkkkkkkkikkkkkkkkkkj

TNTpmq ¨ ¨ ¨T2Tp1q ¨ ¨ ¨ ¨ ¨ ¨

2 nd
hkkkkkkkkkkikkkkkkkkkkj

TNTpmq ¨ ¨ ¨T2Tp1q
1 st

hkkkkkkkkkkikkkkkkkkkkj

TNTpmq ¨ ¨ ¨T2Tp1q rT1

#

ûX0

p̂X0

+

“ TG

#

ûX0

p̂X0

+

“

«

TG11 TG12
TG21 TG22

ff#

ûX0

p̂X0

+

(24)

where TG is the global transfer matrix of the finite periodic structure formed by multiple matrix
multiplications as shown.

The transmission R of the system can be obtained from

R “ 20log10 |p1{Tq| (25)

where T “ TGrs (r, s “ 1, 2), depending on the observed and referred quantities utilized. Thus, the
transmission spectra can be obtained by first specifying the frequency ω in required range and then
calculating the transmission coefficient R from Equation (25).

3. Numerical Examples

3.1. Validation of the Proposed MTMM

First, consider a periodic piezoelectric composite rod [20] consisting of alternate 10 mm long
circular PZT-5H (PZ29) rod and 0.025 mm long circular brass electrode all with 1 mm diameters. The
piezoelectric PZT-5H constituent rod is poled along the X axis in positive direction. The material and
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geometrical parameters of the two constituent rods in the unit cell [35] (pp. 358–382) are listed in Table 2
except those specified otherwise. Four kinds of electrical boundaries, i.e., the electric-open, applied
electric capacity, electric-short and applied feedback control conditions, are considered to impose on
the electrodes. In order to compare to the results by Degraeve et al. [20], we neglect the mechanical
vibration and the thickness of the brass electrodes but retain its electrical function for calculating
the phase constant spectra (qRpωqL curves) of this PZT-5H piezoelectric rod with periodic electrical
boundaries in the low and high frequency ranges. The results are given in Figure 3. For the convenience
of description, the engineering frequency f “ ω{p2πq and the dimensionless wavenumber qL{π are
used hereafter. The results of the first three electric boundaries are also compared in Figure 3 with the
corresponding ones by Degraeve et al. using the analytical method (AM) [20]. It should be noted that
the applied electric capacity is specified as the clamped capacitance C “ αA{l “ 1.02ˆ 10´12 F, which
is the same as that used in [20].

Table 2. Material and geometrical parameters.

Materials
Stiffness Constants (GPa)

c11 c22 c33 c12 c13 c23

PZT-5H 117.0 126.0 126.0 84.1 84.1 79.5
Brass 162.46 162.46 162.46 82.58 82.58 82.58
Epoxy 6.98 6.98 6.98 3.76 3.76 3.76

Materials
Poisson’s Ratios Piezoelectric Constants (C{m2)

Dielectric Constants
(ˆ10´9 F{m)

ν12 ν13 e11 e12 e13 α11

PZT-5H 0.41 0.41 23.3 ´6.5 ´6.5 13.02
Brass 0.337 0.337 — — — —
Epoxy 0.35 0.35 — — — —

Materials
Mass Density

(kg{m3)
Length
(mm)

Cross-Sectional Area
(ˆπ mm2)

Cross-Sectional
Moments of Inertia

(ˆπ mm4)

ρ l A Iy Iz

PZT-5H 7500 10 1/4 1/64 1/64
Brass 8320 0.025 1/4 1/64 1/64
Epoxy 1180 10 1/4 1/64 1/64

Figure 3a–c indicates that the phase constant spectra of the first three electrical boundaries in the
low frequency range f ď 500 kHz obtained by our proposed MTMM generally agree well with their
counterparts by Degraeve et al. using AM [20]. Nevertheless, the discrepancy becomes observable
in the relatively high frequency range 500 kHz ă f ď 600 kHz. This is because that in the AM by
Degraeve et al. [20], the classical rod theory applicable to pretty low frequency range is adopted. Our
proposed MTMM, which adopts the Love rod theory, is effective till to a relative high frequency
0.9ω0 “ 3.81 MHz with ω0 “ minpωp1qC , ω

