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Abstract: In this paper, GH4079 alloy was thermally compressed under processing condi-
tions of 1025 ◦C–1200 ◦C and 0.001 s−1–1 s−1. This article established the strain compensa-
tion Arrhenius constitutive equation, the improved Johnson–Cook constitutive equation,
and the strain compensation Arrhenius constitutive model based on phase transition tem-
perature segmentation and calculated the correlation coefficient (R) and local relative error
(AARE) to verify the accuracy of the model, respectively. Finally, a certain microstructural
analysis was combined. It can be concluded that the rheological stress of alloy GH4079
gradually decreases with the increase in temperature and strain rate. The AARE values of
these three models are 21.09%, 20.47%, and 10.62%, respectively. The strain compensation
Arrhenius model based on phase transition temperature segments can better describe the
thermal deformation behavior of GH4079. By integrating this model, appropriate process-
ing conditions can be selected to regulate the microstructural organization and achieve
optimization during the practical application of the alloy.

Keywords: superalloy; hot deformation behavior; constitutive equation; microstructure

1. Introduction
High-temperature alloys, or strong thermal alloys, have service temperatures above

600 ◦C. They can withstand large, complex stresses, have surface stability, and are highly
alloyed nickel-based metal materials [1]. Because of their excellent mechanical strength, re-
sistance to high-temperature creep, surface stability, and oxidation and corrosion resistance,
they are extensively utilized in the aerospace industry. They are a crucial raw material for
manufacturing aviation turbine engines [2]. GH4079 alloy (GH742Y) is based on GH4742
with increased V for strengthening. The alloy has higher Al, Ti, and Nb contents, which
allows the formation of more Ni3 (AlTiNb) precipitation-reinforced phases compared to
GH4742. This makes it an excellent raw material for aero-engine turbine disks and other
parts, effectively enhancing the performance and extending the service life of the parts. The
alloying elements have a significant impact on the properties of the alloy [3]. Compared
to commercial alloys such as Waspalloy and RR1000, GH4079 contains a higher amount
of Nb element, which provides greater strength and heat resistance, enabling it to operate
stably at 800 ◦C for extended periods [4]. Therefore, this alloy shows promising prospects
for development [2,5,6]. However, the deformation resistance of this alloy is relatively high
and is sensitive to the thermal processing conditions, which poses significant challenges
for the later forging deformation of the GH4079 high-temperature alloy. During the forg-
ing process of the GH4079 high-temperature alloy, if parameters are improperly selected,
microstructural issues such as porosity and cracks may easily occur during deformation,

Crystals 2025, 15, 148 https://doi.org/10.3390/cryst15020148

https://doi.org/10.3390/cryst15020148
https://doi.org/10.3390/cryst15020148
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://doi.org/10.3390/cryst15020148
https://www.mdpi.com/article/10.3390/cryst15020148?type=check_update&version=1


Crystals 2025, 15, 148 2 of 20

affecting the alloy’s strength, hardness, and other properties. Consequently, it is crucial
to investigate the hot deformation behavior of the GH4079 alloys for practical production.
In thermal deformation experiments, the plastic deformation process of alloys is often
studied through rheological behavior. The constitutive models can predict the thermal
deformation capacity of materials under different conditions, facilitating the understanding
of the organizational deformation laws of materials, which is one of the important methods
for optimizing material processing design.

Materials undergo intricate microstructural changes as a result of varying deformation
conditions, which play a critical role in determining the materials’ resistance to deformation
and significantly influence macroscopic plastic deformation. The constitutive model is
an expression that quantifies the relationship between rheological stress and deformation
parameters, capable of quantitatively describing thermal deformation behavior. Among
them, three typical constitutive models are widely applied, namely the Arrhenius [7],
Johnson–Cook (JC) [8], and Fields–Backofen (FB) models [9]. Constructing the Arrhenius
constitutive model is an effective method for studying the plastic flow behavior of various
alloys such as aluminum, nickel-based alloys, and magnesium alloys. By applying this
model, it is possible to effectively predict the microstructural changes of materials under
different conditions. However, the predictive effect of the recently developed stress com-
pensation hyperbolic sine Arrhenius model is more accurate [10,11]. The J-C constitutive
model is typically used for metals that undergo significant deformations at high strain rates
and temperatures, which offers the benefits of requiring fewer computational parameters,
less experimentation, and simpler computational methods [12–14]. To date, researchers
have evaluated and compared the accuracy of various models for predicting flow stresses
in different materials [15]. Cai [16] et al. established the strain-compensated Arrhenius,
J-C, and F-B models and their improved models using data obtained for 33Cr23NiMn3N
heat-resistant steel under different conditions. Among them, the Arrhenius constitutive
model with strain compensation predicts the best results. He [17] et al. established the
J-C model, the improved J-C model, and the strain-compensated Arrhenius constitutive
model for 20CrMo alloy steel over a wide temperature range. Through the analysis of stress
values and predicted outcomes from comparative experiments, except for the J-C model,
the other two models demonstrate relatively high accuracy. Consequently, this study con-
ducts thermal compression experiments on the GH4079 alloy, an improved J-C model, a
strain-compensated Arrhenius constitutive model, and a strain-compensated Arrhenius
constitutive model based on phase–transition–temperature segmentation, allowing for a
detailed analysis and comparison of the accuracy and effectiveness of these models.

