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Abstract: 3D hierarchical Bi2S3 architectures have been successfully synthesized via a simple
and effective hydrothermal process. The as-prepared Bi2S3 samples were characterized by
X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy
(TEM), nitrogen adsorption- desorption isotherms, and UV-vis diffuse reflectance spectrum (DRS).
The observation of field emission scanning electron microscope (FESEM) images showed that
numerous nanoplatelets are randomly arranged and interconnected with each other, which are
assembled into 3D hierarchical Bi2S3 architectures. The photocatalytic activity of the as-prepared
Bi2S3 samples was evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation.
The effect of hydrothermal temperature, reaction time, pH value and shape on the photocatalytic
efficiency of the as-prepared Bi2S3 samples was investigated. The results showed that 3D hierarchical
Bi2S3 architectures prepared at 165 ◦C for 12 h at a pH of 2.4 exhibits high photocatalytic efficiency,
which could be ascribed to the synergetic effect of the shape, surface area, crystallinity, band gap and
crystalline size.
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1. Introduction

Nowadays, we are confronted with the problem related to various organic pollutants
releasing from various textile and chemical plants accompanied with the continuously increasing
industrialization. Most organic pollutants are difficult to effectively dispose of by natural means,
leading to water sources and the environment to be contaminated and polluted. Subsequently, the
contaminated water source and the polluted air have become an enormous threat to public health.
Photocatalysis, considered an efficient and reliable technology for the environmental remediation of
poisonous organic pollutants, has the merits of simple operation, ambient condition, low cost, high
efficiency and reusability [1,2]. Over the past decade, TiO2 has been widely investigated as one of
the most representative photocatalysts for degrading pollutants. However, traditional TiO2 exhibits
ineffective photocatalytic performance under visible light irradiation due to its wide band gap and
low quantum efficiency. Therefore, the development of novel visible-light-driven photocatalysts is
required for the purpose of taking full use of solar energy and improving quantum efficiency. In order
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to achieve the goal, much research has been devoted to the modification of traditional TiO2 [3–7] and
the pursuit of other materials such as bismuth sulfide (Bi2S3) [8–10].

With a direct narrow band gap of around 1.3 eV, bismuth sulfide (Bi2S3), emerging as one
promising member of group V–VI binary semi-conductors, has been attracting considerable attention
due to its wide range of application in the field of solar cells [8,9], photo-detectors [10–14], gas
sensors [14], thermoelectric devices [15], X-ray computed tomography imaging [16], lithium-ion
batteries [17–20], and photocatalysis [21–23]. Bi2S3 micro/nanostructures with various morphologies,
including one-dimensional (1D) nanorods/nanowires, two-dimensional (2D) nanosheets/flakes,
and three-dimensional (3D) hierarchical complex architectures, have been successfully fabricated
in previous studies [10–15,17–19,23–26], since the properties of functional nanostructured materials
are strongly dependent on the tailored morphology, microstructure and surface properties. Among
them, 3D hierarchical complex architectures have exhibited excellent properties for applications in
gas sensors, lithium batteries, and photocatalysts due to their large surface area and facile electron
(ion) transport. Especially, 3D hierarchical complex architectures assembled by 2D nanostructures
have porous structure, present more active sites at large surface area for adsorbing reactant molecules
and photocatalytic reactions, thus are desirable for achieving superior photocatalytic activity [27,28].
To date, most of the reported 3D hierarchical Bi2S3 architectures are assembled by 1D nanostructure,
while there are few reports on the synthesis and photocatalytic performance of 3D hierarchical Bi2S3

architectures assembled by 2D nanoplatelets. Therefore, it is essential to design a facile, highly efficient
and environmentally friendly route to prepare 3D hierarchical Bi2S3 architectures assembled by 2D
nanoplatelets for improving visible-light photocatalyitic activity.

Hydrothermal synthesis technique, an effectively and simply controlled solution-based method,
involves the formation of well-crystallized products at relatively low temperatures, which has been
widely adopted for the synthesis of nanostructured photocatalysts with tailored morphologies [29–31].
In this study, we reported a facile hydrothermal synthesis route for preparing 3D hierarchical Bi2S3

architectures assembled by 2D nanoplatelets. A series of techniques, including XRD, SEM, TEM,
nitrogen adsorption–desorption isotherms, and UV-vis diffuse reflectance spectrum (DRS), were used
to characterize the as-prepared products. The photocatalytic activities of the as-prepared samples were
tested in the degradation of Rhodamine B (RhB) under visible light irradiation.

