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Abstract: Hybrid single crystals consisting of an organic surfactant and an inorganic moiety are
promising functional materials. Layered crystals composed from alternate inorganic and surfactant
layers are obtained by the template effect of long alkyl chain moiety. The composition, crystal packing,
and molecular arrangement of the hybrid single crystals are controllable by changing the inorganic
constituent and the surfactant molecular structure. The types of hybrid surfactant single crystals are
twofold: (i) crystals consisting of discrete inorganic cation coordinated by ligands having amphiphilic
moiety; and (ii) crystals comprising a surfactant cation and a discrete inorganic anion including
polyoxometalate (POM) oxide clusters. The POM-surfactant hybrid single crystals are rather rare, and
therefore promising as unprecedented functional materials. Their structural variation and functional
properties are discussed.

Keywords: inorganic–organic; hybrid material; single crystal; surfactant; polyoxometalate

1. Introduction

Construction of functional materials by a bottom-up strategy requires precise structural control
of the component species. Small molecular or ionic species of the sub-nanometer order (<1 nm) are
built into three-dimensional structures of the nano- or micrometer order. In the construction process,
molecular or ionic component structures should be controlled, and an assembling methodology of
molecular or ionic components is also quite significant.

A promising option for constructing functional materials is inorganic–organic hybrid materials [1–5].
We can expect synergy of the merits derived from inorganic and organic components. The inorganic
motif has wide options to select the consisting elements, and to bring thermal stability and various
functions. On the other hand, the organic motif enables easy control of the molecular structure.
We can make a flexible and precise design of the materials’ structures and functions, which leads
to novel functional materials. Among several assembling structures, the layered materials possess
a two-dimensional arrangement of constituent ions or molecules. This structural anisotropy is
beneficial to functional properties such as electronic or ionic conductivity [6–9]. In addition,
two-dimensional confinement of functional ions or molecules will lead to several interesting
properties [10–14].

To construct inorganic–organic hybrid layered structures, surfactants or molecules with long alkyl
chain(s) can be employed as an organic motif (Figure 1) because they self-assemble into a lamellar
structure to behave as a synthetic template [15–17]. As for inorganic motifs, metal ions such as
transition metals or lanthanide ions can contribute to the emergence of physicochemical functions such
as redox, magnetic, or photoluminescent properties [10–14]. In addition, the introduction of inorganic
motifs leads to an increase in melting point and thermal stability. Discrete inorganic ions contained in
the hybrid surfactant materials are metal cations coordinated by organic ligands, or inorganic anions
of metal halides [13], metal chalcogenides [16], and metal oxides (polyoxometalates, POMs) [18–26].
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inorganic anions of metal halides [13], metal chalcogenides [16], and metal oxides (polyoxometalates, 
POMs) [18–26]. 

 
Figure 1. Schematic representation of hybrid surfactant single crystals with layered structures. 

Inorganic–organic surfactant layered materials are better for fabricating crystalline materials 
since the well-ordered two-dimensional arrangement of ions and/or molecules is effective for the 
emergence of several functions. Crystalline layered materials with higher melting point and higher 
thermal stability are demanded especially as solid electrolytes for motor vehicles because they work 
at intermediate temperatures (373–573 K) [27–35]. Such compounds ideally should be obtained as 
single crystals. Single crystals have a distinct advantage in that their crystal structures can be clearly 
solved at an atomic level. Accurate elucidation of a material’s structure enables us to construct a 
rational synthetic methodology. Knowing the precise structural design of molecular constituents has 
allowed for high performance in crystalline hybrid materials [1–3,8,9]. 

Here recent progress in inorganic–organic hybrid surfactant crystals is briefly overviewed. 
Organic constituents with long alkyl chain (number of C atoms ≥ 8) are referred to as “surfactants” 
herein. Hybrid surfactant single crystals are classified into some categories, and their structures and 
characteristics as functional materials are reviewed. 

2. Hybrid Surfactant Single Crystals Constructed by Inorganic Ions 

Hybrid surfactant single crystals containing inorganic ions are intrinsically ionic compounds. 
These crystals are at first classified into two categories: (i) crystals with discrete inorganic metal 
cations of Mn+; and (ii) crystals comprising discrete inorganic anions such as [MX4]n−, [M2X6]n−, or 
[M4X10]n− (X = O, S, Cl, I, etc.), including POM cluster anions. 

2.1. Hybrid Surfactant Single Crystals with Discrete Inorganic Cations 

Hybrid surfactant single crystals containing discrete Mn+ metal cations are usually metal-
coordinated compounds, in which Mn+ is coordinated by organic surfactant ligands. Of such 
compounds, the most famous examples are probably chlorophyll molecules involved in 
photosynthesis in plants (Figure 2) [36,37]. The amphiphilic moiety of chlorophyll enables 
appropriate arrangements of its magnesium-containing hydroporphyrin moieties, which effectively 
absorb light as photo antennas. These coordination complexes composed of surfactant ligands [38–65] 
enable us to control the assembling manner of Mn+ components in the solid state, owing to the long 
alkyl chains (“fastener effect”) [66]. Moreover, the coordination environments of metal cations can be 
accurately and flexibly controlled by changing the surfactant ligand structure. This leads to precise 
design of properties derived from electronic states of the coordinated metal ion. In addition, the 
surfactant moiety can add liquid crystallinity to metal coordination compounds. 

