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Abstract: Starting from Ni-Co-Mn carbonate nanoparticles prepared by microreaction technology,
uniform spherical particles of Ni1/3Co1/3Mn1/3CO3 with a size of 3–4 µm were obtained by
a controllable hydrothermal conversion with the addition of (NH4)2CO3. Based on characterizations
on the evolution of morphology and composition with hydrothermal treatment time, we clarified
the mechanism of this novel method as a dissolution-recrystallization process, as well as the
effects of (NH4)2CO3 concentration on the morphology and composition of particles. By changing
concentrations and the ratio of the starting materials for nano-precipitation preparation, we achieved
monotonic regulation on the size of the spherical particles, and the synthesis of Ni0.4Co0.2Mn0.4CO3

and Ni0.5Co0.2Mn0.3CO3, respectively. In addition, the spherical particles with a core-shell structure
were preliminarily verified to be available by introducing nano-precipitates with different compositions
in the hydrothermal treatment in sequence.

Keywords: Ni-Co-Mn carbonate; nanoparticle; spherical particle; microreaction technology;
hydrothermal treatment

1. Introduction

LiCoO2 has been widely used as a positive electrode material in commercial lithium-ion batteries
because of its high capacity, as well as excellent stability [1]. However, cobalt also causes serious
problems, such as high price and environmental concerns. Alternatively, a promising material is
Li[NixCoyMn1−x−y]O2 with a layered structure, which is considered to be one of the best replacements
for LiCoO2 for hybrid electric vehicle (HEV) power source systems [2–8]. Since this material has
combined nickel, cobalt, and manganese together, it may show the advantages of these three metals in
terms of thermal stability, rate capability, and safety at a proper composition. In detail, introducing Co
can increase the stability of the structure and suppress the cation mixing, while too much Co causes
capacity loss; increasing the amount of Ni will be benefit the capacity of the material, but too much Ni
leads to the cation mixing, which decreases the cycling stability; a proper amount of Mn can improve
the safety, but too much Mn can change the structure from layered to spinel [9].

In general, researchers usually prepared NiCoMn (NCM) precursor (hydroxide or carbonate) and
then combined it with lithium salt. Many studies have shown that the electrochemical performance of
the final product strongly depends on the properties of the precursor, such as morphology [10–13],
size of the primary and secondary particles [13–16], size distribution [17], composition [6,8,9,18–21],
as well as structure [22,23]. Therefore, it is vital to control the precursor in order to obtain the
materials with excellent performance, for which a simple and controlled preparation method is highly
required. Until now, many methods have been developed, including co-precipitation [4,11], the sol-gel
method [24,25], the spray-dry method [5,18], the solid-state reaction [26], and others [27–30]. Among
these methods, the most popular one is co-precipitation since it is relatively simple to implement [4,31].
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The hydroxide precipitation has been widely investigated since it is much easier to produce the
precursor with high content of nickel and cobalt [22,23,32]. Meanwhile, carbonate co-precipitation is
good for producing Mn-rich material since MnCO3 is much more stable than NiCO3 and CoCO3 [33].
However, in the co-precipitation for producing hydroxide, Mn2+ is easy to be oxidized with an excess
of OH− locally to change into MnOOH and MnO2, so it is hard to strictly control the stoichiometric
ratio of the cathode material. On the other hand, in the co-precipitation for producing carbonate,
Mn2+ could be fixed by CO2−

3 and would not be changed during the reaction. Thus, we do not have to
provide an atmosphere without oxygen, and carbonate co-precipitation is a competitive method for
industrial application.

High volumetric energy density is highly desired for the lithium ion batteries used in electric
vehicles. The uniform distribution of spherical powders with high tap-density is the key for the
application of NCM material [34]. Many studies have been working on the tap density of powder
materials which depends highly on their morphology, size, and size distribution [35,36]. As is well
known, irregular morphology of particles could cause a bridging phenomenon to decrease the tap
density, and preparing spherical particles at micron size is an effective way to improve the volumetric
energy density of cathode materials. Moreover, spheres have excellent flow, dispersion, and processing
performance, which is beneficial for their applications.

