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Abstract: The 2D outlook of graphene and similar layers has initiated a number of theoretical
considerations of electronic structure that are both interesting and exciting, but applying these ideas
to real layered systems, in terms of a model 2D system, must be done with extreme care. In the
present review, we will discuss the applicability of the 2D concept with examples of peculiarities
of electronic structures and interactions in particular layered systems: (i) Dirac points and cones
in graphene; (ii) van der Waals interaction between MoS2 monolayers; and (iii) the issue of a 2D
screening in estimates of the band gap for MoS2 monolayers.
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1. Introduction

Layered systems have special properties which make them very promising in various applications
such as nanoelectronics and catalysis [1–8]. The variety of graphene-like atomic layers can now
be synthesized by means of the liquid exfoliation technique, which provides opportunities for
systematically tailoring the surface properties [1,9]. In electronic applications of the layered systems,
one of the most important issues is the width of the band gap, which is absent in graphene.
The metallicity is usually inappropriate for application, and a number of recent studies has been
devoted to the band structures of graphene nanoribbons, where the gap opens because of the
spatial restrictions. A great interest in the MoS2, a typical representative of layered transition metal
dichalcogenides, has been roused not only by its well-known lubrication properties but also by its very
suitable band gap width (about 1 eV) for applications in nanoelectronics [10].

Several transition-metal dichalcogenides exhibit the transformation from indirect to direct
band gap semiconductors as they are thinned down to a single monolayer. For example, a MoS2

monolayer exhibits a dramatic increase in luminescence quantum efficiency compared to the bulk
material [11,12]. The explanation for these phenomena was found with the help of the band structure
calculations [12–16], which have revealed the transformation of the band gap from an indirect one for
the bulk MoS2 to a direct one for the monolayer and an increase in the width of the band gap.

It is well established that DFT underestimates band gaps and, for bulk band structures of
semiconductors and insulators, much better values in general can be obtained using the quasiparticle
approach in GW approximation suggested by Hedin [17]. This method provides an estimate of the
self-energy operator (seen from the perspective of electron density) by using Green’s function G for
the electron system, in the screened Coulomb field W. Parameters of screening and inverse dielectric
function are obtained with solutions of Kohn-Sham (KS) equations, which allow the estimation
of many-body corrections to the KS bands. The great success of GW in various applications for
semiconductors ultimately proves its usefulness and validity for bulk calculations. However, in the
2D (2-dimensional) case, the screening dramatically differs from the screening in a bulk, so that the

Crystals 2016, 6, 143; doi:10.3390/cryst6110143 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
http://www.mdpi.com/journal/crystals


Crystals 2016, 6, 143 2 of 13

validity of the dielectric function in 2D systems is not obvious, as discussed in the present review
paper and illustrated by examples of calculations of the band structure of free MoS2 monolayers.

One of the most exotic—and generally accepted—theories is the existence of relativistic effects
in graphene, leading, in particular, to the emergence of the Dirac cones in the electronic structure
(see, e.g., [2–6] for reviews). The band structure of graphene in vicinity of the K point can be depicted
with the help of conical surfaces—the Dirac cones—similar to light cones, which makes the analogy
with photons even more transparent. Consequently, it was concluded that electrons at the K point
also must be zero mass particles, that is, become massless Fermions instead of usual quasiparticles in
solids. As such, they obviously could not be treated by Schrödinger’s equation and therefore require
the Dirac theory. There is a great number of theoretical papers devoted to applications of the Dirac
theory to graphene-containing layered systems (for review, see, e.g., [2–6]). A powerful technique of
quantum electrodynamics and group theory has provided a detailed explanation of the peculiarities of
the graphene electronic structure. It should be mentioned, however, that the linear dispersion and EF

band crossing at the K point were obtained from band structure calculations performed with one or
another form of Schrödinger’s equation (for example, within DFT or tight-binding approximation),
which afterwards were suggested to be invalid.