Selected ligands employed in hybrid surfactant single crystals are shown in Figure 3. The 
structures of the coordinating part are well established in coordination chemistry: monodentate 
ligands (pyridine [38], 4,4′-bipyridyl [39], imidazole [40–43], N-heterocyclic carbene [44–47], 
phosphine [48]), bidentate ligands (ethylenediamine [49,50], carboxylato [51,52], sulfonato [53], 2,2′-
bipyridine [54], 1,10-phenanthroline [55,56], thiolato (μ2 bridge) [57]), tridentate ligands (terpyridine 
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Inorganic–organic surfactant layered materials are better for fabricating crystalline materials since
the well-ordered two-dimensional arrangement of ions and/or molecules is effective for the emergence
of several functions. Crystalline layered materials with higher melting point and higher thermal
stability are demanded especially as solid electrolytes for motor vehicles because they work at
intermediate temperatures (373–573 K) [27–35]. Such compounds ideally should be obtained as
single crystals. Single crystals have a distinct advantage in that their crystal structures can be clearly
solved at an atomic level. Accurate elucidation of a material’s structure enables us to construct a
rational synthetic methodology. Knowing the precise structural design of molecular constituents has
allowed for high performance in crystalline hybrid materials [1–3,8,9].

Here recent progress in inorganic–organic hybrid surfactant crystals is briefly overviewed.
Organic constituents with long alkyl chain (number of C atoms ě 8) are referred to as “surfactants”
herein. Hybrid surfactant single crystals are classified into some categories, and their structures and
characteristics as functional materials are reviewed.

2. Hybrid Surfactant Single Crystals Constructed by Inorganic Ions

Hybrid surfactant single crystals containing inorganic ions are intrinsically ionic compounds.
These crystals are at first classified into two categories: (i) crystals with discrete inorganic metal
cations of Mn+; and (ii) crystals comprising discrete inorganic anions such as [MX4]n´, [M2X6]n´,
or [M4X10]n´ (X = O, S, Cl, I, etc.), including POM cluster anions.

2.1. Hybrid Surfactant Single Crystals with Discrete Inorganic Cations

Hybrid surfactant single crystals containing discrete Mn+ metal cations are usually
metal-coordinated compounds, in which Mn+ is coordinated by organic surfactant ligands. Of such
compounds, the most famous examples are probably chlorophyll molecules involved in photosynthesis
in plants (Figure 2) [36,37]. The amphiphilic moiety of chlorophyll enables appropriate arrangements
of its magnesium-containing hydroporphyrin moieties, which effectively absorb light as photo
antennas. These coordination complexes composed of surfactant ligands [38–65] enable us to
control the assembling manner of Mn+ components in the solid state, owing to the long alkyl chains
(“fastener effect”) [66]. Moreover, the coordination environments of metal cations can be accurately
and flexibly controlled by changing the surfactant ligand structure. This leads to precise design of
properties derived from electronic states of the coordinated metal ion. In addition, the surfactant
moiety can add liquid crystallinity to metal coordination compounds.
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[58–60], 1,4,7-triazacyclononane [61]), and tetradentate ligands (Schiff base [62–64], 1,3,5,8,12-
pentaazacyclotetradecane [65]). Nitrogen atom-containing ligands have often been used, presumably 
due to the stability and versatility of coordination bonds. Ligands with a coordination number higher 
than 2 are effective due to the chelate or macrocyclic effect. 

 
Figure 2. Structure of chlorophyll a1. 

 

Figure 3. Selected ligands employed in the hybrid surfactant single crystals composed from discrete 
metal cations: (a) imidazole; (b) ethylenediamine; (c) carboxylato; (d) sulfonato; (e) 4,4′-bipyridyl;  
(f) 2,2′-bipyridine; (g) 1,10-phenanthroline; (h) terpyridine; (i) 1,3,5,8,12-pentaazacyclotetradecane; (j) 
Schiff base. R in the scheme represents amphiphilic moiety. 

Some of their coordination and packing modes are schematically extracted (Figure 4). The 
coordination mode depends on the number of surfactant ligands to coordinate to the metal cation, 
and on the number of amphiphilic chains of each ligand. Here, the coordination mode does not mean 

Figure 2. Structure of chlorophyll a1.