2. Results and Discussions

2.1. Phase Study

The crystallinity and phase structure of the as-prepared 3D hierarchical Bi2S3 architectures were
investigated by XRD and Raman spectrum, as displayed in Figure 1. XRD result (Figure 1a) showed
that the intensities of the diffraction peaks of the as-prepared Bi2S3 samples increased with increasing
hydrothermal temperatures, indicating that the degree of crystallinity of the as-prepared Bi2S3 samples
tended to be strengthened with increasing hydrothermal temperatures. Some other impurity peaks of
the as-prepared Bi2S3 sample are detected when the hydrothermal temperature is lower than 165 ◦C.
As for the representative Bi2S3 sample (BS-2#), all the diffraction peaks can be indexed to be the
orthorhombic phase Bi2S3 (JCPDS No. 17-0320). No other characteristic peaks are observed, implying
that the representative Bi2S3 sample (BS-2#) is of high purity. The sharp diffraction peaks of the XRD
pattern for the BS-2# sample demonstrate that well-crystallized orthorhombic Bi2S3 was successfully
achieved under the present synthetic conditions. Interestingly, the intensity ratio of (221) peak to (211)
peak seemingly deviates from the standard value, implying that the Bi2S3 crystal tends to have special
anisotropic growth. Figure 1b shows the Raman spectrum of the BS-2# sample, in which exhibits one
sharp peak centered about 130 cm−1, and two mild peaks centered about 400 cm−1 and 600 cm−1,
respectively. Different morphologies and structures can shift the wavenumbers of Raman spectrum
due to the difference in the size and surface photo modes [32,33]; thus, the obtained result of Raman
spectrum can also confirm the presence of the orthorhombic phase Bi2S3.
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Figure 1. (a) XRD patterns of 3D hierarchical Bi2S3 architectures prepared at different hydrothermal 
temperatures; and (b) the Raman spectrum of the representative 3D hierarchical Bi2S3 architectures (BS-2#).  

2.2. Morphology and Proposed Formation Process  

Figure 2a shows the low-magnification FESEM image of the representative Bi2S3 sample (BS-2#). 
The BS-2# sample is composed of discrete 3D hierarchical architectures with inhomogeneous size. 
The higher magnification FESEM image (Figure 2b) reveals that 3D hierarchical architectures has 
porous structure, in which numerous nanoplatelets are randomly arranged and interconnected. 
Such a unique structure feature implies that the as-prepared 3D hierarchical Bi2S3 architectures are 
promising to exhibit effective photocatalytic activity for degrading the environmental pollutants. 
The S- and Bi-mappings of the BS-2# sample are shown in Figure 2d,e, revealing that the BS-2# 
sample only consists of Bi and S elements. The structure of the BS-2# sample was further investigated 
by TEM. The result of TEM observation (Figure 3a,b) shows the widths of nanoplatelets are 
inhomogeneous, while the thickness of nanoplatelets is thin (5–10 nm), which is in good agreement 
with that of FESEM observation. Figure 3c is a typical HRTEM image taken from the single 
nanoplatelet, in which an interplanar lattice of 0.374 nm between adjacent lattice fringes can be 
indexed to (101) plane of orthorhombic phase Bi2S3. 

 

Figure 2. (a,b) Low magnification and higher magnification FESEM image of the BS-2# sample; (c) 
SEM-EDS elemental mapping of the the BS-2# sample; and the corresponding elemental mappings of 
(d) S and (e) Bi. 

Figure 1. (a) XRD patterns of 3D hierarchical Bi2S3 architectures prepared at different
hydrothermal temperatures; and (b) the Raman spectrum of the representative 3D hierarchical Bi2S3

architectures (BS-2#).