In the following sections, we will discuss the applicability of the 2D concept with examples
of peculiarities of electronic structures and interactions in particular layered systems: (i) Dirac
points and cones in graphene (Section 2); (ii) van der Waals interaction between MoS2 monolayers
(Section 3); (iii) screening and estimates of the band gap for MoS2 monolayer (Section 3). The band
structures of model layered systems, distributions of electronic densities, and interlayer interactions,
presented in Figures 1–4, were calculated with the ABINIT program package, using the supercell
model, norm-conserving pseudopotentials, and LDA approximation for exchange-correlation; see [15]
for details. Main conclusions and final remarks are presented in Section 4.

2. Dirac Cones and Buckling in Graphene and Similar Layers

The band structure of graphene indeed has a quite unusual feature—the crossing of the Fermi level
at the K point of the Brillouin zone (the Dirac point) by bands with a linear dispersion relation, thus
forming Dirac cones (Figure 1a). As mentioned above, the zero-gap property of graphite and graphene
restricts the area of their applications. For this reason, there is considerable activity in search of ways
to open and control the band gap in graphene. Several methods have been proposed, in particular
(i) adsorption interaction with the substrate and intercalation [7,18,19]; (ii) lattice distortion causing
the symmetry reduction [2,3,20–24]; and (iii) structural confinements (such as in nanoribbons and
islands) [25,26]. The produced band gaps were observed in photoemission experiments (in particular,
with help of the modern real-time band mapping technique), and thus were considered to prove the
Dirac theory due to the observations of cone-like bands. It should also be mentioned that adsorption or
intercalation of alkalis results in n-doping of graphene layers and related shift of the Fermi level [27,28],
so that the cone bands occur well below EF. Similar shifts of the bands were reported as a result of the
interaction of graphene monolayers with the substrate surface [7,19,29–32]. For example, it was found,
by angle-resolved photoelectron spectroscopy, that graphene on Ir(111) displays a Dirac cone with the
Dirac point shifted only slightly above the Fermi level. The moiré resulting from the overlaid graphene
and Ir(111) surface lattices imposes a superperiodic potential giving rise to Dirac cone replicas and the
opening of minigaps in the band structure [33].

Sante et al. [34] studied a more general case of the emergence of ferroelectricity in two-dimensional
honeycomb binary compounds and demonstrated the important role of a metal substrate in induced
buckling. In particular, it was found that the buckled structure of two-dimensional AB binary
monolayers is inherent for honeycomb lattice with trigonal symmetry, so that arising dipoles can lead
to ferroelectricity.

Now, again, let us consider the 2D concept of graphene in more detail. First of all, a perfect free
standing infinite monolayer is only a model, which, while very useful, has inherent restrictions, which
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should be kept in mind when applying the theory to real systems. Even when the interaction with
the substrate is substantially diminished, it is nonetheless present and thus unavoidably affects the
peculiarities of the electronic structure such as Dirac cones.
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Figure 1. Band structures in vicinity of Fermi level for (a) an ideal free graphene; (b) distorted 
graphene monolayer; and (c) rippled Sn monolayer (stanene). 

Rigorously speaking, single graphene layers cannot exist in a freestanding form, because 
strictly 2D crystals are thermodynamically unstable [35,36]. Specifically, a divergent contribution of 
thermal fluctuations in low-dimensional crystal lattices should lead to displacements of atoms that 
are comparable to interatomic distances at any finite temperature. Using first-principles calculations 
of graphene with high-symmetry distortion or defects, Lee et al. [37] investigated band gap opening 
through chiral symmetry breaking in graphene. It was shown that that the Peierls distortion takes 
place in biaxially strained graphene, leading to structural failure. The chiral symmetry breaking in 
honeycomb lattices was demonstrated to be responsible for the gap opening in graphene antidotes [2] 
and armchair nanoribbons [38]. Similar conclusions were derived from the theoretical study of 
Peierls-type instability in functionalized graphene [39]. In particular, it was shown that Bragg scattering 
of electron waves induced by sublattice symmetry breaking results in a band gap opening, whereby 
Dirac fermions acquire a finite mass. 