2. Experimental Materials and Methods
The GH4079 alloy, composed of high-purity constituent elements (mass fraction greater

than 99.9%), has its chemical composition shown in Table 1. The alloy is repeatedly melted
in a vacuum arc furnace to ensure the uniformity of the alloy composition before forging. It
is then subjected to standard heat treatment, with the basic process occurring at 1140 ◦C
(8 h AC) (air cooling) and 850 ◦C (6 h AC + 16 h AC). Table 1 presents the quality percentage
of the alloy. The wire-cutting process involved cutting the original forging alloys into
cylindrical specimens with a diameter of 8 mm and a height of 12 mm. The Gleeble-
3800 thermal compression simulation testing machine was used for the hot compression
simulation experiments, as illustrated in Figure 1a: The simulation of the GH4079 alloy
was the first to heat at a rate of 10 ◦C/s, gradually warming to 1200 ◦C. The mixture was
maintained at this temperature for 5 to 10 min before cooling at a rate of 10 degrees Celsius
per second and gradually reaching the temperature required for the thermal deformation
process. After the internal temperature of the specimen reached a predetermined value, the
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temperature (1025 ◦C~1200 ◦C) and strain rate (0.001 s−1~1 s−1) were set for compression.
The experiment was continuously conducted under the protective atmosphere of argon gas,
and loading was stopped once the equivalent true strain reached the predetermined value.
Subsequently, the thermally compressed sample was water-quenched to room temperature
to preserve the microstructural state after thermal deformation. The characterization and
analysis of the GH4079 alloy were conducted using Electron Backscatter Diffraction (EBSD)
and Transmission Electron Microscopy (TEM). For the EBSD analysis, the sample was first
polished with sandpaper and then electropolished for 30 s using a 10% HClO4 alcohol
solution with a polishing voltage of 25 V. In this paper, the average nuclear orientation
difference map (KAM) was obtained by EBSD processing to analyze the microstructure.
By analyzing the KAM, one can qualitatively analyze the grain deformation, dislocation
density distribution, and energy storage level [18]. For the TEM analysis, the deformed
sample was ground to a thickness of 0.05 mm using sandpaper and then subjected to
dual-jet electro-thinning, with the solution ratio as mentioned above. Before the hot
compression simulation experiments, the original structure was characterized to ensure
that it was relatively uniform, as shown in Figure 1b. The original structure consisted of
dislocation-free, equiaxial crystals.

Table 1. Composition of the GH4079 alloy.

Component Co Cr Nb Ti Cu Mo V Fe C Ni

Content (wt%) 15.46 10.05 8.97 6.18 4.76 4.11 0.62 0.3 0.062 col
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Figure 1. (a) Flow chart of GH4079 alloy thermal compression simulation experiment; (b) KAM
diagram of original structure before thermal compression simulation experiment.