2.2. Morphology and Proposed Formation Process

Figure 2a shows the low-magnification FESEM image of the representative Bi2S3 sample (BS-2#).
The BS-2# sample is composed of discrete 3D hierarchical architectures with inhomogeneous size.
The higher magnification FESEM image (Figure 2b) reveals that 3D hierarchical architectures has
porous structure, in which numerous nanoplatelets are randomly arranged and interconnected. Such a
unique structure feature implies that the as-prepared 3D hierarchical Bi2S3 architectures are promising
to exhibit effective photocatalytic activity for degrading the environmental pollutants. The S- and
Bi-mappings of the BS-2# sample are shown in Figure 2d,e, revealing that the BS-2# sample only
consists of Bi and S elements. The structure of the BS-2# sample was further investigated by TEM.
The result of TEM observation (Figure 3a,b) shows the widths of nanoplatelets are inhomogeneous,
while the thickness of nanoplatelets is thin (5–10 nm), which is in good agreement with that of
FESEM observation. Figure 3c is a typical HRTEM image taken from the single nanoplatelet, in which
an interplanar lattice of 0.374 nm between adjacent lattice fringes can be indexed to (101) plane of
orthorhombic phase Bi2S3.
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Figure 3. (a,b) Low-magnification and higher magnification TEM images of the BS-2# sample; (c) a 
typical HRTEM image taken from the single nanoplatelet; and (d) TEM image of Bi2S3 nanorods. 

In order to investigate the effect of the surfactant on the morphology, the hydrothermal 
synthetic process was carried out without the addition of CTAB. Only Bi2S3 nanrods with an average 
diameter of 20 nm were obtained under such a synthetic condition, as is seen in Figure 3d. Thus, we 
can infer that the surfactant of CTAB plays a key role in the formation of 3D hierarchical Bi2S3 
architectures assembled by nanoplatelets. Herein, a probable formation process of 3D hierarchical 
Bi2S3 architectures could be proposed as follows. At initial stage of hydrothermal process, Tu 
coordinated with Bi3+ and formed the Bi3+(III) complexes. Under high pressure and hydrothermal 
temperature, the Bi3+(III) complexes tended to aggregate and crystal nuclei of Bi2S3 came into being in 
situ. Then, Bi2S3 nanoplatelets were formed with the assistance of CTAB. Subsequently, Bi2S3 
nanoplatelets grew larger and thicker with the ripening process going on. In order to reduce the 
surface energy, the as-grown Bi2S3 nanoplatelets with adsorbed CTAB molecules were likely to 
convolute and self-assemble loosely, resulting in the formation of 3D hierarchical Bi2S3 architectures. 
The probable formation process is illustrated in Figure 4. 
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The specific surface area and pore structure of the BS-2# sample were investigated by nitrogen 
adsorption–desorption isotherm. Figure 5 depicts the nitrogen adsorption–desorption isotherm and its 
corresponding pore size distribution of the BS-2# sample. From Figure 5a, we find that the BS-2# sample 
displays a type IV isotherm with a distinct hysteresis loop in the range of 0.8–1.0 (P/P0), implying the 
presence of mesopores, which is ascribed to the aggregation of Bi2S3 nanoplatelets [34–36]. The specific 
surface area of the BS-2# sample was calculated to be 49.5 m2·g−1 by Brunauer–Emmett–Teller equation. 
Due to its large specific area, the BS-2# sample can absorb more photons and reactants, which results in 
increasing photocatalytic active sites correspondingly. Moreover, it is clear from Figure 5b that the pore 
distribution of t the BS-2# sample exhibits two kinds of mesopores pores with an average diameter of  
8.0 nm and 38.3 nm. Based on above results, the obtained mesoporous structure of photocatalyst 

Figure 3. (a,b) Low-magnification and higher magnification TEM images of the BS-2# sample; (c) a
typical HRTEM image taken from the single nanoplatelet; and (d) TEM image of Bi2S3 nanorods.