However, the direct co-precipitation is a fast process that can produce a large number of nuclei
simultaneously, for which it is difficult to obtain spherical particles at micron size and control the
composition of Ni, Co, and Mn accurately. Aiming at these problems, researchers usually use
a simultaneous dripping method with a chelating agent. The dripping process is always very slow,
during which controlling the synthesis condition strictly is still a difficult and tedious task [4,17,37].
The hydrothermal method could also prepare NiCoMn precursors at micron size, but it is difficult to
control the morphology of particles and the starting materials are relatively expensive [38,39]. So far,
the preparation of carbonate precursor by using hydrothermal treatment has been rarely reported.

Herein, we provide a novel and controllable method combining microreaction technology and
hydrothermal treatment together for preparing Ni-Co-Mn carbonate precursor spheres at micron
size. In detail, firstly, primary homogeneous Ni-Co-Mn carbonate nanoparticles were obtained by
using a microreactor, an effective tool for carrying out nanoprecipitation due to its high mixing
efficiency [40–43]. Then, hydrothermal treatment was exploited to convert primary precipitates to
the spherical Ni-Co-Mn carbonate particles with the existence of ammonium carbonate. On the basis
of understanding the process and mechanism, we achieved the controlled synthesis of precursors
with different sizes and composition, and investigated the possibility of preparing core-shell materials
as well.

2. Results and Discussion

2.1. Synthesis and Characterization of Ni1/3Co1/3Mn1/3CO3

We characterized the products by scanning electron microscopy (SEM) (HITACHI, Tokyo,
Japan), X-ray diffraction (XRD) (Bruker, Karlsruhe, Germany), as well as inductively-coupled
plasma (ICP) (ThermoFisher, Walham, MA, USA) to confirm the effectiveness of our method in
preparing carbonate precipitates with desired composition and morphology. Figure 1 shows the
SEM images of Ni1/3Co1/3Mn1/3CO3 before and after hydrothermal treatment, respectively. As seen,
the hydrothermal treatment can change the morphology completely. Before hydrothermal treatment,
the precipitates are irregular agglomerates of sphere-like nanoparticles with the size of around 15 nm.
After hydrothermal treatment, we obtained uniform spherical particles with an average size of 3–4 µm.
The high-resolution SEM image shows these spherical particles at micron size are composed of cubic
nanoparticles with the size of less than 100 nm. The ICP characterization indicates the ratio of the
metallic elements in average is Ni:Co:Mn = 0.30:0.34:0.36, similar with the element ratio in the starting
materials used for primary nano-precipitates preparation.
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Figure 1. SEM images of the precipitates (a) before and (b) after hydrothermal treatment. The ratio of 
starting material, RM = 1:1:1(Ni:Co:Mn); the total concentration of metals, CM = 0.15 mol·L−1; the 
concentration of ammonia carbonate, C(NH4)2CO3 = 0.15 mol·L−1; and the temperature of hydrothermal 
treatment, Th = 180 °C; th = 24 h. 

Figure 2 shows the XRD patterns of Ni1/3Co1/3Mn1/3CO3 before and after hydrothermal treatment. 
Obviously, these two patterns are totally different, indicating that the precipitated sample is 
amorphous and, upon hydrothermal treatment, a crystalline material is obtained. Additionally, the 
pattern of the precipitates after hydrothermal is quite consistent with ideal MnCO3 and also shows 
broad integrated lines which can be attributed to the mix of NiCO3, CoCO3, and MnCO3. Figure 3 is 
the mapping of a single particle presenting the elemental distribution. The yellow, red, and blue dots 
represent the distributions of Ni, Co, and Mn, respectively. The brigthness of the color reflects the 
intensity of the element signal. Uniform brightness distribution reflects the composition distribution 
of the spherical precipates is uniform. According to these results, we could confirm that it is feasible 
to prepare spherical carbonate precursor at micron size with the same element ratio as the starting 
materials by the method combining microreaction technolgy with hydrothermal treatment. 

 
Figure 2. X-ray diffraction patterns for the precipitates before and after hydrothermal treatment.  
RM = 1:1:1(Ni:Co:Mn); CM = 0.15 mol·L−1; C(NH4)2CO3 = 0.15 M; Th = 180 °C; th = 24 h.  

Figure 1. SEM images of the precipitates (a) before and (b) after hydrothermal treatment. The ratio
of starting material, RM = 1:1:1 (Ni:Co:Mn); the total concentration of metals, CM = 0.15 mol·L−1;
the concentration of ammonia carbonate, C(NH4)2CO3 = 0.15 mol·L−1; and the temperature of
hydrothermal treatment, Th = 180 ◦C; th = 24 h.