Selected ligands employed in hybrid surfactant single crystals are shown in Figure 3. The
structures of the coordinating part are well established in coordination chemistry: monodentate
ligands (pyridine [38], 4,41-bipyridyl [39], imidazole [40–43], N-heterocyclic carbene [44–47],
phosphine [48]), bidentate ligands (ethylenediamine [49,50], carboxylato [51,52], sulfonato [53],
2,21-bipyridine [54], 1,10-phenanthroline [55,56], thiolato (µ2 bridge) [57]), tridentate ligands
(terpyridine [58–60], 1,4,7-triazacyclononane [61]), and tetradentate ligands (Schiff base [62–64],
1,3,5,8,12-pentaazacyclotetradecane [65]). Nitrogen atom-containing ligands have often been used,
presumably due to the stability and versatility of coordination bonds. Ligands with a coordination
number higher than 2 are effective due to the chelate or macrocyclic effect.
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Figure 3. Selected ligands employed in the hybrid surfactant single crystals composed from discrete
metal cations: (a) imidazole; (b) ethylenediamine; (c) carboxylato; (d) sulfonato; (e) 4,41-bipyridyl;
(f) 2,21-bipyridine; (g) 1,10-phenanthroline; (h) terpyridine; (i) 1,3,5,8,12-pentaazacyclotetradecane;
(j) Schiff base. R in the scheme represents amphiphilic moiety.
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Some of their coordination and packing modes are schematically extracted (Figure 4). The
coordination mode depends on the number of surfactant ligands to coordinate to the metal cation, and
on the number of amphiphilic chains of each ligand. Here, the coordination mode does not mean
accurate coordination geometry. There are six typical coordination and packing modes: asymmetric
coordination of one single-chained ligand (Figure 4a) [38,39,55,61,65], symmetric coordination of two
single-chained ligands lying on the opposite sides of the metal cation (Figure 4b) [41–43,49,51,53,55,59,60],
symmetric coordination of one double-chained ligand with two chains at the opposite sides of the
metal cation (Figure 4c) [45,47,54,55,62], asymmetric coordination of two single-chained ligands
lying on the same side of the metal cation (Figure 4d) [44,46,48,56], asymmetric coordination of one
double-chained ligand with narrow space between the chains (Figure 4e) [50,54,63], and asymmetric
coordination of one double-chained ligand with wide space between the chains (Figure 4f) [41].
However, the essential feature is the formation of a layered structure that consists of Mn+ inorganic
layers and surfactant organic layers. The long amphiphilic chains are densely packed with or without
interdigitation, which depends on the chain length and structure of coordinating moiety. Some
ligands possess asymmetric coordination mode (Figure 4a,d–f); however, they usually form symmetric
packing in the single crystals. Although it is difficult to strictly categorize these coordination and
packing modes due to the variety of the ligand structures, monodentate ligands coordinate in both a
symmetric and asymmetric manner (Figure 4a,b). On the other hand, bidentate and tridentate ligands
seem to prefer symmetric coordination modes (Figure 4b,c)
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These hybrid surfactant crystals containing coordinated metal Mn+ cations exhibit spin crossover 
[56,58–60] and valence tautomerism [38] induced by changes in the coordination environment. 
Thermal motion in the long amphiphilic chains plausibly affects the electronic spin state of metal 
cations. These crystals intrinsically can exhibit the phase transition to the liquid crystalline state with 
an increase in the temperature as metallomesogens [67], and their mesomorphic property has been 
investigated [41–46,51,68,69]. Ionic conductivity [70,71], photoluminescence [39,54,62,63], catalytic 
activity [47,48], thin-film formation ability [39,69], and behavior as preparative precursor for metal 
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Figure 4. Extracted coordination and packing modes observed in hybrid surfactant single crystals
composed from discrete metal cations and surfactant ligands: (a) asymmetric coordination of one
single-chained ligand; (b) symmetric coordination of two single-chained ligands; (c) symmetric
coordination of one double-chained ligand; (d) asymmetric coordination of two single-chained ligands;
(e) asymmetric coordination of one double-chained ligand with narrow space between the chains;
(f) asymmetric coordination of one double-chained ligand with wide space between the chains. Here
“symmetric” means that amphiphilic chains lie in the opposite sides of metal cation, and “asymmetric”
means that amphiphilic chains lie on the same side of the metal cation.

These hybrid surfactant crystals containing coordinated metal Mn+ cations exhibit spin
crossover [56,58–60] and valence tautomerism [38] induced by changes in the coordination
environment. Thermal motion in the long amphiphilic chains plausibly affects the electronic spin state
of metal cations. These crystals intrinsically can exhibit the phase transition to the liquid crystalline
state with an increase in the temperature as metallomesogens [67], and their mesomorphic property
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has been investigated [41–46,51,68,69]. Ionic conductivity [70,71], photoluminescence [39,54,62,63],
catalytic activity [47,48], thin-film formation ability [39,69], and behavior as preparative precursor for
metal nanoparticles [43,57] have been explored recently.