In order to investigate the effect of the surfactant on the morphology, the hydrothermal synthetic
process was carried out without the addition of CTAB. Only Bi2S3 nanrods with an average diameter
of 20 nm were obtained under such a synthetic condition, as is seen in Figure 3d. Thus, we can infer
that the surfactant of CTAB plays a key role in the formation of 3D hierarchical Bi2S3 architectures
assembled by nanoplatelets. Herein, a probable formation process of 3D hierarchical Bi2S3 architectures
could be proposed as follows. At initial stage of hydrothermal process, Tu coordinated with Bi3+ and
formed the Bi3+(III) complexes. Under high pressure and hydrothermal temperature, the Bi3+(III)
complexes tended to aggregate and crystal nuclei of Bi2S3 came into being in situ. Then, Bi2S3

nanoplatelets were formed with the assistance of CTAB. Subsequently, Bi2S3 nanoplatelets grew larger
and thicker with the ripening process going on. In order to reduce the surface energy, the as-grown
Bi2S3 nanoplatelets with adsorbed CTAB molecules were likely to convolute and self-assemble loosely,
resulting in the formation of 3D hierarchical Bi2S3 architectures. The probable formation process is
illustrated in Figure 4.
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2.3. Bet Surface Area and Pore Volume

The specific surface area and pore structure of the BS-2# sample were investigated by nitrogen
adsorption–desorption isotherm. Figure 5 depicts the nitrogen adsorption–desorption isotherm and its
corresponding pore size distribution of the BS-2# sample. From Figure 5a, we find that the BS-2# sample
displays a type IV isotherm with a distinct hysteresis loop in the range of 0.8–1.0 (P/P0), implying the
presence of mesopores, which is ascribed to the aggregation of Bi2S3 nanoplatelets [34–36]. The specific
surface area of the BS-2# sample was calculated to be 49.5 m2·g−1 by Brunauer–Emmett–Teller equation.
Due to its large specific area, the BS-2# sample can absorb more photons and reactants, which results in
increasing photocatalytic active sites correspondingly. Moreover, it is clear from Figure 5b that the pore
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distribution of t the BS-2# sample exhibits two kinds of mesopores pores with an average diameter
of 8.0 nm and 38.3 nm. Based on above results, the obtained mesoporous structure of photocatalyst
provides efficient transport pathways to the interior, which may be extremely useful for improving its
photocatalytic activity.
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of the BS-2# sample.

2.4. Uv-Vis Spectra

As is well known, the photocatalytic activities of photocatalysts are strongly dependent on their
energy band structure. Thus, UV-vis diffuse reflectance spectrum (Figure 6) was recorded to obtain
optical properties of the BS-2# sample. It is clearly seen from Figure 6a that the BS-2# sample displays
good optical absorption ability in the entire visible light region. Consulting the previous studies [37],
the band gap (Eg) of Bi2S3 can be explored by the extrapolation method based on Kubelka–Munk
equation. The above equation can be expressed as A(hν-Eg)2 = (αhν), where α is the adsorption
coefficient, A is the constant, hν is the photon energy, n = 2 for an indirectly allowed transition
semiconductor and n = 1/2 for directly allowed transition semiconductor. Figure 6b plots the (αhν)2

against photo energy (hν) curve. The band gap energy of the BS-2# sample is estimated to be 1.48 eV,
which is approximate to the reported band gap energy [32,38]. Based on the results, the as-obtained
3D hierarchical Bi2S3 architectures belong to one kind of relatively narrow band-gap semiconductors,
indicating that more optical energy could be utilized to produce photo-generated carriers for taking
part in the photocatalytic degradation reaction.
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2.5. Photocatalytic Activities