The reduction of symmetry from C6v to C3v, by breaking the equivalency of the graphene sites, 
leads to the opening of a band gap in the otherwise gapless semiconductor graphene [23]. It should 
be noted that there is an interplay between the energy cost or strain energy for graphene structural 
reconstructions and reduction in energy opening up a band gap, but when a reduction of the 
symmetry is allowed, graphene can lower the total free energy of the system and a band gap will 
open at the Dirac point. The opening of the gap due to the layer distortion can be illustrated by 
means of calculations for a model distorted graphene layer, in which every second atom is shifted 
by ~0.05 Å in the direction towards one of the 3 nearest neighbors (as depicted in the insert in 
Figure 1b). This type of distortion indeed results in the opening of the band gap (Figure 1b), as 
anticipated. 

If the displacement of carbon atoms is performed normal to the layer (that is, in the z 
direction), the generated forces tend to return the layer to a plain configuration. This behavior is 
inherent just for graphene, while, for example, a free honeycomb Sn monolayer (stanene) 
spontaneously reconstructs forming a rippled structure with the vertical corrugation of 0.7 A. The 
rippled structure is favored with respect to the flat (plain) structure of stanene by 0.2 eV. However, 
the corrugation does not open the band gap (Figure 1c). The explanation can be found in the theory 
of Peierls transitions. In particular, it was suggested that a transversal distortion does not lift 
degeneracy at the Brillouin zone edge and hence does not lead to the opening of the band gap [40]. 
This statement was illustrated by the example of the non-metal to metal transitions in atomic wires 
[41,42], and is probably also valid for 2D metallic layers, as may be concluded from a metallic state 
of the rippled Sn monolayer. 

Figure 1. Band structures in vicinity of Fermi level for (a) an ideal free graphene; (b) distorted graphene
monolayer; and (c) rippled Sn monolayer (stanene).

Rigorously speaking, single graphene layers cannot exist in a freestanding form, because strictly
2D crystals are thermodynamically unstable [35,36]. Specifically, a divergent contribution of thermal
fluctuations in low-dimensional crystal lattices should lead to displacements of atoms that are
comparable to interatomic distances at any finite temperature. Using first-principles calculations
of graphene with high-symmetry distortion or defects, Lee et al. [37] investigated band gap opening
through chiral symmetry breaking in graphene. It was shown that that the Peierls distortion takes
place in biaxially strained graphene, leading to structural failure. The chiral symmetry breaking in
honeycomb lattices was demonstrated to be responsible for the gap opening in graphene antidotes [2]
and armchair nanoribbons [38]. Similar conclusions were derived from the theoretical study of
Peierls-type instability in functionalized graphene [39]. In particular, it was shown that Bragg scattering
of electron waves induced by sublattice symmetry breaking results in a band gap opening, whereby
Dirac fermions acquire a finite mass.

The reduction of symmetry from C6v to C3v, by breaking the equivalency of the graphene sites,
leads to the opening of a band gap in the otherwise gapless semiconductor graphene [23]. It should
be noted that there is an interplay between the energy cost or strain energy for graphene structural
reconstructions and reduction in energy opening up a band gap, but when a reduction of the symmetry
is allowed, graphene can lower the total free energy of the system and a band gap will open at the Dirac
point. The opening of the gap due to the layer distortion can be illustrated by means of calculations for
a model distorted graphene layer, in which every second atom is shifted by ~0.05 Å in the direction
towards one of the 3 nearest neighbors (as depicted in the insert in Figure 1b). This type of distortion
indeed results in the opening of the band gap (Figure 1b), as anticipated.