p2q
C , ¨ ¨ ¨ , ω

pmq
C q the minimum of critical frequencies of the

constituent rods (For piezoelectric PZT-5H rod, ωC “
b

rpc` e2{αqAs{rρpν2
12 Iz ` ν2

13 Iyqs “ 4.23 MHz;

For brass electrode, ωC “
b

cA{rρpν2
12 Iz ` ν2

13 Iyqs “ 4.79 MHz) [28]. Figure 3d shows that our proposed
MTMM works also well for analyzing the phase constant spectra of the applied feedback control
condition in the low frequency range. Figure 3a–d illustrates that, in any electric boundary case, the
width of stop-bands decreases with its order. The comparisons of Figure 3a–d indicate that the widths
of stop-bands become wider and the central frequencies of stop-bands become lower in sequence of
electric-open (without band gaps), applied electric capacity, electric-short and applied feedback control
boundaries due to the separate increasing of coefficient B. However, this difference between the band
structures of the four electrical boundaries is inconspicuous in the high frequency range, as shown
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in Figure 3e, since the band gaps of the latter three electrical boundaries all become trivial in that
frequency range. This is because the axial-force influence coefficient B of the piezoelectric rod, which
is relative to the electric boundary conditions, do not change with frequency. However, the axial-force
influence coefficient ζ1, which is irrelative to the electric boundary conditions, obviously increases
near linearly with the frequency ω. In all the four periodically electrical boundary cases, since the B-ζ1

ratio decreases very quickly with the increasing of frequency, the widths of band gaps determined by
this ratio thus approach to zero quickly even the folding of bands is identifiable. The above results and
the Figure 3e demonstrate that our proposed MTMM works very well in frequency range below 0.9ω0

for all four kinds of electrical boundaries.Crystals 2016, 6, 45 11 of 29 
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Second, consider the same periodic piezoelectric composite rod as above except that the diameters
of all constituent rods are 10 mm [20] and the mechanical vibration of the brass electrodes is also
reckoned in. The current minimum critical frequency of the constituent rods is ω0 “ 423 kHz. Thus it
has 0.9ω0 “ 381 kHz. Using our proposed MTMM, we calculate the phase constants spectra of this
periodic PZT-5H piezoelectric rod covered by brass electrodes below 450 kHz for all the four electrical
boundary conditions. Figure 4a–d provides the results associated with the electric-open, applied
electric capacity, electric-short and applied feedback control conditions, respectively, in which the
lines of ω0 and 0.9ω0 are also depicted. In particular, the results of the electric-open and electric-short
boundaries are compared with the corresponding ones by Degraeve et al. using the FEM and AM [20]
in Figure 4a,c, respectively. In these two electrical boundary cases, the transmission spectra of a finite
periodic piezoelectric composite rod consisting of 14 unit cells are also calculated by our MTMM,
which are depicted and compared in Figure 5 with the corresponding results by Degraeve et al. [20].
In order to compare to the numerical transmission from FEM [20], the ordinate in Figure 5a is specified
as 20log10

 
ˇ

ˇ1{rpc` e2{αqATG12s
ˇ

ˇ

(

, where the parameters of PZT-5H are utilized. In Figure 5b, the
ordinate is the transmission R computed from TG22 by using Equation (25), for the sake of comparing
with the experiment measurements [20].
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condition with C “ αA{l “ 1.02ˆ 10´10 F; (c) electric-short condition; and (d) applied feedback control
condition with Kg “ 5ˆ 108 V{m.
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Figure 5. The transmission (in dB units) in a finite periodic PZT-5H piezoelectric rod covered by brass
electrodes consisting of 14 unit cells with electric-open and electric-short boundaries from our MTMM
and their comparison with the corresponding ones by Degraeve et al. [20]: (a) comparison with the
numerical transmission; and (b) comparison with the experimental transmission.