The photocatalytic activity of the as-prepared Bi2S3 samples was evaluated by degrading RhB
aqueous solution under visible light irradiation. The changes in the absorption spectra of RhB at 554 nm
were used to monitor the photocatalytic performance. It is well established that synthetic conditions
of photocatalysts are likely to affect the crystallinity and shape of the as-prepared samples. Thus,
we compared the photodegradation of 3D hierarchical Bi2S3 architectures obtained under different
hydrothermal temperature, time and pH value in this work. As is shown in Figure 7a, no obvious
variation of RhB concentration was observed in the absence of either photocatalyst or light irradiation.
Only 6% RhB can be degraded by pure TiO2 (P25) after irradiating for 60 min. The degradation rate
of the BS-2# sample reaches 98.6% after irradiating for 80 min under visible light, while 72.3% and
74.9% degradation rates of RhB are observed for BS-1# and BS-3# sample, respectively. It can also be
seen from Figure 7b that the BS-2# sample has the highest photocatalytic efficiency, while 70.5% and
90.1% degradation rates of RhB are observed for BS-4# and BS-5# sample, respectively. Figure 7c shows
that the degradation rate of RhB over the as-prepared 3D hierarchical Bi2S3 architectures increased
with increasing pH value, then decreased. Thus, the factors of temperature, time and pH value exert a
significant effect on the photocatalytic efficiency of the as-prepared 3D hierarchical Bi2S3 architectures.
The explanation can be summarized as follows. The crystallinity and crystalline size vary with the
changes of hydrothermal temperature, time and pH value, implying that crystal defects and bandgaps
will change correspondingly. The improvement of crystallinity implies that crystal defects acting as
photogenerated electron–hole recombination centers will decrease in photocatalysts, while the spectral
absorption ability will weaken with increasing crystalline size. Thus, the variation of photocatalytic
efficiency of photocatalysts is mainly ascribed to the synergistic effect of the crystallinity and crystalline
size. As is shown in Figure 7d, the degradation efficiency of the as-prepared Bi2S3 nanorods is only
63.1%. Obviously, the BS-2# sample exhibits much better photocatalytic activity than Bi2S3 nanorods.
Figure 8 shows the variations of absorption spectra of RhB aqueous solution in the presence of the
BS-2# sample and Bi2S3 nanorods. It can be found from Figure 8 that the intensity of the characteristic
absorption peak of RhB decreased with the irradiation time prolonging. Meanwhile, the color of the
suspension faded away gradually during the degradation process. The RhB aqueous solution was
almost degraded by the BS-2# photocatalyst after irradiating for 80 min, while the photocatalytic
activity of Bi2S3 nanorods was more inferior to that of the BS-2# photocatalyst.

It is generally accepted that photocatalytic activities are strongly dependent on the structural
features of photocatalysts [39,40]. In this work, ultra thin Bi2S3 nanoplatelets can provide large specific
surface area, which leads to enhanced absorption and light harvesting. In addition, nanoplatelets with
ultra thickness will accelerate the transfer rate of photo-generated carriers from the inside to the surface
of the crystal, in which they react with the organic molecules. Thus, the ultrathin structure facilitates
the prompt separation of the photo-generated electron–hole, and the probability of the photo-generated
electron–hole pairs will be reduced in turn. Base on the above demonstration, 3D hierarchical Bi2S3

architectures have porous structure, provide more active sites at large surface area for adsorbing
reactant molecules and photocatalytic reactions, and present enhanced photo-generated electron–hole
separation rate [7,27,28]. Accordingly, the representative 3D hierarchical Bi2S3 architectures exhibits
higher photocatalytic efficiency, revealing that the photocatalytic activity of 3D hierarchical Bi2S3

architectures are strongly related to the factors of crystallinity, shape and surface area, and the effects
of these factors on the photoactivity are interdependent.
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To make the photodegradation reaction clear, ammonium oxalate (AO), methanol (ME), and
benzoquinone (BQ) were used as scavenges of active holes (h+), hydroxyl radicals (•OH), and
superoxide radicals (•O2

−) to investigate the effects of reactive species on the photodegradation
process of RhB solution [41]. As shown in Figure 9, both AO and BQ cause a strong suppression on
the photodegradation process of RhB solution while ME exhibited a relatively weak effect. The above
results reveals that the reactive species of h+ and •O2

− played a more significant role than •OH for the
photodegradation of RhB, which is similar to the previous studies [42,43]. Because the stability has
always been a critical concern for an excellent photocatalyst, it is essential to investigate the stability
and repeatability of 3D hierarchical Bi2S3 architectures in the photodegradation of RhB solution. Thus,
the BS-2# sample was recycled for five times under the same conditions, and the corresponding results
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are shown in Figure 10. The photocatalytic activity of the BS-2# sample exhibits no significant loss
after five cycling runs of photodegradation of RhB, indicating that the BS-2# sample is an efficient
visible-light-driven photocatalyst, good reusability and stability for potential practical application in
wastewater treatment.
Crystals 2016, 6, 140  8 of 12 

 

 

Figure 9. The effects of reactive species involved in the photodegradation of RhB solution over the 
BS-2# sample. 

 
Figure 10. Cycling performance of the photodegradation of RhB solution over the BS-2# sample. 

