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Abstract: Strained-layer superlattices (SLSs) are an active research topic in the molecular beam epitaxy
(MBE) and infrared focal plane array communities. These structures undergo a >500 K temperature
change between deposition and operation. As a result, the lattice constants of the substrate and
superlattice are expected to change by approximately 0.3%, and at approximately the same rate.
However, we present the first temperature-dependent X-ray diffraction (XRD) measurements of
SLS material on GaSb and show that the superlattice does not contract in the same manner as the
substrate. In both InAs/InAs0.65Sb0.35 and In0.8Ga0.2As/InAs0.65Sb0.35 SLS structures, the apparent
out-of-plane strain states of the superlattices switch from tensile at deposition to compressive at
operation. These changes have ramifications for material characterization, defect generation, carrier
lifetime, and overall device performance of superlattices grown by MBE.

Keywords: Type-II superlattice; MWIR; infrared detectors; InAs/InAsSb; InGaAs/InAsSb; XRD;
temperature dependence

1. Introduction

Strained layer superlattices (SLSs) are an area of interest for large area infrared focal plane arrays.
In comparison to HgCdTe, SLS structures can be deposited on inexpensive substrates, do not require
extensive safety modifications for the deposition of mercury, and can take advantage of commercial
foundries. As a result, multiple academic [1–3], industrial [4,5], and government groups [6–9] have
researched these structures using molecular beam epitaxy (MBE). The original structures consisted
of InAs/InGaSb [10], which were followed by gallium-free designs (InAs/InAsSb) [1]. Newer
versions include InGaAs/InAsSb ternary SLS [11] and InAs/AlAs/AlSb/InAsSb W-structures [6,12].
The overall performance of SLS-based infrared photodetectors has improved to the point where they
have similar dark current (Rule 07) [13] and external quantum efficiency to those based on HgCdTe.
However, SLS still has not outperformed HgCdTe, most likely because of some combination of
minority carrier lifetime [1], vertical minority carrier mobility [14], and low absorption coefficient [6,15].
Improvements to these characteristics will require further refinements in superlattice modeling, device
design, and material deposition.

Modeling and characterization of SLS structures typically take place at 80–300 K, and as a result,
almost all strain calculations occur in this temperature region as well. However, materials expand and
contract with temperature change and the linear coefficient of thermal expansion (CTE) for bulk III/V
materials is 1–5 × 10−5 Å/K [16]. While the linear CTE is small, the temperature change between
material deposition (650–725 K), ex situ characterization (298 K), and operation (80–120 K) is rather
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large. This temperature swing leads to changes in lattice constant on the order of 0.3%, which is far
greater than the lattice mismatch of the superlattice to the substrate at room temperature (<0.1%).

In this letter, we present the first temperature-dependent X-ray diffraction (XRD) measurements of
lattice constant for both InAs/InAs0.65Sb0.35 and In0.8Ga0.2As/InAs0.65Sb0.35 SLS structures. We show
that while the GaSb substrate behaves mostly according to theoretical models, the superlattice
structures do not necessarily follow. The CTE for both structures is considerably smaller than that
of bulk material, and in the case of the ternary superlattice, is almost zero. The ramifications on the
strain state, its sensitivity to modeling conditions, and the difficulty of meeting the “zero stress” strain
condition in MBE are discussed [17], as these are important considerations for the MBE user community.