In the electric-open and electric-short boundary cases, Figure 4a,c indicates that the phase constant
spectra below 200 kHz from our proposed MTMM in general agree with both the results of FEM and
those of AM by Degraeve et al. [20]. Figure 5a also shows that below 200 kHz the transmission spectra
from our MTMM in general agree with the numerical transmission from FEM by Degraeve et al. [20].
The observable differences in these figures may be caused by that the FEM considers all modes and
their coupling, while our MTMM considers only the longitudinal mode but with taking the Poisson’s
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effect into account. These differences are also due to that the vibration of electrodes is not taken into
account in the FEM (and AM) models by Degraeve et al. [20]. Figure 5b manifests clearly that our
predicated transmission spectra in the stop bands agree very well with the measured transmission.
However, in the pass bands, our MTMM results are about 20 dB bigger than the experimental results.
The damping in the experimental specimen may be the primary cause. Figures 4c and 5 also indicate
that the first stop bands of the model with electric-short boundary condition predicated by the phase
constant spectra and by the transmission spectra are coincident. In the range of 200 kHz ă f ď 300 kHz,
the phase constant spectra from our proposed MTMM give better prediction to those of FEM than
the results of AM. The reason is that our proposed MTMM considers the Poisson’s effect while the
AM neglects it. The deviation between our MTMM results and those from FEM may be due to two
reasons. One is that the FEM considers all modes and their coupling, while our MTMM considers only
the longitudinal mode with considering the Poisson’s effect. The other is that the electrode vibration is
ignored in the FEM model. In all the four electrical boundary cases, our MTMM works well till to the
frequency 0.9ω0 “ 381 kHz with ω0 “ 423 kHz the minimum critical frequency of the constituent rods.
In the higher frequency range, the proposed MTMM loss efficacy since the Love rod theory becomes
invalid. In sequence of electric-open, applied electric capacity, electric-short and applied feedback
control boundaries, the increasing of stop-band widths and the reduction of the stop-band central
frequencies still hold due to the separate increasing of coefficient B.

3.2. Passive Control of Longitudinal Waves in Rod-Type Piezoelectric Phononic Crystals

Consider the same rod-type piezoelectric phononic crystal with 1 mm diameters as in Section 3.1,
but now reckon in the mechanical vibration of the brass electrodes. The electrode’s thickness, the rod’s
cross-sectional dimension and the elastic rod insert are individually varied to show their influences on
the band structures, while the other parameters remain the same as in Table 2.

3.2.1. Influence of the Electrode’s Thickness

Specifying the thickness of the electrode as 0.025 mm, 0.25 mm and 2.5 mm, we calculate the
propagation constants spectra including the phase constant spectra and the attenuation constant
spectra (qIpωqL curves) of the periodic PZT-5H piezoelectric rod covered by brass electrodes with the
four periodic electrical boundaries, respectively, and compare them with those results as the electrode’s
thickness is neglected, as given in Figure 6.
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Figure 6. Influence of the electrode’s thickness on the propagation constants spectra of the
periodic PZT-5H piezoelectric rod covered by brass electrodes with periodic electrical boundaries:
(a) electric-open condition; (b) applied electric capacity condition with C “ αA{l “ 1.02ˆ 10´12 F;
(c) electric-short condition; and (d) applied feedback control condition with Kg “ 5ˆ 108 V{m.

Figure 6 illustrates that with an increase in the electrode’s thickness, the central frequencies of
all the stop-bands and the width of the first stop-band slightly decrease, although this feature is
not apparently clear as the electrode’s thickness varies from 0 to 0.025 mm. The maximum value of
attenuation constants in the first stop-band increases with the electrode’s thickness.

3.2.2. Influence of the Rod’s Cross-Sectional Dimension

As the diameter of all the constituent rods is 1 mm, 5 mm and 10 mm, respectively, the propagation
constants spectra of the periodic PZT-5H piezoelectric rod covered by brass electrodes are calculated
by our proposed MTMM. Figure 7a–d provides the results associated with the electric-open, applied
electric capacity, electric-short and applied feedback control conditions, respectively.
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Figure 7. Influence of the rod’s cross-sectional dimension on the propagation constants spectra of the
periodic PZT-5H piezoelectric rod covered by brass electrodes with periodic electrical boundaries:
(a) electric-open condition; (b) applied electric capacity condition with C “ αA{l; (c) electric-short
condition; and (d) applied feedback control condition with Kg “ 5ˆ 108 V{m.

Figure 7a–d indicates that, in any electrical boundary case, the central frequencies of all the
stop-bands decrease and the maximum attenuation constant in the first stop-band slightly increase
with an increase in the rods’ diameter. These phenomena reflect the influence of the Poisson’s effect on
the band structures. The bigger the rods’ diameter is, the larger the Poisson’s effect.