3. Results and Discussion
3.1. Rheological Behavior Analysis of GH4079 Alloy

The magnitude of the flow stress depends on the interaction between work harden-
ing (WH) and dynamic softening (dynamic recovery—DRV; dynamic recrystallization—
DRX) [19]. The competition between softening behaviors and work hardening is interre-
lated. Typically, high-temperature alloys exhibit dynamic recrystallization-type features
and dynamic restitution-type features during hot deformation [20]. As stress intensifies, the
rheological stress surges sharply. Yet, once it reaches the peak stress (σp), the rheological
stress begins to diminish with further increases in deformation. Finally, as the deformation
process continues, the rheological stress gradually stabilizes, a state referred to as steady-
state stress (σss). The latter shows that under the high-temperature conditions after the
rheological stress reaches σp, there is no stress reduction, but the steady-state rheology
with σp continues to be maintained. Figure 2 illustrates the σss and σp of the GH4079
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alloy under specific conditions: an engineering strain of 0.7, a deformation temperature
range of 1025 ◦C to 1200 ◦C, and a strain rate from 0.001 s−1 to 1 s−1. Maintaining a
constant strain rate reveals a noteworthy trend: as temperature rises, both the steady-state
and peak stresses significantly decline. This effect is particularly pronounced within the
phase transition temperature range, where the reduction in peak and steady-state stresses
occurs more steeply as temperatures increase. Understanding this relationship is crucial for
optimizing material performance under varying thermal conditions. At high-temperature
conditions, the thermal activation effect is significant, increasing the activity of atoms,
thereby activating slip systems and facilitating dislocation slip. This movement reduces
the accumulation of dislocations, resulting in a reduction in the alloy’s deformation resis-
tance [21]. Moreover, elevated temperatures significantly amplify the dynamic softening
effect. At high temperatures, the rheological stress rapidly peaks, aligning closely with
the steady-state stress. As the strain rate rises, dislocations proliferate within the grains
more rapidly, and the interaction among dislocations becomes stronger. This heightened
interplay among dislocations suppresses dynamic softening, resulting in an increased
flow stress.

Crystals 2025, 15, x FOR PEER REVIEW 4 of 23 
 

 

the rheological stress reaches σp, there is no stress reduction, but the steady-state rheology 
with σp continues to be maintained. Figure 2 illustrates the σss and σp of the GH4079 alloy 
under specific conditions: an engineering strain of 0.7, a deformation temperature range 
of 1025 °C to 1200 °C, and a strain rate from 0.001 s⁻1 to 1 s⁻1. Maintaining a constant strain 
rate reveals a noteworthy trend: as temperature rises, both the steady-state and peak 
stresses significantly decline. This effect is particularly pronounced within the phase tran-
sition temperature range, where the reduction in peak and steady-state stresses occurs 
more steeply as temperatures increase. Understanding this relationship is crucial for op-
timizing material performance under varying thermal conditions. At high-temperature 
conditions, the thermal activation effect is significant, increasing the activity of atoms, 
thereby activating slip systems and facilitating dislocation slip. This movement reduces 
the accumulation of dislocations, resulting in a reduction in the alloy’s deformation re-
sistance [21]. Moreover, elevated temperatures significantly amplify the dynamic soften-
ing effect. At high temperatures, the rheological stress rapidly peaks, aligning closely with 
the steady-state stress. As the strain rate rises, dislocations proliferate within the grains 
more rapidly, and the interaction among dislocations becomes stronger. This heightened 
interplay among dislocations suppresses dynamic softening, resulting in an increased 
flow stress. 

 

 

Figure 2. (a) Peak stress and (b) steady-state stress of GH4079 alloy in different strain rate condi-
tions. 

3.2. The Arrhenius Model of Strain Compensation 

The Arrhenius constitutive relationship is a phenomenological model [22] used to 
establish the relationship between material parameters and variations in flow stress. The 
expression is as follows: 

exp( )QZ ε
RT

&=  (1)

( )exp( )Qε AF σ
RT

&= -  (2)

1 0.8
( ) exp( ) 1.2

[sinh( )] for all 

n

n

σ ασ
F σ βσ ασ

ασ σ

＜

＞

ì
ïï= í
ï
ïî

 (3)

where ε  is the strain rate (s−1); α is the stress level parameter (MPa−1); σ is the flow stress 
(MPa); Z denotes the Zener-Hollomon parameter; R represents the universal gas constant. 

Figure 2. (a) Peak stress and (b) steady-state stress of GH4079 alloy in different strain rate conditions.

3.2. The Arrhenius Model of Strain Compensation

The Arrhenius constitutive relationship is a phenomenological model [22] used to
establish the relationship between material parameters and variations in flow stress. The
expression is as follows:

Z =
.
ε exp(

Q
RT

) (1)

.
ε = AF(σ) exp(− Q

RT
) (2)

F(σ) =


σn1

exp(βσ)

[sinh(ασ)]n

ασ < 0.8
ασ > 1.2
for all σ

(3)

where
.
ε is the strain rate (s−1); α is the stress level parameter (MPa−1); σ is the flow stress