Figure 2 shows the XRD patterns of Ni1/3Co1/3Mn1/3CO3 before and after hydrothermal
treatment. Obviously, these two patterns are totally different, indicating that the precipitated sample
is amorphous and, upon hydrothermal treatment, a crystalline material is obtained. Additionally,
the pattern of the precipitates after hydrothermal is quite consistent with ideal MnCO3 and also shows
broad integrated lines which can be attributed to the mix of NiCO3, CoCO3, and MnCO3. Figure 3
is the mapping of a single particle presenting the elemental distribution. The yellow, red, and blue
dots represent the distributions of Ni, Co, and Mn, respectively. The brigthness of the color reflects the
intensity of the element signal. Uniform brightness distribution reflects the composition distribution
of the spherical precipates is uniform. According to these results, we could confirm that it is feasible
to prepare spherical carbonate precursor at micron size with the same element ratio as the starting
materials by the method combining microreaction technolgy with hydrothermal treatment.
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Figure 3. SEM-EDX mapping photographs for Ni, Co, and Mn in products after hydrothermal 
treatment. RM = 1:1:1 (Ni:Co:Mn); CM = 0.15 mol·L−1; C(NH4)2CO3 = 0.15 mol·L−1; Th = 180 °C; th = 24 h. 

2.2. Synthesis Mechanism 

Hydrothermal treament commonly leads to a complex dissolution-recrystallization process 
determined by many factors, such as temperature, composition of solution, reaction time, and so on. 
In order to understand the details of reaction mechanism, we attempted to investigate the effects of 
these factors separately. Figure 4 shows the SEM images of products after hydrothermal treatment 
with different time. Evidently, the evolution of the morphology of the products is significant. The 
products after 24 h hydrothermal treatment (Figure 4d) have relatively uniform size and very smooth 
surfaces. Comparatively, for the products after 3 h, 6 h, or 9 h hydrothermal treament, there exist 
many large particles composed of irregular blocks. The energy dispersive spectroscopic (EDS) (Zeiss, 
Oberkochen, Germany) characterization shows that the main components of these blocks are Ni and 
Co. The general tendency is that the size distribution of particles becomes uniform and these large 
particles dimish gradually with the proceeding of hydrothermal treatment. We also noticed that the 
solution above the products is always purple, whaterever the hydrothermal treatment time is  
3 h, 6 h, or 9 h. However, it becomes almost colorless after 24 h hydrothermal treatment. The color of 
the solution indicates the existence of metal ions in the solution. These phenomena imply that the 
evolution of morphology surely carries out via a dissolution process. Since the blocks settled on the 
surface of spherical particles present a different appearance or size compared with the precipitates 
and the microblocks composing spherical particles, they might come from the cooling crystallization 
of metal carbonates from solution. Thus, the small content of Mn in the blocks may be determined 
the small content of Mn in the solution. Correspondingly, according to the stability contants of 
different metal ammonia complexes, the order of the metal contents in solution is just Ni > Co > Mn. 
However, monitoring the evolutions of pH and the ions constributions during hydrothermal 
treatment could help us understand the mechanism in depth and is worth further investigation. 

Figure 5 shows the effects of the concentration of (NH4)2CO3 in hydrothermal treatment. As seen, 
without the addition of (NH4)2CO3, the products are mainly of irregular bulk precipitates with rough 
surfaces. When 0.05 mol·L−1 (NH4)2CO3 was added, there are some rough spheres surrounded by 
many blocks (Figure 5b), and the components of these blocks are also mainly Ni and Co. As increasing 
the concentration of (NH4)2CO3 to 0.10 mol·L−1, these blocks become smaller, but still larger than  
100 nm. Figure 6 shows SEM mapping photographs of Ni, Co, and Mn corresponding to the products 
in Figure 5c. The signals of Ni and Co are very intensive in the surface layer of the spherical particle, 
and in the core the distributions of Ni, Co, and Mn are much uniform. It could be reasonably assumed 
that the environments for generating the core (smooth spheres) and the surface layer (irregular 

Figure 3. SEM-EDX mapping photographs for Ni, Co, and Mn in products after hydrothermal treatment.
RM = 1:1:1 (Ni:Co:Mn); CM = 0.15 mol·L−1; C(NH4)2CO3 = 0.15 mol·L−1; Th = 180 ◦C; th = 24 h.