If the displacement of carbon atoms is performed normal to the layer (that is, in the z direction),
the generated forces tend to return the layer to a plain configuration. This behavior is inherent just for
graphene, while, for example, a free honeycomb Sn monolayer (stanene) spontaneously reconstructs
forming a rippled structure with the vertical corrugation of 0.7 A. The rippled structure is favored with
respect to the flat (plain) structure of stanene by 0.2 eV. However, the corrugation does not open the
band gap (Figure 1c). The explanation can be found in the theory of Peierls transitions. In particular,
it was suggested that a transversal distortion does not lift degeneracy at the Brillouin zone edge and
hence does not lead to the opening of the band gap [40]. This statement was illustrated by the example
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of the non-metal to metal transitions in atomic wires [41,42], and is probably also valid for 2D metallic
layers, as may be concluded from a metallic state of the rippled Sn monolayer.

It should be noted in this regard that the corrugation is typical for graphene layers adsorbed on
various surfaces, which is evident, for example, for graphene on Ir(111) from the forming moiré patterns
resulting from the overlaid of graphene and substrate surface lattices [33]. Another typical example
is a single-layer graphene on the Ru(0001) surface, which forms hexagonal superstructures [18,29]
related to ordered structures of humps on overall flat graphene layers. Because of the metal substrate,
it is difficult to conclude whether the state of the adsorbed graphene might be characterized as
semiconducting in these and similar adsorption systems.

The role of the structure and interlayer interaction can be better understood by using the model
of a free graphene bilayer. In a bulk graphite, every second layer is shifted—so that in the unit cell, one
atom of the second layer is atop the atom of the first layer while the other occurs above the hole of the
honeycomb cell. The same structure (the AB configuration of the layers), with a distance between the
layers of 3.30 Å, is found to be favorable also for the bilayer graphene. The structure with symmetric
position of the layers with respect to the xy plane (that is, AA) is only slightly (by 0.014 eV) less
favorable than the original shifted (AB) structure, which indicates a possibility of its formation under
certain external influence (e.g., impurities or temperature fluctuations).

The bilayer with shifted graphene layers (AB) is metallic (Figure 2a), though DOS at EF is small.
For graphene layers, symmetric with respect to the z = 0 plane (AA), in contrast, the bilayer becomes a
semiconductor with the direct gap of 0.45 eV (Figure 2b). It should be noted that the drastic change
of the electronic structure from semimetal to semiconductor caused by the relative shift of graphene
monolayers indicates an importance of the interlayer interaction in graphite and raises the question of
whether this interaction is indeed vdW in nature.
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Figure 2. Band structures for free graphene bilayers with the AB layer configuration, pertinent to a bulk 
graphite (a); and the AA configuration, in which carbon atoms of the second layer are positioned 
atop the atoms of the first layer (b). 
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bulk graphite (a); and the AA configuration, in which carbon atoms of the second layer are positioned
atop the atoms of the first layer (b).

In summary, in one-dimensional metallic systems the electron-phonon interaction leads to the
Peierls instability. The same is valid also for 2D systems, so that an ideal 2D crystal is unstable with
respect to various possible lattice distortions leading to the opening of the band gap at EF, that is, to a
semiconducting state of the layer.

It should be emphasized that the instability of 2D system is inherent and will unavoidably
cause the distortion of the structure of a free graphene monolayer. Then, the Peierls distortion will
cause the opening of the band gap, which means that the Dirac cone in graphene in reality will
transform into ordinary band vertex. Indeed, regardless the cause of opening the band gap or the
shift of the bands, the cone-like bands are no longer perfect cones and therefore do not need any
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relativistic description. This conclusion directly follows from a great number of experimental and
theoretical results obtained for graphene containing layered systems. A few examples of photoemission
studies and related conclusions: (i) Bragg scattering of electron waves induced by sublattice symmetry
breaking results in a band gap opening, “whereby Dirac fermions acquire a finite mass” [39]; (ii) there
is a quasiparticle transformation during a metal–insulator transition in graphene [43]; (iii) observation,
both in angle-resolved photoemission and theory, of a mismatch between the upper and lower halves
of the Dirac cone [44]; and (iv) the Peierls-like distortion, destroying the Dirac point of graphene and
opening a substantial energy gap, was reported for graphene on SiC [45].