(MPa); Z denotes the Zener-Hollomon parameter; R represents the universal gas constant.
R = 8.314462618 J·mol−1·K−1, Q represents the activation energy required for thermal
deformation (kJ/mol), T is the deformation temperature (K), and n1, n, β, α, and A are
material constants, where α = β/n1. Additionally, the effect of strain during the process
cannot be ignored. To enhance the precision of the parameters, we introduced strain as a
variable in the study of the Arrhenius constitutive model with strain compensation. This
article will take the condition of a strain of 0.3 as an example to demonstrate the calculation
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process, which is as follows: First, Formula (3) was substituted into (2), and, simultaneously,
on both sides of the natural logarithmic function, Formula (4) can be obtained:

ln
.
ε =


ln A1 − Q

RT + n1 ln σ

ln A2 − Q
RT + βσ

ln A − Q
RT + n ln[sinh(ασ)]

(4)

To facilitate subsequent calculations, Equation (4) is organized as follows:

ln σ =
1
n1

ln
.
ε − 1

n1
ln A1 (5)

σ =
1
β

ln
.
ε − 1

β
ln A2 (6)

ln[sinh(ασ)] =
ln

.
ε

n
+

Q
nRT

− ln A
n

(7)

where A1 and A2 are also material constants. The stresses under different temperature and
strain rate conditions, with a strain variable of 0.3, are substituted into (5) and (6), and the
scatter plots on ln σ − ln

.
ε and σ − ln

.
ε are linearly fitted, as illustrated in Figure 3. The

values of 1/n1 and 1/β can be obtained from their slopes. The value of α for a strain of 0.3
is calculated by averaging these slopes; α = β/n1 = 0.00612. According to Equation (7),
n is the average value of the slope of the ln[sinh(ασ)]− ln

.
ε. The stress values in different

conditions are substituted into (7) and then the value of n under each condition is obtained
by linear fitting, as shown in Figure 3c. The average value of n under the condition of a
strain of 0.3 is found to be 3.6533. From Equation (7), the following graphs were obtained:

Q = Rnm = Rn
∂{ ln[sinh(ασ)]}

∂(1/T)
(8)

Accordingly, by plotting the curve of ln[sinh(ασ)] − 1000/T in different deformation
conditions, the mean value of curve m is 28.1003. Under the condition of a strain of
0.3, by substituting n, m, and R into Equation (8), at a strain of 0.3, the Q value reaches
853.5214 kJ/mol. From Equations (1)–(3), the following is obtained:

Z = A[sinh(ασ)]n (9)

Taking the natural logarithms of both sides of Equation (9) simultaneously, one obtains
Equation (10):

ln Z = n ln[sinh(ασ)] + ln A (10)

The curve relating ln[sinh(ασ)] to lnZ effectively illustrates key parameters, where the
slope indicates the value of n and the intercept signifies lnA. Using Equation (1), we can
calculate the value of Z. As shown in Figure 4, the fitting curves for various parameters are
compelling. The n value is 3.5 at a strain of 0.3, and the line is 70.5340.

As rheological stress varies with strain, the above calculation procedure selects a
single strain variable for the derivation of the rheological stress. This ignores the effect of
strain variables. The strain-compensated Arrhenius equation introduces the parameter of
the strain variable and expresses individual material constants (α, n, lnA, and Q) in the
constitutive equations as polynomial functions containing strain variables. For this study,
strain variables ranging from 0.05~1 were selected for fitting, with a strain change gradient
of 0.05, and a total of 20 sets of deformations were used. Through the polynomial fitting
analysis, the error is minimized when applying the eighth-order polynomial to the material
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constants, and the fitting curve is shown in Figure 5. The polynomial function formula is
shown as Equation (11), and the coefficients of the fitted polynomials are shown in Table 2.

α = C0 + C1ε+ C2ε
2 + C3ε

3 + C4ε
4 + C5ε

5 + C6ε
6 + C7ε

7 + C8ε
8

n = D0 + D1ε+ D2ε
2 + D3ε

3 + D4ε
4 + D5ε

5 + D6ε
6 + D7ε

7 + D8ε
8

Q = E0 + E1ε+ E2ε
2 + E3ε

3 + E4ε
4 + E5ε

5 + E6ε
6 + E7ε

7 + E8ε
8

lnA = F0 + F1ε+ F2ε
2 + F3ε

3 + F4ε
4 + F5ε

5 + F6ε
6 + F7ε

7 + F8ε
8

(11)
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Figure 5. Strain-compensated Arrhenius eigenstructure model with different parameter polynomial
fits for (a) α-ε, (b) n-ε, (c) Q-ε, and (d) lnA-ε.