2.2. Synthesis Mechanism

Hydrothermal treament commonly leads to a complex dissolution-recrystallization process
determined by many factors, such as temperature, composition of solution, reaction time, and so on.
In order to understand the details of reaction mechanism, we attempted to investigate the effects of
these factors separately. Figure 4 shows the SEM images of products after hydrothermal treatment with
different time. Evidently, the evolution of the morphology of the products is significant. The products
after 24 h hydrothermal treatment (Figure 4d) have relatively uniform size and very smooth surfaces.
Comparatively, for the products after 3 h, 6 h, or 9 h hydrothermal treament, there exist many large
particles composed of irregular blocks. The energy dispersive spectroscopic (EDS) (Zeiss, Oberkochen,
Germany) characterization shows that the main components of these blocks are Ni and Co. The general
tendency is that the size distribution of particles becomes uniform and these large particles dimish
gradually with the proceeding of hydrothermal treatment. We also noticed that the solution above the
products is always purple, whaterever the hydrothermal treatment time is 3 h, 6 h, or 9 h. However,
it becomes almost colorless after 24 h hydrothermal treatment. The color of the solution indicates the
existence of metal ions in the solution. These phenomena imply that the evolution of morphology
surely carries out via a dissolution process. Since the blocks settled on the surface of spherical particles
present a different appearance or size compared with the precipitates and the microblocks composing
spherical particles, they might come from the cooling crystallization of metal carbonates from solution.
Thus, the small content of Mn in the blocks may be determined the small content of Mn in the solution.
Correspondingly, according to the stability contants of different metal ammonia complexes, the order
of the metal contents in solution is just Ni > Co > Mn. However, monitoring the evolutions of pH and
the ions constributions during hydrothermal treatment could help us understand the mechanism in
depth and is worth further investigation.

Figure 5 shows the effects of the concentration of (NH4)2CO3 in hydrothermal treatment. As seen,
without the addition of (NH4)2CO3, the products are mainly of irregular bulk precipitates with rough
surfaces. When 0.05 mol·L−1 (NH4)2CO3 was added, there are some rough spheres surrounded by
many blocks (Figure 5b), and the components of these blocks are also mainly Ni and Co. As increasing
the concentration of (NH4)2CO3 to 0.10 mol·L−1, these blocks become smaller, but still larger than
100 nm. Figure 6 shows SEM mapping photographs of Ni, Co, and Mn corresponding to the products in
Figure 5c. The signals of Ni and Co are very intensive in the surface layer of the spherical particle, and in
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the core the distributions of Ni, Co, and Mn are much uniform. It could be reasonably assumed that the
environments for generating the core (smooth spheres) and the surface layer (irregular blocks) are quite
different. By adding 0.15 mol·L−1 of (NH4)2CO3, the blocks almost dissapeared and we fortunately
obtained uniform and smooth spherical particles with average size of 3–4 µm and the primary particle
is less than 100 nm. However, when the concentration of (NH4)2CO3 was increased to 0.25 mol·L−1

and 0.3 mol·L−1, and the particles are still smooth, but their size distributions become wider.
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Figure 6. SEM-EDX mapping photograph for Ni, Co and Mn in a single particle obtained by 
hydrothermal treatment. RM = 1:1:1 (Ni:Co:Mn); C(NH4)2CO3 = 0.1 mol·L−1; Th = 180 °C; and th = 24 h. 
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partly to increase the contents of metals in solution to relatively high levels; (2) the nuclei of secondary 
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Herein, we proposed a schematic mechanism, as shown in Figure 7, to explain the experimental
results based on following three facts: (1) the primary nano-precipitates could partly dissolve in
solution; (2) the spherical particles are composed of nanocrystals as the secondary precipitates with
crystalline structure different from the primary nano-precipitates; (3) (NH4)2CO3 has remarkable
influences on both the dissolution and recrystallization processes. We suppose that the nanocrystals
have good thermodynamics stability compared with the primary nano-precipiates and the (NH4)2CO3

in solution could dissociate to release NH3 to accelearte the conversion between them [4,38,44].
The conversion process includes following steps: (1) the primary nano-precipitates dissolve into
solution partly to increase the contents of metals in solution to relatively high levels; (2) the nuclei of
secondary precipitates generate and grow up to nanocrystals in solution, during which the dissolution
of the primary nano-precipitates continue to proceed; (3) the nanocrytals gradually aggregate to lead to
the generation and growth of spherical particles in solution; and (4) as all the primary precipitates are
consumed, the contents of metals in solution will decrease until the recrystalization process terminates
due to the limitation on thermodynamics equilibrium.