3. Experimental Section 

3.1. Synthesis of 3D Hierarchical Bi2s3 Architectures 

All the reagents obtained from Shanghai chemical industrial Co. Ltd. China were analytically pure 
and used without any further purification. In a typical synthesis procedure, 2 mmol of bismuth nitrate 
pentahydrate (Bi(NO3)3·5H2O) were dissolved in 20 mL mixture solution under vigorous stirring, which 
consisted of deionized water (8 mL) and dilute nitric acid (1M 12 mL). Then, 0.2 mmol of cetyltrimethyl 
ammonium bromide (CTAB) was added into the above solution. Next, 3 mmol of thioacetamide (Tu) 
was dissolved into 40 mL deionized water under stirring to form a homogeneous solution. After 
that, the Tu solution was slowly dropped into the above bismuth nitrate solution under constant 
magnetic stirring at room temperature. Subsequently, the pH value of the mixing solution was 
adjusted to be a certain value. After 1 h, the resulting mixture solution was transferred to Teflon-line 
stainless steel autoclave with 100 mL capacity and held at different temperatures for a certain time. 
After the autoclave was cooled naturally to room temperature, the final black precipitates were 
centrifuged and washed with deionized water and alcohol, respectively, followed by drying at 60 °C 
for 10 h in a vacuum oven. The detailed experimental conditions for the preparation of 3D 
hierarchical Bi2S3 architectures are listed in Table 1. As a comparison, Bi2S3 nanorods were also 
prepared by reacting Bi(NO3)3 and Tu without CTAB. 

 

Figure 9. The effects of reactive species involved in the photodegradation of RhB solution over the
BS-2# sample.

Crystals 2016, 6, 140  8 of 12 

 

 

Figure 9. The effects of reactive species involved in the photodegradation of RhB solution over the 
BS-2# sample. 

 
Figure 10. Cycling performance of the photodegradation of RhB solution over the BS-2# sample. 

3. Experimental Section 

3.1. Synthesis of 3D Hierarchical Bi2s3 Architectures 

All the reagents obtained from Shanghai chemical industrial Co. Ltd. China were analytically pure 
and used without any further purification. In a typical synthesis procedure, 2 mmol of bismuth nitrate 
pentahydrate (Bi(NO3)3·5H2O) were dissolved in 20 mL mixture solution under vigorous stirring, which 
consisted of deionized water (8 mL) and dilute nitric acid (1M 12 mL). Then, 0.2 mmol of cetyltrimethyl 
ammonium bromide (CTAB) was added into the above solution. Next, 3 mmol of thioacetamide (Tu) 
was dissolved into 40 mL deionized water under stirring to form a homogeneous solution. After 
that, the Tu solution was slowly dropped into the above bismuth nitrate solution under constant 
magnetic stirring at room temperature. Subsequently, the pH value of the mixing solution was 
adjusted to be a certain value. After 1 h, the resulting mixture solution was transferred to Teflon-line 
stainless steel autoclave with 100 mL capacity and held at different temperatures for a certain time. 
After the autoclave was cooled naturally to room temperature, the final black precipitates were 
centrifuged and washed with deionized water and alcohol, respectively, followed by drying at 60 °C 
for 10 h in a vacuum oven. The detailed experimental conditions for the preparation of 3D 
hierarchical Bi2S3 architectures are listed in Table 1. As a comparison, Bi2S3 nanorods were also 
prepared by reacting Bi(NO3)3 and Tu without CTAB. 

 

Figure 10. Cycling performance of the photodegradation of RhB solution over the BS-2# sample.