3.2.3. Influence of the Elastic Rod Insert

As an elastic rod made of epoxy, whose material and geometrical parameters are given in Table 2,
is inserted into the unit cell of the periodic PZT-5H piezoelectric rod covered by brass electrodes, the
propagation constants spectra are computed and compared with the results of the periodic composite
rod without the epoxy component in unit cell, as depicted in Figure 8a–d in the four electrical boundary
cases, respectively.
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Figure 8. Influence of the elastic rod insert on the propagation constants spectra of the periodic 
PZT-5H piezoelectric rod covered by brass electrodes with periodic electrical boundaries: (a) 
electric-open condition; (b) applied electric capacity condition with 12/ 1.02 10  F−= = ×C A lα ; (c) 
electric-short condition; and (d) applied feedback control condition 85 10  V / m= ×gK . 

Figure 8a–d shows that inserting an elastic rod in unit cell adds many new band structures in all 
the four electrical boundary cases, which is due to the interaction between the elastic and 
piezoelectric constituent rods. When an elastic rod is inserted into the unit cell, the differences 
between band structures associated with the four electrical conditions are weakened. Since the 
inserted elastic rod is softer than the original piezoelectric rod, the values of the attenuation 
constants enormously enlarge. In the latter three electrical conditions, after the epoxy rod is inserted 
in the unit cell, the original first stop-band turns into the third stop-band, with the central frequency 
increased slightly and the width decreased. 

3.3. Active Control of Longitudinal Waves in Rod-Type Piezoelectric Phononic Crystals 

Consider the same rod-type piezoelectric phononic crystal as studied in Section 3.2.3. Its unit 
cell, as referred to in Figure 1, is composed of an epoxy elastic rod, a brass electrode, a PZT-5H 
piezoelectric rod and a brass electrode. Their material and geometrical parameters are listed in Table 
2. On the electrodes, external electric capacitor and feedback controller are connected to investigate 
the influences of applied electric capacity and feedback control boundaries on the band structures, 
respectively. 
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Figure 8. Influence of the elastic rod insert on the propagation constants spectra of the periodic PZT-5H
piezoelectric rod covered by brass electrodes with periodic electrical boundaries: (a) electric-open
condition; (b) applied electric capacity condition with C “ αA{l “ 1.02ˆ 10´12 F; (c) electric-short
condition; and (d) applied feedback control condition with Kg “ 5ˆ 108 V{m.

Figure 8a–d shows that inserting an elastic rod in unit cell adds many new band structures in all
the four electrical boundary cases, which is due to the interaction between the elastic and piezoelectric
constituent rods. When an elastic rod is inserted into the unit cell, the differences between band
structures associated with the four electrical conditions are weakened. Since the inserted elastic rod is
softer than the original piezoelectric rod, the values of the attenuation constants enormously enlarge.
In the latter three electrical conditions, after the epoxy rod is inserted in the unit cell, the original
first stop-band turns into the third stop-band, with the central frequency increased slightly and the
width decreased.

3.3. Active Control of Longitudinal Waves in Rod-Type Piezoelectric Phononic Crystals

Consider the same rod-type piezoelectric phononic crystal as studied in Section 3.2.3. Its unit cell,
as referred to in Figure 1, is composed of an epoxy elastic rod, a brass electrode, a PZT-5H piezoelectric
rod and a brass electrode. Their material and geometrical parameters are listed in Table 2. On the
electrodes, external electric capacitor and feedback controller are connected to investigate the influences
of applied electric capacity and feedback control boundaries on the band structures, respectively.

First, specifying the applied electric capacitance as C “ 1 ˆ 10´13 F, C “ 1 ˆ 10´12 F and
C “ 1 ˆ 10´11 F, individually, we compute the propagation constants spectra of the periodic
Epoxy-Brass-PZT-5H-Brass composite rod to study the influence of applied electric capacity on the
band structures. The results are given in Figure 9a, where they are compared with those of the
electric-open (C “ 0) and the electric-short (C “ 8) boundary conditions. Second, when the applied
feedback control is specified by the control gain as Kg “ 1ˆ 108 V{m, Kg “ 5ˆ 108 V{m and Kg “

1ˆ 109 V{m, respectively, the propagation constants spectra of the periodic Epoxy-Brass-PZT-5H-Brass
composite rod are calculated to discuss the influence of applied feedback control on the band structures.
The results are depicted and compared with those of the electric-open and the electric-short (Kg “ 0)
boundary conditions in Figure 9b.
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Figure 9. Influence of the electrical boundaries on the propagation constants spectra of the periodic
Epoxy-Brass-PZT-5H-Brass composite rod: (a) applied electric capacity condition; and (b) applied
feedback control condition.