2. Results

Temperature dependent XRD scans of InAs/InAs0.65Sb0.35 (18 ML/6 ML) superlattices are shown
in Figure 1. For clarity, the scans are split into the substrate/superlattice peak (upper frame),
the SL −1 peak (lower left frame), and the SL +1 peak (lower right frame). Faint Pendellösung
fringes are found on all three peaks and across all temperatures, indicating reasonable material
quality. The GaSb substrate is identified as the highest, sharpest peak in the upper frame (annotated).
Its location monotonically shifts to a higher angle with temperature as the substrate contracts with
decreasing temperature. Meanwhile, the superlattice peak overlaps the substrate peak across the
entire temperature range, and its location can be somewhat identified at the temperature extremes
as a shoulder. At intermediate temperature (e.g., 248 K), it is very difficult to absolutely identify the
superlattice peak location. However, it is evident that the SL 0 peak switches from the right side of the
substrate to the left as the sample cools; this is typically, albeit incorrectly, considered to be a change
of the superlattice strain state from tensile to compressive [17]. The SL −1 and SL +1 peak locations
also move in concert, indicating that the average out-of-plane lattice constant of the superlattice is
changing but that the superlattice period is not necessarily changing at the same rate. The out-of-plane
strains, based on a full elastic approach, are −0.039% at 298 K and −0.020% at 173 K. The full width at
half-maximum (FWHM) of the SL +1 peak is 81 arcsec at 298 K inω-2θ notation.
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Figure 1. (Upper frame) X-ray diffraction (XRD) scans of the substrate and InAs/InAsSb SL 0 peak 
from 173–298 K. The substrate and superlattice have approximately the same average out-of-plane 
lattice constant. (Lower left frame) The SL −1 peak of the superlattice. Pendellösung fringes are 
evident across temperature. (Lower right frame) The SL +1 peak of the superlattice. The peak behaves 
similarly to the SL −1 peak.  

Figure 1. (Upper frame) X-ray diffraction (XRD) scans of the substrate and InAs/InAsSb SL 0 peak
from 173–298 K. The substrate and superlattice have approximately the same average out-of-plane
lattice constant. (Lower left frame) The SL −1 peak of the superlattice. Pendellösung fringes are evident
across temperature. (Lower right frame) The SL +1 peak of the superlattice. The peak behaves similarly
to the SL −1 peak.
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Temperature-dependent XRD scans of In0.8Ga0.2As/InAs0.65Sb0.35 (8 ML/9 ML) superlattices are
shown in Figure 2. Pendellösung fringes are not evident in this sample, although it is possible to see
them at lower temperatures. Material quality could be the cause of the smeared fringes, although it
is not clear if this was caused by strain-induced segregation of gallium or antimony [18], clustering
caused by lower gallium adatom migration [19], or something else. However, the substrate and
superlattice peaks are readily identifiable in the upper frame. The substrate peak location moves
monotonically with temperature, much like the previous sample. The superlattice peak location
barely changes, which indicates that the average out-of-plane lattice constant of the superlattice is not
changing. The SL –1 and SL +1 peaks exhibit similar behavior, neither moving in concert nor moving
apart. The out-of-plane strains, based on a full elastic approach, are −0.258% at 298 K and −0.191% at
173 K. The FWHM of the SL +1 peak is 74 arcsec at 298 K inω-2θ notation.
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identical, and can be found within the bounds of the models. A linear fit is performed across the 
temperature range, which indicates that the linear CTE for GaSb is 3.46 × 10−5 Å/K, with an intercept of 
6.09642 Å at 298 K. Vurgaftman uses a value of 4.72 × 10−5 Å/K, but the differences could be explained 
by substrate doping or improvements in substrate quality [16,21]. The Nilsen model used a  
fourth-order polynomial and was performed over a different temperature range (305–819 K), which 
could explain the larger error at low temperatures [20]. Nilsen’s linear CTE estimate is 4.37 × 10−5 Å/K, 
which is slightly closer to our estimate. The Adachi model is the closest, with a linear CTE of  
3.87 × 10−5 Å/K, and an intercept of 6.09593 Å at 298 K [22]. 

Figure 2. (Upper frame) XRD scans of the substrate and InGaAs/InAsSb SL 0 peak from 173–298 K.
The substrate and superlattice remain compressively strained throughout. (Lower left frame)
The SL −1 peak of the superlattice. The peak location does not change monotonically. (Lower right
frame) The SL +1 peak of the superlattice. The peak behaves similarly to the SL −1 peak.