Table 2. Fitting polynomial coefficients of Arrhenius constitutive model for strain compensation.

α (MPa−1) n Q (KJ mol−1) lnA

C0 = 0.02 D0 = 8.77 E0 = 1390.47 F0 = 112.80
C1 = −0.24 D1 = 86.36 E1 = 3018.07 F1 = 171.52
C2 = 2.18 D2 = 707.90 E2 = 14,210.70 F2 = 401.95
C3 = 10.47 D3 = 3150.32 E3 = −60,499.50 F3 = 1127.99
C4 = 9.53 D4 = 7933.88 E4 = 104,325.11 F4 = −2803.14
C5 = 49.97 D5 = 11,755.61 E5 = 23,424.29 F5 = 18,269.46
C6 = 9.72 D6 = 1021.31 E6 = −129,786.29 F6 = −31,620.63
C7 = 26.76 D7 = 4810.79 E7 = 143,382.31 F7 = 23,460.72
C8 = 6.00 D8 = 954.24 E8 = −46,135.07 F8 = −6486.37

Substituting the fitted material constants into the expression of the hyperbolic sine
function containing the Zener–Holloman parameter, the value of the rheological stress can
be obtained under any deformation amount, as in Equation (12):
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σ =
1
α

ln


( .

ε exp( Q
RT )

A

)1/n

+

( .
ε exp( Q

RT )

A
)

2/n

+ 1

1/2
 (12)

By substituting strain values ranging from 0.05 to 1 under various deformation condi-
tions into Formula (12), we can derive the material constants for these strain levels. Figure 6
illustrates the comparison between the predicted and experimental values.
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The predicted curve reveals that, when the phase transition temperature has not been
reached, the predicted values are generally lower than the experimental values. Conversely,
once the temperature exceeds the phase transition threshold, the predicted values tend
to be higher than the experimental values. Therefore, the strain-compensated Arrhenius
equation of the strain compensation based on the rheological stresses before and after the
phase transition temperature is calculated. The parameters were fitted with an eighth-order
polynomial. Figure 7 shows the fitting curves for different parameters, with coefficient
values listed in Table 3. By substituting each strain into the Arrhenius equation based on
strain compensation before and after the phase transition temperature, a comparison curve
of predicted and experimental values was obtained, as shown in Figure 8.



Crystals 2025, 15, 148 9 of 20

Crystals 2025, 15, x FOR PEER REVIEW 9 of 23 
 

 

 

Figure 6. A comparison of the predicted and experimental values of the strain-compensated Arrhe-
nius eigenstructure model in different deformation conditions: (a) 0.001 s−1, 1050 °C~1200 °C; (b) 
0.01 s−1,1050 °C~1200 °C; (c) 0.1 s−1,1050 °C~1200 °C; (d) 1 s−1,1050 °C~1200 °C. 

  

  

Crystals 2025, 15, x FOR PEER REVIEW 10 of 23 
 

 

  

  

Figure 7. Strain-compensated Arrhenius eigenmode coefficients based on polynomial fits before and 
after phase transition temperature for (a,b) α-ε, (c,d) n-ε, (e,f) Q-ε, (g,h) lnA-ε. 

 

Figure 7. Strain-compensated Arrhenius eigenmode coefficients based on polynomial fits before and
after phase transition temperature for (a,b) α-ε, (c,d) n-ε, (e,f) Q-ε, (g,h) lnA-ε.



Crystals 2025, 15, 148 10 of 20

Table 3. Fitted polynomial coefficients of the strain-compensated Arrhenius eigenmodes based on
phase-change temperature segmentation.

α(C0–C8) n(D0–D8) Q(E0–E8) lnA(F0–F8)
1025~

1050 ◦C
1100~

1200 ◦C
1025~

1050 ◦C
1100~

1200 ◦C
1025~

1050 ◦C
1100~

1200 ◦C
1025~

1050 ◦C
1100~

1200 ◦C

0.006 0.02 80.06 5.18 1338.79 156.62 128.91 8.29
0.07 0.15 1682.94 25.01 6686.56 10,975.60 322.88 954.35
0.69 1.29 15,234.63 215.59 −58,704.68 −76,924.14 −2399.62 6810.22
−3.75 −6.09 −72,271.63 −1037.04 37,636.11 284,443.42 −11,921.3 25,781.30
11.94 17.00 197,440.80 2733.40 636,325.02 −662,127.4 102,319.3 −61,288.03
−22.25 −28.62 −322,838.02 −4119.27 −2,195,60 996,362.92 −273,86 93,601.33
23.79 28.41 310,878.90 3557.00 −3,416,50 −929,397.5 356,953.22 −88,092.06
13.49 −15.28 −162,742.11 −1637.41 −2,143,20 483,704.49 −230,762.8 46,071.77
3.14 3.43 35,702.95 311.09 569,531.60 106,662.12 592,557.02 −10,185.35
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3.3. An Improved Johnson–Cook Model