The addtion of (NH4)2CO3 could increase the contents of metals in solution, as well as the
conversion rate from primary nanoprecipitates to nanocrystals. Due to the difference of Ni, Co,
and Mn in complexation ability with NH3, the contents of Ni and Co are much higher than that of
Mn. As (NH4)2CO3 is in absence, the conversion is so slow that after 24 h hydrothermal treatment
plenty of nanoprecipitates still exist and spherical particles are seldom seen. As (NH4)2CO3 being at
low concentration, after 24 h hydrothermal treatment part of conversion could be achieved to generate
spherical particles. However, the contents of metals in solution (Ni and Co take the majority) may be
still at high levels, which could separated out as MCO3 in the cooling period before sampling. As the
concentration of (NH4)2CO3 being high enough, 24 h hydrothermal treatment can deplete the primary
precipitates. Meanwhile, with the increase of the concentration of (NH4)2CO3, more nuclei could
generate in solution, which will inhibit the growth and aggregation of nanocrystals to increase the size
of nanocrystals and the size of their aggregation; the conversion rate will increase to make the growth
and aggregation of nanocrystals easy to get out of control, and it will broaden the size distribution of
the final products. Nevertheless, the control on the growth and aggregation of nanocrystals, as well as
the optimization of (NH4)2CO3 concentration, are worthy of further investigations.
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Figure 7. The proposed mechanism for the synthesis of NCM carbonate spheres. The red circles and the blue 
squares indicate primary nano-precipitates and nanocrystals as the secondary precipitates, respectively. 
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According to the synthesis mechanism metioned above, if we added more primary 
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Figure 7. The proposed mechanism for the synthesis of NCM carbonate spheres. The red
circles and the blue squares indicate primary nano-precipitates and nanocrystals as the secondary
precipitates, respectively.

2.3. Regulations on the Size and Composition

According to the synthesis mechanism metioned above, if we added more primary
nanoprecipitates into the autoclave, more metals will be provided for generating larger spherical
particles. Therefore, we attempted to tune the size of the final products by changing the concentrations
of the starting materials used for primary nanoprecipitate preparation. As seen in Figure 8, when the
total concentration of metals (CM) is 0.15 mol·L−1, the average size of final products is 3.39 µm.
When we increased CM, the average size becomes 3.95 µm at CM = 0.30 mol·L−1 and 4.76 µm
CM = 0.6 mol·L−1. The size of the particles only increases with the increasing of CM, but it does
abide by the proportional relation. A possible reason is that more nuclei may be generated in the initial
period due to the acceleration of nanoprecipitate dissolution [45]. It can also explain why the size
distribution of final product becomes wider with the increase in concentration.
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As is well known, dissolution-recrystallization process can only change the morphology and
structure of particles. The composition cannot be changed without the addition of other reageants.
Inspired by this recognition, we also prepared precursors Ni0.4Co0.2Mn0.4CO3 and Ni0.5Co0.2Mn0.3CO3

by changing the ratio of metals in starting materials for primary nanoprecipitates preparation.
The morphology of the products was characterized by SEM. As is seen in Figure 9, all three products
are of spherical particles. Their compositions were determined by ICP, and are shown in Table 1.
The amount of Ni is always slightly lower than the ratio of the starting materials, but, in general,
the determined compositions agree well with that of the starting materials. The deviation of Ni content
may be attributed to the strong complexation ability between Ni and NH3. As a result, the residual
amount of Ni in the solution was the greatest, so the amount of Ni in the solid products is the least.
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Table 1. Element compositions of products when using starting materials at different ratios.