Figure 9a indicates that when the applied electric capacity is increased from 0 to infinity, the
spectra of the propagation constants, as expected, change gradually from those of the electric-open
condition to those of the electric-short condition. New stop-bands may first appear, and then most of
the propagation constants spectra alter towards the frequency reducing direction. Thus, the central
frequencies of these stop-bands and pass-bands decrease obviously with an increase in the electric
capacitance. However, some band structures in certain frequency ranges, 0–40 kHz and 270–490 kHz
in Figure 9a, do not alter with the applied electric capacitance, which are probably formed due mainly
to the mechanical effect of the periodic composite rod. Note from Figure 9b that with the increasing of
control gain from 0, the propagation constants spectra change from those of the electric-short condition
towards the frequency reducing direction. The central frequencies of most stop-bands and pass-bands
decrease obviously with an increase in the control gain. However, the band structures in the same
frequency ranges (0–40 kHz and 270–490 kHz) as in Figure 9a, do not change at all. This again testifies
that these band structures have nothing to do with the electrical boundaries.

If the influence of the electrical boundaries on the band structures is overall considered when
comparing Figure 9a with Figure 9b, it can be concluded that the band structures of the electric-short
condition play a referential role. The band structures of the applied electric capacity C (and electric-
open C “ 0) condition lie on their lower-frequency side, while those of the applied feedback control
with control gain Kg locate on their higher-frequency side. Consequently, in the following we focus
on the electric-short condition to discuss the dispersion properties of the characteristic longitudinal
waves in the rod-type piezoelectric phononic crystals.

3.4. Dispersion Properties of Longitudinal Waves in Rod-Type Piezoelectric Phononic Crystals

In the case of electric-short boundary condition, comprehensive frequency-related dispersion
curves, which include the eigenvalue’s amplitude spectra (|µ| pωq curves), the wavenumber spectra
(qpωq curves), the wavelength spectra (λpωq curves), the phase velocity spectra (cpωq curves),
of the above discussed periodic Epoxy-Brass-PZT-5H-Brass composite rod are calculated in both
low ( f ď 600 kHz) and high (1.25 MHz ď f ď 1.85 MHz) frequency ranges. Please notice that

the minimum critical frequency is ω0 “ ω
pEpoxyq
C “ 2.47 MHz. Thus, our MTMM is valid till

to 0.9ω0 “ 2.22 MHz. The low and high frequency results are provided in Figures 10 and 11
respectively. For the convenience of presentation, the dimensionless wavelength λ{L and phase
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velocity c{clep are further introduced except for the engineering frequency f “ ω{p2πq and the
dimensionless wavenumber qL{π. clep “

a

cep{ρep is the longitudinal wave speed in the epoxy rod
without considering the Poisson’s effect, where cep “ Eep and ρep are the Young’s modulus and the
material density of epoxy, respectively.
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Figure 10. Various frequency-related dispersion curves of the periodic Epoxy-Brass-PZT-5H-Brass
composite rod in low frequency range: (a) eigenvalue’s amplitude spectra; (b) wavenumber spectra;
(c) wavelength spectra in logarithmic coordinate; (d) phase velocity spectra in logarithmic coordinate;
and (e) phase velocity spectra in a small scale.
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Figure 11. Various frequency-related dispersion curves of the periodic Epoxy-Brass-PZT-5H-Brass
composite rod in high frequency range: (a) eigenvalue’s amplitude spectra; (b) wavenumber spectra;
(c) wavelength spectra in logarithmic coordinate; (d) phase velocity spectra in logarithmic coordinate;
and (e) phase velocity spectra in a small scale.