Carbon is number 6 on the periodic table, and its core charge is too small to give rise to any
significant relativistic effects. This is obvious, and the only reason to consider the Dirac theory comes
from the special perfect cone shape of the bands crossing EF at K point, which, nonetheless, can
be calculated without involving the Dirac equations, for a free perfect infinite graphene monolayer.
In reality, however, a free perfect monolayer never can be obtained, and therefore the perfect cone
bands at K point of BZ for graphene, as follows also from all performed to-date photoemission
experiments, can exist only in theory, while in reality the cone will unavoidably be distorted because
of the related change of symmetry. In other words, the cone-like bands observed in photoemission
experiments are not true Dirac cones, as they, in fact, do not correspond to zero-mass Fermions. This is
good news, because it allows for ordinary non-relativistic DFT calculations for graphene-containing
layered structures.

3. The Interlayer Interaction in Layered Crystals

The interlayer interaction in inherently layered crystals (graphite, MoS2) is usually explained
by van der Waals (vdW) forces. It should be clarified in this regard that physical chemistry
attributes all interactions beyond Coulomb and exchange interactions to vdW forces, which therefore
include electrostatic forces between permanent dipoles (Keesom forces), permanent dipoles and a
corresponding induced dipoles (Debye forces), and London dispersion forces (which are sometimes
explained in terms of the interaction between instantaneously induced dipoles). The modern
understanding of dispersion forces does not involve the concept of temporal virtual dipoles and
explains the attraction between neutral molecules in terms of electrostatic forces. This type of
interatomic interaction is of the same origin as the exchange interaction between electrons which can
be explained as Coulomb interaction of fermions having antisymmetric wave functions. In solid state
physics, it is usually just the dispersion forces that are called van der Waals forces.

The concept of dispersion forces appeared in 30-th of former century aiming an explanation of
the attraction between neutral molecules at distances for which, as it was believed, a direct overlap of
wave functions must be negligible [46,47]. Since the attraction between neutral species at relatively
large distances, which seemingly preclude the overlap of wave functions, does exist, there must be a
mechanism to accomplish this interaction. This might be the vdW interaction, as nothing better has
been proposed, which is absent in standard DFT calculations using the local (LDA) and semilocal
(GGA) approximations for exchange-correlation potentials [48,49].

It was proposed then to introduce some form of vdW term into the GGA functional to obtain
vdW-corrected semilocal potentials, which correctly reproduce the asymptotic van der Waals tail of
the binding energy curve [50–55], or even make use of truly non-local potentials developed with
account for many-body interactions [56,57]. With any of these approximations, of course, significant
improvements (with respect to GGA) of the estimates of interatomic and interlayer distances were
achieved, which were considered therefore proving the validity of the vdW corrections.

However, the nonlocal corrections have little impact on the charge distribution at the
graphene/metal interface [58,59], so that, for the graphene/metal systems, the vdW-DF results were
found to be qualitatively similar to the LDA results [58]. This unexpected property of LDA is well
known and has been usually attributed to a fortunate cancellation of errors in the exchange-correlation
functional; nonetheless, the agreement of many LDA-calculated values with experiment is remarkable.
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The LDA is known to provide, in many cases, better evaluation of the ground state properties
(such as energies of occupied bands and electron density distribution) and estimates of binding
energies in layered systems than widely used GGA [58–60]. For example, for graphene/Ir(111), GGA
gives almost zero bonding, while LDA gives correct results both for binding energies and interatomic
distances [58]). It should be mentioned also that LDA has a number of advantages with respect to
GGA and other more sophisticated approximations, such as LDA+U, LDA+I, and LDA+vdW. Indeed,
the f -sum rule is strictly fulfilled in LDA, but not in GGA, and for this reason GGA fails in description
of Friedel oscillations.

Shulenburger et al. [61] performed quantum Monte Carlo calculations and found that the
interlayer interaction in few-layer phosphorene is associated with a significant charge redistribution
that is incompatible with purely dispersive forces. This result raises a question about the true nature
of the interlayer interaction in so-called “van der Waals (vdW) solids”. It should be mentioned also
that despite the revealed incapability of density functional theory calculations with different vdW
corrected functionals to correctly capture the charge distribution, the LDA-calculated dependences
of the interlayer interaction on the distance between the layers are in fairly good agreement with
quantum Monte Carlo results, while GGA estimates are inconsistent.