2.2. Hybrid Surfactant Single Crystals with Discrete Inorganic Anions

Hybrid surfactant single crystals containing discrete inorganic anions are ionic salts of amphiphilic
surfactant cations and non-amphiphilic inorganic anions [72–90]. The inorganic anions are metal
halides, chalcogenides, and oxides, which vary from monomeric anions to highly polymeric anions
(Figure 5). Metal oxide cluster-surfactant hybrid crystals are mentioned as polyoxometalate (POM)
hybrid crystals in the next section. The examples of monomeric anion are [ZnCl4]2´ [72–74],
[PdCl4]2´ [76], [Co(CO)4]´ [79]. Representative polymeric anions are [Sn2S6]4´ [81], [Ge4S10]4´ [82],
[Ge4Se10]4´ [83,84], [Re6Se8(CN)6]4´ [85], and infinite planar anion of [PbI4]2´ [87–90]. The minus
charge of the inorganic anion is compensated for by the organic surfactant cation (Figure 6). These
hybrid crystals composed of discrete inorganic anions are less popular in number and variety
than the hybrid crystals consisting of discrete metal cations coordinated by amphiphilic ligands,
probably because a more specific combination of inorganic anion and surfactant cation is necessary.
The formation of single crystals tends to require size matching between the inorganic anions
and hydrophilic heads of surfactant cations, resulting in a specific combination of inorganic and
surfactant constituents. Alkylammonium (Figure 6c) [72,80,81,84,86,88] and alkyldiammonium
(Figure 6d) [73,89,90] often give single crystals, being different from the case of hybrid surfactant
single crystals of coordinated compounds. The primary ammonium cations can form hydrogen bonds
between inorganic anions by using N–H bonds to stabilize the crystal structures [87]. However, these
ammonium cations are not effective ligands to Mn+ cations, since the stabilization by the chelate effect
cannot be expected.
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with cationic surfactants. Oxide cluster anions are represented separately in Figure 7.
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([(CnH2n+1)C3H3N2(CH3)]+ (Cnmim), Figure 6g) [123,124] are employed. Double-headed surfactants 
employed are alkyldiammonium derived from diamine ([H3N(CH2)nNH3]2+ (H3NCnNH3), Figure 6d) 
[132,133] or synthetic bolaamphiphiles having two charged heterocyclic moieties [134–136]. These 
POM-surfactant crystals can flexibly select both inorganic and organic components, leading to 
promising functional inorganic–organic hybrids. 
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(Mo6); (b)α-[Mo8O26]4´ (α-Mo8); (c)β-[Mo8O26]4´ (β-Mo8); (d) δ-[Mo8O26]4´ (δ-Mo8); (e) [V10O28]6´

(V10); (f) [W10O32]4´ (W10); (g) [γ-Mo8O24(OC2H5)4]4´ (γ-Mo8); (h) [SiMo12O40]4´ (SiMo12);
(i) [V6O13{(OCH2)3CCH2OOC(CH2)16CH3}2]2´; (j) [Mo6O18(N-C6H3-2-(CH3)-4-OCOC17H35)]2´.

The hybrid surfactant crystals containing monomeric inorganic anions typically form layered
packing, as shown in Figure 8a. The packing manner comprises alternate stacking of inorganic
monolayers and organic surfactant layers. The single-headed surfactant forms a bilayer arrangement
to realize a dense packing of long alkyl chains (Figure 8a, left), while the double-headed surfactant
forms monolayer structures (Figure 8a, right). When a single-headed and single-chained surfactant is
employed, the inorganic layers sometimes form a bilayer structure, probably due to the small size of
monomeric ions (Figure 8b) [74,75,79,80]. To compensate for the negative charge of the inorganic anion,
the charged hydrophilic heads of the surfactant come close to the anion. The small monomeric anions
are necessary to form a bilayer arrangement to increase the number of surfactant cations associated
with the monomeric anions.
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The polymeric anions realize more integrated metal ions confined in the two-dimensional
inorganic layer, and are expected to emerge specific electronic properties [10–14,16]. The metal
halides tend to form a perovskite-type infinite two-dimensional layered structure [13], which consists
of a polymeric metal halide layer such as [PbI4]2´ (Figure 5) [87–90]. On the other hand, metal
chalcogenides form molecular cluster anions ([Sn2S6]4´, [Ge4S10]4´, [Ge4Se10]4´, [Re6Se8(CN)6]4´,
Figure 5), and are hybridized to form layered single crystals [81–85]. Such molecular cluster-surfactant
hybrid single crystals are much more unconventional materials.

The packing feature in the hybrid surfactant single crystals comprised of polymeric inorganic
anions is depicted in Figure 8c. The inorganic layers are composed from the monolayer of large
molecular cluster anions or an infinite two-dimensional anionic layer. These inorganic monolayers
are sandwiched by bilayers of the single-headed surfactant (Figure 8c, left) or monolayers of the
double-headed surfactant (Figure 8c, right). Due to the large size of polymeric anions, charged
surfactant hydrophilic heads of the surfactant cation can easily access anions, resulting in the monolayer
arrangement of the inorganic anions.

Metal halide infinite layers and chalcogenide molecular clusters comprise heavier and more
polarizable atoms (S, Cl, Se, Br, and I), and exhibit characteristic electronic property owing to their
polymeric structures such as semiconductivity [13,16,82–85,91–94] or photoluminescence [13,16,85,90].
Surfactant hybrid crystals composed from these metal halide and chalcogenide polymeric anions can
be applicable to dye-sensitized solar cells [95,96] and electronic devices [97].

3. Hybrid Surfactant Single Crystals Constructed by Polyoxometalates

Polyoxometalates (POMs) are a vast class of molecular oxide cluster anions, the main
constituents of which are early transition metals [18]. POMs have a wide variety of physicochemical
properties [8,9,18–26], and are promising candidates as inorganic components to construct hybrid
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surfactant single crystals. POMs have been hybridized with cationic surfactants to build up
inorganic–organic hybrid materials [98–106]. POM-surfactant hybrids can allow fine tuning of
the structure and function by changing the combination of POM anion and surfactant cation.
Several properties have been investigated as amphiphilic [98–100], magnetic [101], catalytic [102],
electrochemical [103], and photoluminescent [103–106] materials.

The layered POM-surfactant hybrids with two-dimensional anisotropy have been assembled as
liquid crystals [105], thin films [101,103,106], and mesostructured solids [100,102,107–112]. However,
most of them are materials with atomically ill-ordered structure. On the other hand, POM-surfactant
single crystals having rigid structures are much rarer hybrids. This is probably because the
POM-surfactant hybrids have a larger surfactant cation, which results in lower solubility to crystallize
from common solvents. In addition, their anisotropic layered structures often lead to fine needle or
thin plate crystals, challenging to analyze by single crystal X-ray structure analysis.

