

Supplementary Materials: Non-Covalent Interactions in Hydrogen Storage Materials LiN(CH₃)₂BH₃ and KN(CH₃)₂BH₃

Filip Sagan, Radosław Filas and Mariusz P. Mitoraj

Table S1. Overall bonding energies ΔE_{total} (in kcal/mol) describing the interaction between two dimeric fragments in LiN(CH₃)₂BH₃ (the fragmentation as shown in Figure 2A) from Gaussian program.

Gaussian	BLYP-D3	MP2/6-311 + G **	PBE-D3/6-311 + G **	MO6-2X/6-311 + G **	WB97xd/6-311 + G **
ΔE_{total}	-29.57	-29.19	-29.00	-27.72	-31.20

Table S2. ETS energy decomposition results describing the interaction between two dimeric fragments in LiN(CH₃)₂BH₃ (the fragmentation as shown in Figure 2A) from ADF program.

Figure S1. Alternative views of LiN(CH3)2BH3 and KN(CH3)2BH3 crystals.

Figure S2. The tetrameric cluster model of LiN(CH₃)₂BH₃ directly taken from the crystal structure along with energy decomposition results describing the interaction between two dimeric fragments in LiN(CH₃)₂BH₃ (part **A**). Fragmentation pattern used in ETS-NOCV analysis is indicated by black dotted line. Part (**B**) displays the most relevant deformation density contributions describing Li…H–B interactions. Red color of deformation densities shows charge depletion, whereas blue an electron accumulation due to Li…H–B interaction.

Figure S3. Dimer of LiN(CH₃)₂BH₃ from the crystal structure containing BH \cdots B interactions together with results of ETS-NOCV analysis (in part (**B**)). Dimer was cut from the crystal structure as it is marked with black dotted lines (part (**A**)).

Figure S4. Atomic charges for the monomer and crystal tetramer of LiNMe₂BH₃ obtained from the Mulliken (black), Voronoi (green) and Hirshfeld (blue) approaches.

Figure S5. The electrostatic interaction between the monomers of LiNMe₂BH₃ connected through BH₃ units (**A**,**C**) calculated in the presense of the remaining two monomers (**B**,**D**).

Figure S6. The contours of molecular electrostatic potential for the LiNMe₂BH₃ monomer in the presense of point charges (placed in the Li positions) with different values: +0.1a.u, +0.6a.u. and 1.0 a.u. In addition Hirshfeld and Voronoi atomic charges are depicted.