3. Experimental Section

3.1. Synthesis of 3D Hierarchical Bi2S3 Architectures

All the reagents obtained from Shanghai chemical industrial Co. Ltd. China were analytically
pure and used without any further purification. In a typical synthesis procedure, 2 mmol of bismuth
nitrate pentahydrate (Bi(NO3)3·5H2O) were dissolved in 20 mL mixture solution under vigorous
stirring, which consisted of deionized water (8 mL) and dilute nitric acid (1M 12 mL). Then, 0.2 mmol
of cetyltrimethyl ammonium bromide (CTAB) was added into the above solution. Next, 3 mmol of
thioacetamide (Tu) was dissolved into 40 mL deionized water under stirring to form a homogeneous
solution. After that, the Tu solution was slowly dropped into the above bismuth nitrate solution
under constant magnetic stirring at room temperature. Subsequently, the pH value of the mixing
solution was adjusted to be a certain value. After 1 h, the resulting mixture solution was transferred
to Teflon-line stainless steel autoclave with 100 mL capacity and held at different temperatures for a
certain time. After the autoclave was cooled naturally to room temperature, the final black precipitates
were centrifuged and washed with deionized water and alcohol, respectively, followed by drying
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at 60 ◦C for 10 h in a vacuum oven. The detailed experimental conditions for the preparation of
3D hierarchical Bi2S3 architectures are listed in Table 1. As a comparison, Bi2S3 nanorods were also
prepared by reacting Bi(NO3)3 and Tu without CTAB.

Table 1. Summary of 3D hierarchical Bi2S3 architectures experimental conditions.

Sample Temperature (◦C) Reaction time (h) pH value

BS-1# 165 8 2.4
BS-2# 165 12 2.4
BS-3# 165 16 2.4
BS-4# 105 12 2.4
BS-5# 135 12 2.4
BS-6# 165 12 1.0
BS-7# 165 12 4.0

3.2. Characterization

Powder X-ray diffraction (XRD) measurements of the as-prepared 3D hierarchical Bi2S3

architectures were carried out with a Bruker AXS D8 Advance diffractometer with Cu Kα radiation
(λ = 0.15406nm) over a range from 10◦ to 70◦ (Bruker, Billerica, MA ,USA). Surface morphology was
observed by using a Hitachi S-4800 (Hitachi, Toyko, Japan) field emission scanning electron microscope.
Transmission electron microscopy (TEM) was obtained by using a JEM-2100 microscope (JEOL Ltd.,
Tokyo, Japan). The Brunauer–Emmett–Teller (BET) surface area was determined on the basis of
nitrogen adsorption and desorption isotherms at 77 K using a Quantachrome NOVA 2000e sorption
analyzer (Quantachrome Instruments, Boynton Beach, FL, USA). Raman spectrum were carried out by
using a Renishaw invia spectrometer (Renishaw, London, UK) at room temperature, and the excitation
source was an Ar+ laser with 514 nm line. UV-vis diffuse reflectance spectrum was collected from a
UV-vis spectrophotometer (TU 1901, Puxi, Beijing, China) with BaSO4 as reference.

3.3. Photocatalytic Activity

The photocatalytic activities of the as-prepared Bi2S3 samples were evaluated by the degradation
of RhB aqueous solution under visible-light irradiation. As was reported in our previous work [29–31],
40 mL RhB aqueous solution with a concentration of 1.0 × 10−5 M was added into the culture dish
with 0.05 g prepared photocatalyst. A 30 W fluorescent lamp was used as light source to trigger the
photocatalytic reaction, and the distance between the lamp and the dish coated by the photocatalysts
was about 10 cm. Prior to irradiation, an adsorption–desorption equilibrium was demanded to reach
among the catalyst, RhB and water in the dark. At given time intervals, 5 mL of the reacted solution
was centrifuged for concentration analysis. The concentration of RhB aqueous solution was determined
by recording the variation of the intensity of absorption peak located at 554 nm using an UV-visible
spectrophotometer (TU1901, Puxi, Beijing, China). The photo-degradation efficiency of RhB was
evaluated by (C0-C)/C0, where C is the concentration of the RhB solution at reaction time t, C0 is the
adsorption/desorption equilibrium concentration of RhB (at reaction time 0).

4. Conclusions

In summary, we demonstrated a facile hydrothermal route for preparing 3D hierarchical Bi2S3

architectures. The as-prepared 3D hierarchical Bi2S3 architectures in which abundant nanoplatelets
are randomly arranged and interconnected with each other have porous structure and large specific
surface area. The formation process of 3D hierarchical Bi2S3 architectures was proposed. The enhanced
photocatalytic activity of the representative 3D hierarchical Bi2S3 architectures could be ascribed to the
synergetic effect of the shape, surface area, crystallinity, band gap and crystalline size. Considering
the facile synthesis method and superior photocatalytic activity, the as-prepared 3D hierarchical Bi2S3
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architectures are promising to speed up the application of visible-light photocatalysts in the field of
environmental remediation.
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2D Two-dimensional
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