POM-surfactant hybrid layered crystals have been known since 1997 [113], and began to
be successfully obtained as single crystals in this decade [113–140]. The layered structure of
POM-surfactant crystals comprises alternate stacking of POM monolayers and surfactant bilayers,
as shown in Figure 8c. A few crystals possess the bilayer packing manner of POM anions [119,121].
The inorganic POM layer can be considered as an atomically regular two-dimensional POM array,
and the molecular arrangement of POM anion is controllable by changing the structures of surfactant
hydrophilic head. In addition, the layered distance depends on the structures of the constituent POM
and surfactant.

3.1. Hybrid Single Crystals Composed from Polyoxometalates and Surfactant Cations

A major class of POM-surfactant single crystals consists of cationic surfactants (Figure 6)
and conventional POM anions [113–136]. Although both POM anions and surfactant cations
are typical species, the combination is quite rare. The synthetic methods are based on a simple
cation-exchange reaction, and the products are precipitated from a POM-containing mother solution.
The methods using precursor species are also applicable [117,122]. This type of POM-surfactant
crystals has been obtained by employing POM anions as shown in Figure 7, where dichromate
anion ([Cr2O7]2´) is not shown. Both isopoly- and heteropolyoxometalate anions can form hybrid
single crystals with cationic surfactants. Isopolyoxometalates are hexamolybdate ([Mo6O19]2´ (Mo6),
Figure 7a) [117–119], octamolybate isomers (α-, β-, δ-[Mo8O26]4´ (Mo8), Figure 7b–d) [116,119–125,133–136],
decavanadate ([V10O28]6´ (V10), Figure 7e) [113,126], decatungstate ([W10O32]4´ (W10),
Figure 7f) [127,128], and polyoxomolybdate modified by small alkoxo ligands ([Mo4O10(OCH3)6]2´

(Mo4) [129], [γ-Mo8O24(OC2H5)4]4´ (γ-Mo8), Figure 7g [124]). The presence of isomer molecules
in the Mo8 anion is crucial for controlling the layered structure and chemical composition in the
POM-surfactant hybrid crystals, as mentioned below. A molybdenum nanocluster with higher
nuclearity ([Mo36O112(H2O)16]8´) can form hybrid single crystals [132]. Heteropolyoxometalate
hybrid crystals contain oxidized and reduced forms of silicomolybdate ([SiMo12O40]4´ (SiMo12),
Figure 7h) [130,131].

Two types of surfactant cations can be selected for the synthesis: (i) a surfactant with a single
hydrophilic head; or (ii) a surfactant with two hydrophilic heads. Single-headed surfactants contain
alkyltrimethylammonium ([CnH2n+1N(CH3)3]+ (CnNC3), Figure 6a) [113,115,116,119,125,126,130,131],
dialkyldimethylammonium ([(CnH2n+1)2N(CH3)2]+ ((Cn)2NC2), Figure 6b) [114,117], or alkylammonium
derived from primary amine ([CnH2n+1NH3]+ (CnNH3), Figure 6c) [123]. In addition, heterocyclic
surfactants such as pyridinium ([C5H5N(CnH2n+1)]+ (Cnpy), Figure 6e) [118,120–122,127–129],
pyridazinium ([C4H4N2(CnH2n+1)]+ (Cnpda), Figure 6f) [128], and methylimidazolium
([(CnH2n+1)C3H3N2(CH3)]+ (Cnmim), Figure 6g) [123,124] are employed. Double-headed surfactants
employed are alkyldiammonium derived from diamine ([H3N(CH2)nNH3]2+ (H3NCnNH3),
Figure 6d) [132,133] or synthetic bolaamphiphiles having two charged heterocyclic moieties [134–136].
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These POM-surfactant crystals can flexibly select both inorganic and organic components, leading to
promising functional inorganic–organic hybrids.

The layered structures are controllable by changing the length of surfactant alkyl chain [125]. The
case of hybrid crystals comprising Mo8 and CnNC3 (n = 8, 10, 12, 14, 16, 18) is shown in Figure 9.
Interestingly, there are two types of homologue structure, which change owing to the surfactant
length (Figure 9a,b). Shorter surfactants prefer β-Mo8 isomer, while longer ones prefer δ-Mo8 isomer,
conceivably due to the effect of van der Waals interactions between the surfactant alkyl chains. Such a
structural change in isomer molecules induced by the surfactant chain length is rather unique. The
layered distances of the CnNC3-δ-Mo8 crystals (n = 12, 14, 16, 18) depend linearly on the surfactant
length (Figure 9c).Crystals 2016, 6, 24 9 of 20 
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Figure 9. (a) Crystal structures of CnNC3–Mo8 hybrid crystals; (b) powder X-ray diffraction patterns
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Molecular arrangements of POMs are also controllable by changing the structure of surfactant
hydrophilic heads, because POMs strongly interact with hydrophilic moieties of employed surfactants.
Heterocyclic moieties of Cnpy, Cnpda, and Cnmim surfactants fully penetrate into POM inorganic
layers to isolate each POM anion in many cases [118,120,123,127,128]. The difference in the molecular
structures of the heterocyclic moiety causes different arrangements of W10 anions [128]. On the
other hand, less bulky heads of CnNH3, CnNC3, and (Cn)2NC2 tend to keep POM anions close,
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leading to a more densely-packed arrangement of POM anions. In the case of β-Mo8 hybrid crystals,
C12NH3 cations do not completely isolate the β-Mo8 anions to result in the close arrangement in
the β-Mo8 layers (Figure 10a), while more bulky hydrophilic heads of C12mim penetrate into the
β-Mo8 layers, resulting in the complete isolation of each β-Mo8 anion (Figure 10b) [123]. CnNC3-V10