Figures 10a–e and 11a–e reflect that, in addition to the same dispersion properties of longitudinal
waves in general periodic rods [5,37], the characteristic longitudinal waves in a rod-type piezoelectric
phononic crystal also possess the following dispersion properties:

(1) The eigenvalue’s amplitude spectra, which cannot be obtained by MRRM [5], demonstrate clearly
the width, the central frequencies and the bounding frequencies of the pass-bands (|µ| “ 1)
and the stop-bands (|µ| ‰ 1). They also reflect the attenuation amplitudes eqI L of waves in
the stop-bands, which are verified by the attenuation constant (qI L) spectra. The eigenvalue’s
amplitude spectra cannot indicate the properties of waves in the pass-bands, but the phase
constant spectra do.
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(2) In these frequency-related dispersion curves, the bounding frequencies of the odd and even
order stop-bands correspond to qL “ qRL “ p2n ` 1qπ and qL “ qRL “ 2nπ (n is a natural
number), respectively. Within the stop-bands, the real part (qRL) of the complex wavenumber
qL, which cannot be computed by the MRRM [5] but obtained here by the MTMM, have the
same phases as their boundaries. In the wavelength spectra, the representations corresponding
to these two kinds of phases are horizontal lines λ{L “ 2{p2n` 1q and λ{L “ 1{n. In the phase
velocity spectra, they correspond to inclined lines that pass through the origin and have slopes
c{ω “ L{rp2n` 1qπs c{ω “ L{r2nπs, respectively. The lines determined by the above formulas
and the lines of bounding frequencies form the grids to draw the spectra in the corresponding
frequency-related dispersion curves.

4. Conclusions

A modified transfer matrix method (MTMM), which is based on the Love rod theory and the
method of reverberation-ray matrix (MRRM), is proposed in this paper for the analysis of characteristic
longitudinal waves by combining Floquet–Bloch principle and for the calculation of transmission
spectra in general rod-type piezoelectric phononic crystals with electric-open, applied electric capacity,
electric-short and applied feedback control conditions. Numerical examples are given to validate the
proposed MTMM, to study the passive control of the band structures by the electrode’s thickness, the
rod’s cross-sectional dimension and the elastic rod insert, and to investigate the active tuning of the
band structures by the electrical boundary conditions. The dispersion properties are summarized from
the comprehensive frequency spectra. From these analyses, we can draw the conclusions as follows:

(1) The proposed analytical MTMM provides an alternative analysis method for the complex band
structures and transmission spectra till to 0.9ω0 (ω0 is the minimum critical frequency) within
which the Love rod theory is valid. Its effectiveness is validated by some numerical examples.

(2) In passive mode, the electrode’s thickness and the rod’s cross-sectional dimension can be used
to slightly adjust the band structures of the rod-type piezoelectric phononic crystals, while the
elastic rod insert is able to enormously alter the band structures.

(3) In active mode, the switchable electrical boundaries among electric-short, applied electric capacity,
electric-open and applied feedback control conditions is effective for modulating some of the
band structures that are related to the electromechanical coupling of the rod-type piezoelectric
phononic crystals. The tunable capacity and control gain in the applied electric capacity and
applied feedback control cases, respectively, can also be used for tuning the propagation of
longitudinal waves. The band structures of the electric-short condition play a referential role for
designing the active control scheme.
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Appendix A

Based on the basic idea of Love rod theory [27,28], [29] (pp. 139–142), [30], which considers the
Poisson’s effect, the displacement field u “ ru, v, wsT and the electric potential ϕ in a piezoelectric rod
are assumed as

u “
„

upx, tq,´ν12
Bu
Bx

y,´ν13
Bu
Bx

z
T

, ϕ “ ϕpx, tq (A1)

where u, v and w are the displacements of particle at (x, y, z) in the rod along x, y and z axes, respectively;
ν12 and ν13 are the Poisson’s ratios with respect to y and z axes, respectively; and r¨sT denotes the
transposition of a matrix (or vector). The strain vector ε “ rεx, εy, εz, γyz, γzx, γxys

T and the electric
field vector E “ rEx, Ey, Ezs

T can then be derived from the generalized strain-displacement relations

ε “ LTu “

»
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Bx 0 0 0 B

Bz
B
By

0 B
By 0 B

Bz 0 B
Bx

0 0 B
Bz

B
By

B
Bx 0

fi

ffi

fl

T $
’

&

’

%

u
v
w

,

/

.