The applicability of LDA to layered systems can be further illustrated by calculating the
distribution of electronic density and related interlayer interaction for MoS2 bilayer [15] (Figure 3).
The most important result of the calculations is the revealed significant overlap of the wave functions
of adjacent MoS2 layers (the distribution of the plane-averaged electronic density of the bilayer along
the normal to the surface is shown in Figure 3b). In contrast, the GGA gives a substantially different
distribution of electronic density (shown by dashed line in Figure 3b). In particular, the GGA electronic
density at the middle point between the layers is found to be approximately 10 times less than in LDA
calculations. Accordingly, the energy of the interlayer interaction, estimated with GGA, decreases to
0.008 eV/cell from the LDA value of 0.12 eV/cell.
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It should be noted that dispersion forces, responsible for van der Waals interactions of
non-polarized particles, were introduced to explain the attractive interaction which exists between
neutral atoms and molecules when the overlap of the wave functions is seemingly negligible.
Rigorously speaking, when the overlap is substantial, one cannot invoke the vdW interaction, but,
rather, has to consider some type of the exchange or, in chemical terms, covalent interaction.

Hence, within LDA, there is no need to involve the London dispersion forces to explain the
interaction, which, in fact, originates from the overlap of the wave functions of the layers, and
therefore it is the exchange interaction that provides the bonding between the layers. The vdW
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corrections to the exchange-correlation functional (or exploration of non-local functionals) [49–57] are
mandatory when interlayer interactions are estimated within GGA, which dramatically underestimates
the electronic densities of the electrons leaking from the surfaces to vacuum and thus the overlap
of the wave functions of adjacent layers, while LDA itself is sufficient to adequately describe the
interlayer interaction. This suggestion is further supported by a good agreement of calculated phonon
frequencies at zero wave vector with experimental values [15].

The interlayer interaction in MoS2 can be significantly increased by means of H or alkali metal
intercalation. In particular, for hydrogen-intercalated MoS2 bilayers, due to forming S–H–S bonds,
the interaction energy increases from 0.12 eV to 0.60 eV [62]. Very similar results were also reported for
Li [63] and Na [64] intercalated MoS2 bilayers. However, in contrast to intercalated hydrogen, Li and
Na do not reconstruct the MoS2 bilayer, which retains the central symmetry pertinent to the bulk.
In all cases, the intercalation leads to metallization, which is evident from the appearance of the bands
crossing Fermi level and significant density of states at EF.

There is one issue to be mentioned with regard to the interlayer or interatomic interaction—the
repulsion between the layers or atoms that appears when the interatomic distance becomes less than
the equilibrium distance. Usually this repulsive interaction—in particular, in most chemical papers—is
called, perhaps for historical reasons, “Pauli repulsion”, thus implying its origin is the requirement that
the Pauli principle be obeyed. In fact, the term indicates an exchange interaction, which exists at any
distance between the atoms (or from an atom to the surface) simultaneously with Coulomb interactions
(electron–core, core–core). Furthermore, the kinetic energy and correlation energy of electrons also
must be taken into account to estimate the equilibrium interatomic distances. Fortunately, the DFT
within LDA successfully solves this problem.

4. Band Gap and Screening in MoS2 Layers

Fully relativistic (i.e., with account for a spin-orbit interaction) band structures of the bulk MoS2

and free MoS2 monolayer, calculated within LDA [15], are shown in Figure 4. The reduced symmetry
of the monolayer (because of the absence of the inversion symmetry) with respect to the bulk MoS2

reveals itself in the k-dependent spin-orbit splitting of the bands [65–69] (Rashba effect). At K point of
BZ the splitting of the topmost valence band is quite pronounced (0.15 eV).