(n = 10, 12) [113,126] and (C18)2NC2-Mo6 [117] also have rather dense packing of POM anions. Such
controllability in molecular arrangement and distance would affect the emergence of conductive or
magnetic property.
Crystals 2016, 6, 24 10 of 20 

 

 

Figure 10. Molecular arrangements of the inorganic layers in β-Mo8 hybrid crystals. The same 
arrangements are depicted in polyhedral (left) and space-filling (right) representations. (a) C12NH3-β-
Mo8; (b) C12mim-β-Mo8 [123]. Reproduced with permission from Ito, T. et al., Chem. Lett.; published 
by The Chemical Society of Japan, 2013. 

One option for the functionalized POM-surfactant crystals is to introduce other countercations 
such as proton or sodium into the crystal structures as well as surfactant cations. The crystals 
containing β-type Mo8 anions tend to crystallize with small countercations such as proton or sodium 
[120–122,124], and are promising candidates for the solid electrolyte for fuel-cell or sodium-ion 
batteries. The surfactant hybrid crystals containing small countercations are limited to the crystals 
consisting of β-Mo8, γ-Mo8, and V10 to date. Figure 11a shows the crystal structure of a proton-
containing Mo8 hybrid crystal, which has been synthesized by gradual oxidation of reduced 
polyoxomolybdate-surfactant hybrids [122]. In this crystal, a Mo8 anion with a charge of 4− is 
associated with two C16py surfactant cations. The remaining minus charge is compensated for by two 
protons to form a diprotonated β-Mo8 anion, which has been confirmed by bond-valence-sum (BVS) 
calculations. Interestingly, the inorganic layers are two-dimensional anionic layers composed of Mo8 
anions and ethanol molecules of crystallization (Figure 11a, right). The pyridine rings of the 
surfactants are not penetrated into the inorganic layer, implying the emergence of a surfactant-cation 
exchange. Another proton-containing hybrid crystal can be obtained by using V10 and C10NC3, and 
the V10 anions are diprotonated species (Figure 11b). The presence of protons has been clearly 
identified by the X-ray structure analysis [126]. In the C10NC3-V10 crystal, the diprotonated V10 anions 
are hydrogen-bonded to form a one-dimensional infinite chain structure (Figure 11b, right). The 
hydrogen-bonded V10 chains are closely located (the distance between each chain: 3.25 Å), and not 
completely isolated by the C10NC3 cations as mentioned above. The inorganic layer composed of 
hydrogen-bonded V10 infinite chains is considered a “pseudo two-dimensional” layer of diprotonated 
V10 anions. The close distance between protonated V10 infinite chains would possibly contribute to the 
emergence of proton conductivity, as described below. 

Sodium ion–containing hybrid crystals of Mo8 can be synthesized in the presence of a sodium 
ion by using Cnpy or Cnmim (Figure 12) [120,121,124]. In cases where a C16py cation is employed, one 
β-Mo8 anion having a charge of 4− is associated with three C16py surfactant cations and one sodium 
cation [120,121]. A one-dimensional chain structure composed from Mo8 and a sodium cation is formed 
(Figure 12b, upper). Different types of sodium ion–containing hybrid crystals have been obtained by 
using ionic liquid Cnmim (n = 10, 12) surfactant cations (Figure 12a) [124]. Notably in these cases, two 
sodium ions as well as two Cnmim cations are contained per one β- or γ-Mo8 having a charge of 4−, 
different from the C16py-β-Mo8 hybrid crystals. In the Cnmim-Mo8 hybrid crystals, two sodium 
cations connect Mo8 anions to form infinite one-dimensional chain structures (Figure 12b, bottom). 

Figure 10. Molecular arrangements of the inorganic layers in β-Mo8 hybrid crystals. The
same arrangements are depicted in polyhedral (left) and space-filling (right) representations.
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One option for the functionalized POM-surfactant crystals is to introduce other countercations
such as proton or sodium into the crystal structures as well as surfactant cations. The crystals
containing β-type Mo8 anions tend to crystallize with small countercations such as proton or
sodium [120–122,124], and are promising candidates for the solid electrolyte for fuel-cell or sodium-ion
batteries. The surfactant hybrid crystals containing small countercations are limited to the crystals
consisting of β-Mo8, γ-Mo8, and V10 to date. Figure 11a shows the crystal structure of a
proton-containing Mo8 hybrid crystal, which has been synthesized by gradual oxidation of reduced
polyoxomolybdate-surfactant hybrids [122]. In this crystal, a Mo8 anion with a charge of 4´ is
associated with two C16py surfactant cations. The remaining minus charge is compensated for by two
protons to form a diprotonated β-Mo8 anion, which has been confirmed by bond-valence-sum (BVS)
calculations. Interestingly, the inorganic layers are two-dimensional anionic layers composed of Mo8