/

-

“

„

Bu
Bx

,´ν12
Bu
Bx

,´ν13
Bu
Bx

, 0,´ν13
B2u
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T

E “ ´∇ϕ “

„

´
Bϕ

Bx
, 0, 0

T

(A2)

where the nonzero shear strains γzx “ ´zν13B
2u{Bx2 and γxy “ ´yν12B

2u{Bx2 are obviously one order
higher than the three normal strains εx, εy and εz. Consequently, we assume that γzx “ 0 and γxy “ 0,
and thus all the three shear strains are zero considering γyz “ 0 by itself. In order to derive the
governing equations with the Hamilton principle, the normal stresses σx, σy, σz corresponding to the
nonzero strains and the electric displacement along the x axis Dx associated with the nonzero electric
field should be obtained from the constitutive equations of the linear piezoelectric materials

#

σ

D

+

“

«

C ´eT

e ff

ff#

ε

E

+

(A3)

where σ “ rσx, σy, σz, τyz, τxz, τxys
T and D “ rDx, Dy, Dzs

T are the stress vector and electric
displacement vector, respectively; C “ rcpqs is the 6 ˆ 6 symmetric and positive definite elastic
constant matrix, e “ rerqs is the 3ˆ 6 piezoelectric constant matrix, and α “ rαrss is the 3ˆ 3 symmetric
dielectric constant matrix (p, q “ 1, 2, 3, 4, 5, 6, r, s “ 1, 2, 3). Substitution of Equation (A2) into
Equation (A3) gives
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(A4)

Consider Hamilton’s principle for linear piezoelectric continuum [34]

δ

„
ż t2

t1

pT´ H `Wqdt


“ 0, (A5)

where T, H and W are the kinetic energy, the electric enthalpy and the external work in the system.
The kinetic energy T in the whole piezoelectric rod is obtained from Equation (A1) as

T “
1
2

y

Ω

ρ
.
uT .

udΩ “
1
2

y

Ω

ρp
.
u2
`

.
v2
`

.
w2
qdΩ “

1
2

ż l

0

«

ρA
.
u2
` ρpν2

12 Iz ` ν2
13 Iyq

ˆ

B
.
u
Bx

˙2ff

dx (A6)

where Ω signifies the space region of the rod; ρ is the material density; l and A are the length and
the cross-sectional area of the rod, respectively; Iy and Iz are the cross-sectional moment of inertia
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with respect to y and z axes, respectively; and the over dot signifies the derivative of quantities about
time here and after. The electric enthalpy H [33,34] in the whole piezoelectric rod is written from
Equations (A2) and (A4) as

H “ 1
2
t

Ω
pσTε´DTEqdΩ “ 1

2
t

Ω
pσxεx ` σyεy ` σzεz ´ ExDxqdΩ

“ 1
2
şl

0 cA
´

Bu
Bx

¯2
dx`

şl
0 eA Bu

Bx
Bϕ
Bx dx´ 1

2
şl

0 αA
´

Bϕ
Bx

¯2
dx

(A7)

where c “ c11` ν2
12c22` ν2

13c33` 2pν12ν13c23´ ν12c12´ ν13c13q, e “ e11´ ν12e12´ ν13e13 and α “ α11 are
the equivalent axial stiffness, piezoelectric and dielectric constants of the piezoelectric rod, respectively.
The equivalent axial stiffness constant c in the current anisotropic piezoelectric rod, like the Young’s
modulus E in the isotropic elastic rod, comprehensively reflects the contributions of anisotropic
stiffness coefficients to the axial stiffness. cA denotes the axial rigidity of the piezoelectric rod.
It can be deduced that the bigger c is, the faster the longitudinal wave in the rod. The equivalent
axial piezoelectric constant e and dielectric constant α comprehensively represent the contributions
of anisotropic piezoelectric and dielectric coefficients to the axial piezoelectricity and dielectricity,
respectively. e measures the axial stress generating from unit axial electric field or the axial electric
displacement resulting from unit axial strain, i.e., the transformation ability between electrical energy
due to axial electric field and mechanical energy due to axial vibration. α denotes the ability to store
electrical energy of the piezoelectric rod due to axial electric field. As will be seen at the end of
this section, e and α have direct and inverse correlations to the longitudinal wave speed in the rod,
respectively. The external work [34] imported to the piezoelectric rod consists of mechanical and
electrical work in form of

W “

x

S

pfTu´ qϕqdS “ pNu´Qϕq|l0 (A8)

where S signifies the boundary surfaces with specified surface forces f “ r fx, fy, fzs
T of the system; q is

the electric charge density per area; N and Q are the specified axial force and electric charge on the
ends of the piezoelectric rod, respectively. Substituting Equations (A6)–(A8) into Equation (A5) and
then applying the integration by parts to some terms so that the integral terms have common variation
δu or δϕ, one obtains
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(A9)