Ratio of Starting Materials Expected Formula
Determined Compositions

Ni Co Mn

Ni:Co:Mn = 1:1:1 Ni1/3Co1/3Mn1/3CO3 0.2958 0.3411 0.3631
Ni:Co:Mn = 4:2:4 Ni0.4Co0.2Mn0.4CO3 0.3819 0.2042 0.4139
Ni:Co:Mn = 5:2:3 Ni0.5Co0.2Mn0.3CO3 0.4968 0.2042 0.2990

Reently, the cathode materials with core-shell structures have been drawing more
attention [22,46,47], since the core-shell structures may restrict the formation of solid electrolyte
interphase and volume expansion. Our method of combining nanoprecipitate dissolution with
nanocrystal growth and aggregation may also be applied in preparing spherical particles with
core-shell structures, as we introduce the nanoprecipitates with different compositions in hydrothermal
treatments in sequence. Figure 10 shows the mapping of the obtained spherical particles with
a core-shell structure. The synthesis procedures are illustrated in the context. Herein, the core is
Ni1/3Co1/3Mn1/3CO3, and the shell is Co. The green image is the mapping of cobalt. We can see
a light circle around the surface of the particle, which means the content of Co in the surface layer is
higher than that in the core. Figure 11 shows the energy dispersive spectroscopic (EDS) of the core-shell
structure. The line scan was done at the white line in Figure 1a. From the images, we can see that the
Co element is in abundance at the surface. Therefore, we can confirm, preliminarily, that the core-shell
structure has been obtained.
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3. Materials and Methods

All of the reagents used during the experiments, including cobalt sulfate heptahydrate
(CoSO4·7H2O, 99.5%), nickel sulfate hexahydrate (NiSO4·6H2O, 99%), manganese sulfate monohydrate
(MnSO4·H2O, 99%), ammonium carbonate, sodium carbonate, and ethanol, were of analytical
reagent grade. CoSO4·7H2O, NiSO4·6H2O, and MnSO4·H2O were purchased from J&K Scientific
(Beijing, China). Ammonium carbonate and sodium carbonate were purchased from West Long
Chemical Co., Ltd. (Shantou, China). Ethanol was obtained from Beijing Tong Guang Fine Chemicals
Company (Beijing, China). All of the chemicals were used without any further purification. Furthermore,
the deionized water was used to make up solutions throughout the experiments.

The precursor was synthesized by two steps as shown in Figure 12. The first step is to
obtain homogeneous nanoparticles by using a home-made microreactor. The geometric size of
the microchannel was 15 mm × 0.5 mm × 0.5 mm (length × width × height). A stainless steel
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membrane with an average pore diameter of 5 µm was used as the dispersion medium. We chose
Ni1/3Co1/3Mn1/3CO3 as an example to describe the experimental procedures: (1) the dispersed fluid
containing 0.1M CoSO4, 0.1M NiSO4, and 0.1M MnSO4 was mixed with the continuous fluid containing
0.4M Na2CO3 in the microreactor, and both of them were delivered by pumps at the flow rate of
40 mL/min; (2) the slurry containing primary nanoprecipitate Ni1/3Co1/3Mn1/3CO3 was generated
and transferred into a 100 mL Telfon-lined stainless steel autoclave; (3) 0.3 M (NH4)2CO3 at equal
volume was added in the autoclave for hydrothermal treatment at 180 ◦C; (4) after 24 hours, the
final precipitates were separated from the solution by centrifugation, washed with deionized water
and ethanol several times, and dried in an oven at 120 ◦C overnight. As for the Ni0.5Co0.2Mn0.3CO3

and Ni0.4Co0.2Mn0.4CO3, we just changed the ratio of the starting materials to prepare the primary
nano-precipitates Ni0.5Co0.2Mn0.3CO3 and Ni0.4Co0.2Mn0.4CO3, respectively.

Crystals 2016, 6, 156  10 of 13 

 

containing 0.1M CoSO4, 0.1M NiSO4, and 0.1M MnSO4 was mixed with the continuous fluid 
containing 0.4M Na2CO3 in the microreactor, and both of them were delivered by pumps at the flow 
rate of 40 mL/min; (2) the slurry containing primary nanoprecipitate Ni1/3Co1/3Mn1/3CO3 was 
generated and transferred into a 100 mL Telfon-lined stainless steel autoclave; (3) 0.3 M (NH4)2CO3 at 
equal volume was added in the autoclave for hydrothermal treatment at 180 °C; (4) after 24 hours, 
the final precipitates were separated from the solution by centrifugation, washed with deionized 
water and ethanol several times, and dried in an oven at 120 °C overnight. As for the 
Ni0.5Co0.2Mn0.3CO3 and Ni0.4Co0.2Mn0.4CO3, we just changed the ratio of the starting materials to 
prepare the primary nano-precipitates Ni0.5Co0.2Mn0.3CO3 and Ni0.4Co0.2Mn0.4CO3, respectively. 