The lattice constant of GaSb was calculated using both experimental data and
empirical/theoretical models [16,20–22]. The results are found in Figure 3. The experimental
values for both samples are almost identical, and can be found within the bounds of the models.
A linear fit is performed across the temperature range, which indicates that the linear CTE for GaSb is
3.46 × 10−5 Å/K, with an intercept of 6.09642 Å at 298 K. Vurgaftman uses a value of 4.72 × 10−5 Å/K,
but the differences could be explained by substrate doping or improvements in substrate quality [16,21].
The Nilsen model used a fourth-order polynomial and was performed over a different temperature
range (305–819 K), which could explain the larger error at low temperatures [20]. Nilsen’s linear CTE
estimate is 4.37 × 10−5 Å/K, which is slightly closer to our estimate. The Adachi model is the closest,
with a linear CTE of 3.87 × 10−5 Å/K, and an intercept of 6.09593 Å at 298 K [22].
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Figure 3. GaSb lattice constant based on models from the literature, as well as measured values from
both samples (labeled by their superlattice).

The average out-of-plane lattice constants of the superlattices are plotted in Figure 4.
While the In0.8Ga0.2As/InAs0.65Sb0.35 sample had a clear superlattice peak that could be separated,
the InAs/InAs0.65Sb0.35 sample did not. In this instance, the SL −1 and SL +1 peaks were converted
into reciprocal lattice units, and an average was taken to determine the SL 0 location. These measured
values are compared to the theoretical values calculated from a full elastic approach, an average
lattice approach, a strained average lattice approach, and NRL MultiBands [21]. The first three
approaches can be found in Ekins-Daukes et al. as Equation 3, Equation 1, and Equation 4 (ν = 0.35) [17]
and the average lattice approach is the most commonly found in the MBE user community. The
In0.8Ga0.2As/InAs0.65Sb0.35 sample exhibits almost no change in average out-of-plane lattice constant
(effective linear CTE near zero). Meanwhile, the InAs/InAs0.65Sb0.35 sample exhibits some change
in lattice constant, and the measured linear CTE is 2.14 × 10−5 Å/K while the theoretical elastic
value is 2.16 × 10−5 Å/K. The other models exhibit values between 2.8 × 10−5 to 3.3 × 10−5 Å/K.
The ternary superlattice also exhibits similar slopes for both the average lattice and strained average
lattice calculations, unlike the gallium-free design. The lines are effectively parallel because of
the similar amounts of strain and the elastic properties of each layer. The strain balancing of the
ternary superlattice, as opposed to strain-thickness balancing with InAs, is unique amongst medium
wavelength infrared (MWIR) superlattice designs, and provides more ability to tune the bandgap
while maintaining the “zero stress” condition.
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Finally, the superlattice period was calculated based on the separation between the SL −1 and
SL +1 peaks across temperature. Theoretical calculations by all four approaches predict a monotonic
decrease in the period with decreasing temperature, but this was not observed in either measured
sample, even when the period was verified against higher order peaks (e.g., SL 2 peaks). The most
likely causes of this discrepancy is the small change in 2θ peak separation (0.002◦) given the width of
the SL peaks and the resolution of the diffractometer. Given the near constant period and relatively
small changes in strain over temperature, the bandgap shift of SLSs can be mostly attributed to changes
in the bandgap of the constituent layers (e.g. InAs, InAs0.65Sb0.35, etc.).

3. Discussion

The results of this study demonstrate that the out-of-plane lattice constants of InAs/InAs0.65Sb0.35