anions and ethanol molecules of crystallization (Figure 11a, right). The pyridine rings of the surfactants
are not penetrated into the inorganic layer, implying the emergence of a surfactant-cation exchange.
Another proton-containing hybrid crystal can be obtained by using V10 and C10NC3, and the V10 anions
are diprotonated species (Figure 11b). The presence of protons has been clearly identified by the X-ray
structure analysis [126]. In the C10NC3-V10 crystal, the diprotonated V10 anions are hydrogen-bonded
to form a one-dimensional infinite chain structure (Figure 11b, right). The hydrogen-bonded V10

chains are closely located (the distance between each chain: 3.25 Å), and not completely isolated by
the C10NC3 cations as mentioned above. The inorganic layer composed of hydrogen-bonded V10

infinite chains is considered a “pseudo two-dimensional” layer of diprotonated V10 anions. The close
distance between protonated V10 infinite chains would possibly contribute to the emergence of proton
conductivity, as described below.
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Conductive property has been investigated for some POM-surfactant hybrid crystals. The 
measurements were carried out using the alternating current (AC) impedance method for a pelletized 
sample under an anhydrous atmosphere at intermediate temperature. Electronic conductivities for 
hybrid crystals of C16py-W10 (Figure 13) [127] and C16py-Mo4 [129] are in the range of 10−6 to 10−5 S 
cm−1 order. Although these values are much lower than the radical salts of POM containing an organic 
donor [8,9], POM-surfactant crystals with an appropriate combination of POMs and surfactants 

Figure 11. Proton-containing POM-surfactant crystals (left: crystal packing, right: molecular
arrangement in the inorganic layer). (a) C16py-β-Mo8 [122]; (b) C10NC3-V10 [126]. Reproduced
with permission from Mikurube, K. et al., J. Chem.; published by Hindawi Publishing Corporation, 2013
and from Ito, T. et al., Bull. Chem. Soc. Jpn.; published by The Chemical Society of Japan, 2012.

Sodium ion–containing hybrid crystals of Mo8 can be synthesized in the presence of a sodium
ion by using Cnpy or Cnmim (Figure 12) [120,121,124]. In cases where a C16py cation is employed,
one β-Mo8 anion having a charge of 4´ is associated with three C16py surfactant cations and one
sodium cation [120,121]. A one-dimensional chain structure composed from Mo8 and a sodium cation
is formed (Figure 12b, upper). Different types of sodium ion–containing hybrid crystals have been
obtained by using ionic liquid Cnmim (n = 10, 12) surfactant cations (Figure 12a) [124]. Notably
in these cases, two sodium ions as well as two Cnmim cations are contained per one β- or γ-Mo8

having a charge of 4´, different from the C16py-β-Mo8 hybrid crystals. In the Cnmim-Mo8 hybrid
crystals, two sodium cations connect Mo8 anions to form infinite one-dimensional chain structures
(Figure 12b, bottom).
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Figure 12. Sodium ion-containing POM-surfactant crystals. (a) C10mim-β-Mo8 (left) and
C12mim-γ-Mo8 (right); (b) difference in the arrangements of β-Mo8 anion and sodium cation depending
on the surfactant cation [120,121,124]. Reproduced with permission from Ito, T. et al., Chem. Lett.;
published by The Chemical Society of Japan, 2010; from Ito, T. et al., Chem. Lett.; published by The
Chemical Society of Japan, 2011; and from Ito, T. et al., Crystals; published by MDPI, 2014.
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Conductive property has been investigated for some POM-surfactant hybrid crystals.
The measurements were carried out using the alternating current (AC) impedance method for
a pelletized sample under an anhydrous atmosphere at intermediate temperature. Electronic
conductivities for hybrid crystals of C16py-W10 (Figure 13) [127] and C16py-Mo4 [129] are in the
range of 10´6 to 10´5 S cm´1 order. Although these values are much lower than the radical
salts of POM containing an organic donor [8,9], POM-surfactant crystals with an appropriate
combination of POMs and surfactants would be possible for another class of hybrid solid electrolytes.
On the other hand, the proton-containing C10NC3–V10 hybrid crystal exhibits anhydrous proton
conductivity of 6.5 ˆ 10´5 S cm´1 at 373 K [126]. Emergence of anhydrous proton conductivity at
intermediate temperatures is demanded for solid electrolyte application for fuel-cell technology [29–33].
Although the proton conductivity of C10NC3–V10 is rather unstable and lower than other POM
hybrid materials [34,35], the proton-containing POM-surfactant crystals would pave the way for an
unprecedented class of proton conductors.
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by MDPI, 2012.

The redox property, which characterizes POMs as specific functional materials [25,26], has also
been investigated. Electrochemical property has been measured in solution state for C16NC3-SiMo12

and its reduced hybrids [130,131]. A (C18)2NC2–Mo6 hybrid crystal containing a double-chained
surfactant has been found to form a self-assembled helical structure in dichloromethane/propanol
solution [141]. This helical structure exhibits reversible transformation into spherical assemblies
with accompanying photoreduction by UV light irradiation, and back to helical assemblies by H2O2

oxidation. Catalytic behavior is another characteristic of POM anions [24]. Catalytic oxidation of
acetaldehyde with H2O2 has been explored for bolaamphiphilic 1,ω-bis(pyridinium)alkane-Mo8

hybrid crystals (ω = 8–12) [134].