In contrast, for the bulk, because of Kramers degeneracy [E↑(k) = E↓(k)], originated from the
combination of time-reversal [E↑(k) = E↓(−k)] and inversion symmetry [E↑(k) = E↑(−k)] [65,66], similar
relativistic calculations have not indicated any spin-orbit splitting of the bands.

In agreement with recent experiments [11,12], the DFT calculations [13–16,70,71] demonstrate
a transformation from indirect band gap for the bulk to direct band gap and its significant increase
for the monolayer . However, while the DFT calculations, in general, correctly describe the evolution
of the band structure, the width of the gap for the bulk is strongly underestimated. Specifically, for
the bulk MoS2, the LDA-estimated gap of 0.76 eV is significantly less than the experimental value
1.2–1.3 eV.

The underestimate of the band gaps in DFT calculations, in particular, within LDA, is well known
(see [72] for a concise review). In bulk calculations of the band structures of semiconductors, as well
as for layered systems with relatively small interlayer spacing, such as FeS2, GGA, due to increased
(by 10/7 [73]) exchange term in the PBE [74] exchange-correlation functional [72] usually gives
somewhat better estimates of the gaps [75]. (It should be mentioned in this regard that GGA has severe
intrinsic problems, in particular, the sum rule for the exchange-correlation hole cannot be satisfied,
which leads to an incorrect behavior of the wave function, so that, for example, Friedel oscillations
do not appear with the gradient corrections to LDA [61]; furthermore, the gradient expansion does
not converge (that is, invalid) for any realistic systems, where the density gradients always exceed the
convergence criterion for an order of magnitude [61,76,77]).

In contrast to the LDA results, the band gap for a bulk MoS2, estimated in [14] using a sophisticated
quasiparticle self-consistent GW approximation (QSGW), is found to be 1.297 eV, which is in a
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perfect agreement with the generally accepted experimental value. For a MoS2 monolayer, however,
the gap calculated either with GW or QSGW approximation (2.759 eV [14]), exceeds the 1.90 eV energy
of a prominent photoluminescence (PL) band by ~0.9 eV. To explain this dramatic difference, it was
suggested [14] that the PL band originates from the recombination of a 2D Wannier–Mott exciton with
enormously high binding energy because of inherently 2D screening of the Coulomb interaction in
the monolayer.
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Figure 4. The band structures of the (a) bulk MoS2 and (b) MoS2 monolayer calculated within LDA in
a fully relativistic (i.e., with account for spin-orbit coupling) approximation. Shaded areas denote the
band gaps. Valence band maxima and conduction band minima are marked by circles.

Quasiparticle band structures and optical properties of MoS2, MoSe2, MoTe2, WS2, and WSe2

monolayers were studied also using the GW approximation in conjunction with the Bethe–Salpeter
equation [78]. The transition energies for monolayer MoS2 are shown to be in excellent agreement with
available absorption and photoluminescence measurements. Similar conclusions were derived also
from the study of many-body effects and diversity of exciton states and their role in the formation of
the optical spectrum of MoS2 by Qiu et al. [79] and in recently performed STS and PL studies of MoSe2

layers on graphene substrate, supported by GW and Bethe–Salpeter calculations of exciton binding
energies [80,81]).

Because of excitons involved into the processes of luminescence and light absorption [82],
the determination of the width of the band gap is not always straightforward. Furthermore,
recently discovered trions [83–86] could further complicate the interpretation of the spectra. A more
direct method of the determination of the “electronic” band gap (in contrast to “optical” band gap
estimated from PL) could be the photoconductivity spectroscopy. In particular, for a MoS2 monolayer,
Mak et al. [11] reported an abrupt rise of photoconductivity by 3 orders of magnitude at ~1.8 eV, which
was attributed to a direct gap photoexcitation. (It should be noted, however, that this value is lower
than the energy of the PL peak, reported in this study, which is somewhat confusing and might be
attributed to some influence of the substrate and conditions of the experiment).