and In0.8Ga0.2As/InAs0.65Sb0.35 superlattices change at different rates versus temperature than the GaSb
substrate, and that it is extremely difficult to measure changes in period across temperature. In the case
of these SLS structures, the difference in the lattice constant mismatch at the deposition temperature
could conceivably be responsible for the lower quality material in In0.8Ga0.2As/InAs0.65Sb0.35.
The experiment also shows why the average lattice constant method is so popular in the MBE user
community, in that it has the best fit to experiment for both superlattices at room temperature. Since
MBE users want to lattice-match the in-plane lattice constant with the substrate at the deposition
temperature—the “zero stress” condition—this leads to inaccurate calculations and superlattice
designs, which require a full elastic treatment. Further studies using in situ XRD [23], across various
superlattice compositions, and at higher ex situ measurement temperatures—as well as asymmetric
scans—should help to elucidate the exact linear CTE, elastic properties, and strain state at the deposition
temperature. Unfortunately, even small changes in the linear CTE of these materials lead to very large
changes in the “zero stress” condition. A commonly used 18/6 ML InAs/InAs0.6Sb0.4 superlattice [14]
would require a 100 K change in deposition temperature to match the “zero stress” condition if the
GaSb CTE parameters were changed from those in Adachi to the ones calculated here. These changes
in conditions also assume perfect compositional and temperature uniformity across the substrate,
which is not currently achievable [24]. It is also evident that metalorganic chemical vapor deposition
(MOCVD) might require different SLS composition/period combinations to meet the “zero stress”
condition, given the higher substrate temperatures necessary for precursor decomposition [25].

4. Materials and Methods

The SLS structures (500 nm thick) were deposited on lightly doped n-type GaSb (100) substrates
using a Veeco Gen930 solid source molecular beam epitaxy reactor (Veeco, New York, NY, USA). These
structures were designed to have the same bandgap [11], which would enable a fair comparison of
absorption across each and ensure similar substrate temperatures during deposition. The deposition
followed the standard III/V MBE deposition process, where the substrate was heated to 350 ◦C
before applying an Sb2 overpressure. After surface oxide removal at 530 ◦C, the samples were
cooled to 510 ◦C and a GaSb buffer was grown. Details of the sample growth process may be
found elsewhere [11], but care was taken to limit the V/III atomic flux ratio to as low of a number as
possible. Early calibration samples were Group III-rich in some cases, which established the lower limit.
After deposition, the samples were characterized using standard material characterization at room
temperature, including atomic force microscopy, difference interference microscopy, Fourier-transform
infrared spectroscopy, photoluminescence, and XRD. These results indicated that all samples were
deposited as designed. The XRD measurements were taken on a PANalytical Empyrean X-ray
diffractometer using a hybrid monochromator (Cu Kα1) on the incident beam and a triple-axis analyzer
(0.0033◦ acceptance angle) with proportional detector on the diffracted beam. The temperature stage
was a DCS 350 (Anton Paar, Graz, Austria) domed cooling stage, which was configured for cryogenic
operation from 173 K to 298 K. The X-ray beam and detector were aligned when the stage was at room
temperature, and then aligned on the sample’s substrate peak by optimizingω, 2θ-ω, and χ iteratively.
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A symmetric 2θ-ω scan was then measured and the stage temperature lowered. After each temperature
change, the beam was realigned on the substrate by changingω and 2θ-ω to account for changes in
the stage’s orientation/position as it cooled. It should be noted that the 2θ angle is recorded instead of
theω angle, which is more commonly reported, because sample tilts do not affect the 2θ angle directly.
Once the full scan was complete, the stage was warmed back to 25◦C, and an additional short scan
was performed to verify repeatability and that nothing else had changed in the system. The scans were
repeatable both in peak location (2θ-ω) and peak intensity (counts per second). All scans were of the
004 reciprocal lattice point, and the X-ray wavelength is 1.540598 Å, per The manufacturer.

5. Conclusions

In conclusion, we provide the first temperature-dependent XRD measurements of SLS on GaSb
grown by MBE. The extracted GaSb lattice constant matches the empirical models to within 0.1%.
Meanwhile, the superlattice structures exhibit little change in period or average out-of-plane lattice
constant across a 125 K range, especially in relation to commonly used approximations in the MBE
community. Furthermore, we show that the apparent strain state of the out-of-plane superlattice is
highly dependent on measurement temperature and is not necessarily consistent with the strain state
at the growth (>650 K) or operating (80–120 K) temperatures. Indeed, “zero stress” lattice-matching of
superlattices during deposition is not trivial for high-quality MBE deposition.
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