3.2. Hybrid Single Crystals Composed from Polyoxometalate Modified by Amphiphilic Moiety

A recent class of POM-surfactant hybrid crystals is single crystals composed from POMs
having amphiphilic moiety [137–140]. In this type of POM-surfactant crystals, amphiphilic
POMs are synthesized by grafting a long alkyl chain covalently into pre-modified or lacunary
POM anion by condensation reaction such as esterification [22,23]. Several types of POMs
with amphiphilic moiety (moieties) have been synthesized [98–100,112,142–149] from Lindqvist-,
Anderson-, and Keggin-type anions. However, the amphiphilic POMs analyzed from single
crystals have been limited to hexavanadate and hexamolybdate derivatives so far. Anderson-type
amphiphilic POMs have been reported to crystallize; however, the crystal structures have not
been fully solved due to severe disorder of the amphiphilic moieties [140]. The hexavanadate
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derivatives are single-chained [V6O13(OCH2)3CNH2(OCH2)3CNHCH2C6H4COOC16H33]2´ [138] and
double-chained [V6O13{(OCH2)3CCH2OOC(CH2)16CH3}2]2´ (Figure 7i) [137]. The hexamolybdate
derivative is single-chained [Mo6O18(N-C6H3-2-(CH3)-4-OCOC17H35)]2´ (Figure 7j) [139]. In these
three cases, amphiphilic POMs having a charge of 2´ crystallize with a tetrabutylammonium cation
(TBA). The packing manners consist of alternate stacking of an inorganic layer of POM cluster moiety
and an organic layer of amphiphilic moiety, being essentially similar to those observed in most
POM-surfactant hybrid crystals. Single-chained amphiphilic POMs comprise bilayer arrangements
of POMs [138,139], while a double-chained amphiphilic POM has a monolayer arrangement of POM
moiety [137]. The difference in the amphiphilicity due to the number of the long alkyl chain may cause
the different packing manner of amphiphilic POM layers. As for these crystals, cation exchange to
protons from TBA induces characteristic fluorescence [137] and catalysis [138], which demonstrates
a wide potential of amphiphilic POMs for functional materials.

4. Summary and Outlook

Hybrid surfactant single crystals containing an inorganic moiety have been evaluated in the
search for unprecedented functional materials. Layered crystals composed of inorganic layers and
surfactant layers are obtained due to the template effect of a long alkyl chain moiety. These crystalline
layered structures create the anisotropic arrangement of the inorganic component, which accounts
for the emergence of conductivity [7–9], two-dimensional confinement of magnetic molecules [10],
photocatalytic activity [11,12], and controlled luminescence [14,150].

The composition, crystal packing, and molecular arrangement of these hybrid single crystals
are controllable by changing the inorganic constituents and surfactant moieties. There are two types
of hybrid surfactant single crystals: (i) crystals consisting of a discrete inorganic cation coordinated
by ligands having amphiphilic moiety; and (ii) crystals composed from discrete inorganic anion
hybridized with surfactant cation. The crystals consisting of a discrete inorganic cation are suitable for
controlling the coordination environment of metal cations, resulting in precisely controlled properties
such as magnetism [56,58,151,152] or photoluminescence [153–155]. On the other hand, crystals
composed from discrete inorganic anions, including infinite two-dimensionally polymerized anions
and molecular cluster anions, can confine the metal components in the layered structures, which leads
to characteristic electronic properties [13,16] and device applications [95–97,156–158].

Some of the most promising functional inorganic anions are polyoxometalate (POM) cluster
anions. POM-surfactant hybrid single crystals, which are comprised of alternate inorganic POM layers
and organic surfactant layers, have been synthesized recently. POM-surfactant crystals containing
a typical POM anion and a surfactant cation have been obtained via a simple cation-exchange reaction.
Changing POM and surfactant molecular structures enables us to control the layered structure
including two-dimensional POM arrangement, and to introduce a small countercation such as proton
or sodium. Conductivity, redox property, and catalytic behavior have been explored. In addition,
amphiphilic POMs have been reported to form single crystals, and to exhibit characteristic properties
owing to the POM moiety. This type of POMs possesses a long alkyl chain moiety covalently grafted
directly onto a POM skeleton.

There are still several difficulties to overcome for the synthesis, structural prediction, and structure
analysis of hybrid surfactant single crystals. The distinct crystal and molecular structures are difficult
to analyze, since their crystals are often tiny and anisotropic (thin plates or fine fibers). To obtain
suitable single crystals sometimes requires slow crystal growth under mild conditions. Effective
options are to adjust the appropriate concentration of the dissolved sample and keep the temperature
constant during the crystallization. Synchrotron radiation is a powerful method for measurement.
Powder diffraction methods are difficult to apply to solving the structures of hybrid surfactant crystal
containing many heavy metals such as POM clusters, because the position of the light atoms (C and N)
in the surfactant moiety is difficult to discern due to their weak reflections in the diffraction data.
In addition, the emergence of characteristic properties is still developing; more intentional design of
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built-up hybrid crystals is needed. However, these difficulties deserve to be tackled in order to explore
the synthesis and functionalization of hybrid surfactant single crystals.
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