Recent layer-specific direct measurements of band gaps of in MoS2 and ReS2 by high resolution
electron energy loss spectroscopy (HREELS) [87] have reported an indirect band gap of 1.27 eV obtained
from the multilayer regions (i.e., essentially bulk MoS2). For the monolayer, the band gap becomes
direct (with the valence band maximum and conduction band minimum at the K point of the Brillouin
zone) and increases to 1.98 eV. For monolayer MoS2, the twin excitons (1.8 and 1.95 eV) originating
at the K point are observed (note the 0.15 eV exchange splitting due to Rashba effect, c.f. with the
theoretically estimated splitting, Figure 4b). It should be noted that the energies of the exciton peaks
determined by HREELS [87] well agree with the energies of PL lines for the MoS2 monolayers [12].
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Then, the difference between the width of the band gap for the monolayer (1.98 eV) and the energies
of PL lines (1.8 and 1.95 eV) is about 0.03–0.18 eV, which is in reasonable agreement with anticipated
(i.e., usual) values of Wannier-Mott exciton binding energies [82]. The energy of trion, which also was
reported to be detected for the monolayer, is also in this range.

A number of recent papers was devoted to detailed studies of a model 2D heterostructure
formed of a single layer of MoS2 on graphene [88–93]. It was found that the electronic structure of
two-dimensional (2D) semiconductors can be significantly altered by screening effects. The results
obtained using time- and angle-resolved photoemission (ARPES) reveal a significant (~400 meV)
reduction of the band gap of the MoS2 layer induced by optical excitation [89]. The band gap and
photoluminescence shift were reported to depend on the orientation of the graphene and MoS2

monolayers [90,91]. The changes in electronic structure of graphene caused by interaction with
MoS2 monolayer were suggested to be less pronounced. From ARPES study of this heterostructure
Diaz et al. [92] concluded that the Dirac cone of graphene remains intact and no significant charge
transfer doping was detected. Later, Pierucci et al. [93] confirmed that, close to the Fermi level,
graphene exhibits a robust, almost perfect, gapless Dirac cone, but suggested the graphene to
be n-doped.

In summary, available experimental data suggest that the band gap in MoS2 monolayer is in the
range of 1.8–2.15 eV. Then, the 2.9 eV value obtained in GW calculations either should be attributed
to the difference between “electronic” and “optical” gaps, produced by excitons with enormously
large binding energies, or to apparent problems with evaluations of 2D dielectric function. In my
view, the latter explanation is more consistent since it also explains the values obtained for the gaps in
photoconductivity and HREELS measurements.

5. Conclusions

The 2D concept has reached its peak in the reanimation of Dirac theory applying to the band
structure of graphene. Recall that carbon is number 6 in the periodic table, and its core charge is too
small to give rise to any significant relativistic effects. This is obvious, and the only reason to consider
the Dirac theory comes from the special perfect cone shape of the bands crossing EF at the K point
(which, nonetheless, can be calculated without involving the Dirac equations), for a free perfect infinite
graphene monolayer. It is well known that a free perfect monolayer can never exist in reality because
of an inherent instability, and therefore the perfect cone bands at the K point of BZ for graphene,
as also follows from all performed to-date photoemission experiments, can exist only in theory, while
in reality the cone will unavoidably become distorted because of the related change of symmetry.
In other words, the cone-like bands observed in photoemission experiments are not true Dirac cones,
as they, in fact, do not correspond to zero-mass Fermions. This is a good news, because allows for
ordinary non-relativistic DFT calculations for graphene-containing layered structures.

Most likely, these statements seem too strong and not well enough argued, but, in fact, everybody
faced with 1D and 2D concepts and related theories will find the conclusions correct (recall also that
the real World is 3D). That is, though everybody feels that relativistic effects in coil (or graphene) are
hardly likely to occur, nobody has been brave enough to say this publicly. Now I, like the little boy
from Andersen's tale, have said: “But the Emperor has nothing at all on!”.
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DFT Density Functional Theory
LDA Local Density Approximation
GGA Generalized Gradient Approximation
GW GW quasi-particle Hedin's approach
QSGW Quasiparticle Self-consistent GW approximation
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