 

Figure 12. Schematic of the experimental process. 

As for the core-shell structure, the final products without drying were transferred into autoclave 
as seeds. Then the slurry containing primary nanoprecipitate CoCO3 as the shell material obtained 
from the microreactor and 0.3 M (NH4)2CO3 at equal volume were added into the autoclave for 
another hydrothermal treatment. The subsequent steps were the same. The samples used for EDS 
characterization were calcined at 500 °C in air for five hours. 

The morphology of the prepared powders was observed by scanning electron microscope (SEM; 
JSM-7401, JEOL; HITACHI TM 3000, Tokyo, Japan). Element mapping and line scan were carried out by 
using a scanning electron microscope with an energy dispersive spectroscope (SEM; Merlin, ZEISS, 
Oberkochen, Germany). The phase of samples was characterized by X-ray diffraction (XRD; D8-Aduance, 
BRUKER, Karlsruhe, Germany) using Cu Kα radiation (40 kV and 40 mA) at a scanning rate of  
5o min−1. The element composition of the synthesized product was determined by an inductively-coupled 
plasma-optical emission spectroscope (ICP-OES; IRIS Intrepid II XSP SPS, Thermofisher,  
Walham, MA, USA). 

4. Conclusions 

In our work, starting from the preparation of Ni-Co-Mn carbonate nanoparticles by using 
microreaction technology, we proposed a simple and novel method to realize the controllable 
hydrothermal conversion from Ni-Co-Mn carbonate nanoparticles to uniform and spherical particles 
of Ni1/3Co1/3Mn1/3CO3 with the assistance of ammonia carbonate. Based on the systematic 
characterizations on evolutions of the morphology and composition with hydrothermal treatment 
time, we clarified the mechanism for this novel method as a dissolution-recrystallization process, as 

Figure 12. Schematic of the experimental process.

As for the core-shell structure, the final products without drying were transferred into autoclave
as seeds. Then the slurry containing primary nanoprecipitate CoCO3 as the shell material obtained
from the microreactor and 0.3 M (NH4)2CO3 at equal volume were added into the autoclave for
another hydrothermal treatment. The subsequent steps were the same. The samples used for EDS
characterization were calcined at 500 ◦C in air for five hours.

The morphology of the prepared powders was observed by scanning electron microscope
(SEM; JSM-7401, JEOL; HITACHI TM 3000, Tokyo, Japan). Element mapping and line scan were
carried out by using a scanning electron microscope with an energy dispersive spectroscope
(SEM; Merlin, ZEISS, Oberkochen, Germany). The phase of samples was characterized by X-ray
diffraction (XRD; D8-Aduance, BRUKER, Karlsruhe, Germany) using Cu Kα radiation (40 kV and
40 mA) at a scanning rate of 5o min−1. The element composition of the synthesized product was
determined by an inductively-coupled plasma-optical emission spectroscope (ICP-OES; IRIS Intrepid
II XSP SPS, Thermofisher, Walham, MA, USA).

4. Conclusions

In our work, starting from the preparation of Ni-Co-Mn carbonate nanoparticles by using
microreaction technology, we proposed a simple and novel method to realize the controllable
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hydrothermal conversion from Ni-Co-Mn carbonate nanoparticles to uniform and spherical particles
of Ni1/3Co1/3Mn1/3CO3 with the assistance of ammonia carbonate. Based on the systematic
characterizations on evolutions of the morphology and composition with hydrothermal treatment time,
we clarified the mechanism for this novel method as a dissolution-recrystallization process, as well as
the effects of (NH4)2CO3 concentration on the morphology and composition distribution. Furthermore,
by changing the concentrations and the ratio of the starting materials for nano-precipitation preparation,
we achieved monotonic regulation on the size of the spherical particles of Ni1/3Co1/3Mn1/3CO3,
and the synthesis of Ni0.4Co0.2Mn0.4CO3 and Ni0.5Co0.2Mn0.3CO3, respectively. In addition,
we preliminarily verified that the spherical particles with core-shell structure were available by
introducing nanoprecipitates with different compositions in the hydrothermal treatment in sequence.
The potential of this method in applications could be expected for the preparation of spherical particles
with specially-designed profiles of composition due to its convenience and adaptability.
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