Notice that in Hamilton’s principle, the generalized displacement functions at time t1 and time
t2 are given [29] (pp. 126–131), [34], i.e., the variations of these functions vanish at times t1 and t2.
Hence, on the basis of δu

ˇ

ˇt“t1 “ 0 and δu |t“t2 “ 0, the first term in Equation (A9) should vanish. The
second and third (fourth and fifth) terms in Equation (A9) represent the variations of energy functional
inside the rod (on the rod ends) due to the variations δu and δϕ, respectively. It is because that δu and
δϕ are independent each other both inside the rod and on the rod ends, the second to fifth terms in
Equation (A9) should vanish. Since the variations δu and δϕ are arbitrary as x P p0, lq, the vanishing of
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the second and third terms of Equation (A9) leads to the governing equations (Euler equations) of the
piezoelectric Love rod

cA
B2u
Bx2 ` eA

B2 ϕ

Bx2 ` ρ
´

ν2
12 Iz ` ν2

13 Iy

¯

B2 ..
u

Bx2 “ ρA
..
u, eA

B2u
Bx2 ´ αA

B2 ϕ

Bx2 “ 0 (A10)

On the rod end, x “ 0 (x “ l), if δu and δϕ are arbitrary, the vanishing of the fourth and fifth
terms of Equation (A9) gives rise to the constitutive relations (natural boundary conditions) of the
piezoelectric Love rod

N “ cA
Bu
Bx
` eA

Bϕ

Bx
` ρ

´

ν2
12 Iz ` ν2

13 Iy

¯

B
..
u
Bx

, Q “ ´eA
Bu
Bx
` αA

Bϕ

Bx
(A11)

Substituting the latter formula into the former one in Equation (A10), one expresses the governing
equations of the piezoelectric Love rod as

´

c` e2{α
¯

A
B2u
Bx2 ` ρ

´

ν2
12 Iz ` ν2

13 Iy

¯

B2 ..
u

Bx2 “ ρA
..
u, (A12)

where only the axial displacement u is involved.

Appendix B

The governing equations and the constitutive relations of an elastic rod of anisotropic material
based on the Love rod theory [27,28], [29] (pp. 139–142), [30] can be derived in a similar way as that
discussed in Appendix A. However, all the electric quantities should not appear. In particular, the
constitutive equations of the linear elastic materials

σ “ Cε (A13)

should be utilized to give the normal stresses σx, σy, σz
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(A14)

corresponding to the nonzero strains. Besides, Hamilton’s principle for linear elastic body [29]
(pp. 126–131) is identical to Equation (A5) except that the electric enthalpy H should be replaced by
the strain energy U

U “
1
2

y

Ω

σTεdΩ “
1
2

y

Ω

pσxεx ` σyεy ` σzεzqdΩ “
1
2

ż l

0
cA

ˆ

Bu
Bx

˙2
dx (A15)

and the external work should be
W “

x

S

fTudS “ pNuq|l0 (A16)

Substituting the kinetic energy T as given in Equation (A6), the strain energy U in Equation (A15)
and the external work in Equation (A16) into Hamilton’s principle for linear elastic body [29]
(pp. 126–131), and conducting the variation and integration by parts, one can write an equation
similar to Equation (A9) but without the electric terms. In the same way, the governing equations and
the constitutive relations of the anisotropic elastic Love rod are obtained as

cA
B2u
Bx2 ` ρ

´

ν2
12 Iz ` ν2

13 Iy

¯

B2 ..
u

Bx2 “ ρA
..
u (A17)
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and

N “ cA
Bu
Bx
` ρ

´

ν2
12 Iz ` ν2

13 Iy

¯

B
..
u
Bx

(A18)

respectively. It should be pointed out that Equations (A17) and (A18) can also be easily degenerated
from Equations (A12) and (A11), respectively, by eliminating the electrically relative terms. If the
elastic rod is made of isotropic material, then the equivalent stiffness c and the Poisson’s ratios ν12, ν13

will be automatically degenerated to the Young’s modulus E and the Poisson’s ratio ν, respectively.
The governing equations (A17) and the constitutive relations (A18) will accordingly be degenerated
to those of the isotropic elastic Love rod, as given by Love [27], Graff [28], Doyle [29] (p. 140) and
Ravindra [30].
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