The Johnson–Cook model is a strain relationship model for describing metallic materi-
als at high temperatures and high strain rates. It was proposed by Johnson and Cook in
1983 and is now widely used due to its simplicity of form [23]. The expression is as follows:

σ = (A + Ben)(1 + C ln
.
e∗)(1 − T∗m) (13)

where σ is the rheological stress (MPa), A is the yield stress corresponding to conditions, ε is
the true strain, n is the strain hardening factor, C is the strain rate enhancement coefficient,
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.
ε
∗ is the dimensionless strain rate,

.
ε
∗
=

.
ε/

.
ε0

.
ε is the strain rate (s−1),

.
ε0 is the reference

strain rate (s−1), T is the current temperature (K), Tm is the melting temperature, Tref is the
reference temperature (T ≥ Tref), and m is the thermal softening coefficient.

However, the Johnson–Cook model falls short by ignoring the interplay between
temperature and strain rate, which undermines its capacity to capture the comprehensive
effects of all contributing factors. Conversely, the thermal deformation process in high-
temperature alloys is deeply influenced by the intricate interaction of key elements such as
strain rate, deformation temperature, and the degree of deformation, making it essential to
consider these factors for a more accurate understanding. To address these shortcomings,
an improved Johnson–Cook model has been proposed that incorporates these factors into
account. The expression of the improved model is as follows [24]:

σ = (A1 + B1ε + · · ·+ Bnεn)(1 + C1 ln
.
ε
∗
) · exp[(λ1 + λ2 ln

.
ε
∗
)T∗] (14)

where A1, B1,. . .Bn, C1, λ1, and λ2 are material constants; T∗ = T − Tref, the rest of the
covariates, and (13) are kept consistent. The improved Johnson–Cook model is used in this
study, and two sets of reference points are selected before and after the phase transformation
temperature: the reference temperature before the phase transformation temperature is
1050 ◦C (equivalent to 1323 K), and the reference strain rate is 0.01 s−1; the reference
temperature after the phase transformation temperature is 1150 ◦C (equivalent to 1423 K),
and the reference strain rate is 0.01 s−1. When the deformation temperature is the reference
temperature and the strain rate is the reference strain rate, substituting it into Equation (14),
then Equation (14) can be converted into (15):

σ = (A1 + B1ε + · · ·+ Bnεn) (15)

The stress values before and after the phase transition for each deformation condition
of 0.05~1 are taken and brought into (15), the scatter plots of ε and σ are plotted and
polynomially fitted, and the error is minimized when the number of fits is 6, as shown
in Figure 9. The coefficients before and after the phase transition point were determined
through precise fitting, as illustrated in Table 4. When the deformation temperatures are
the reference temperatures of 1323 K and 1423 K and the strain rates are 0.001 s−1~1 s−1,
Equation (14) can be transformed into Equation (16):

σ = (A1 + B1ε + · · ·+ Bnεn)(1 + C1 ln
.
ε
∗
) (16)

Table 4. Improved Johnson–Cook model parameters.

A1 B1 B2 B3 B4 B5 B6 C1 λ1 λ2

Before the phase
change 84.18 2818.39 14,405.73 34,424.15 44,315.63 29,512.70 7954.10 0.20 −0.004 −1.93

After the phase
change 51.42 139.81 −539.83 1067.12 −868.83 230.55 33.28 0.32 −0.007 0.00013

Converting Equation (16) into the form (17), that is, transforming it to the format
presented in Equation (17), gives the following:

σ

(A1 + B1ε + · · ·+ Bnεn)
= (1 + C1 ln

.
ε
∗
) (17)

The stresses under different strain rate conditions are substituted into (17), the scatter
plots are plotted before and after the phase transition relationship of σ

(A1+B1ε+···+Bnεn)
−ln

.
ε
∗,

respectively, and are then fitted linearly. The value of C1 is the slope of the curve, as shown
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in Figure 10, where the C1 values are 0.1975 and 0.3193, respectively. Then, Equation (14)
can be converted into Equation (18):

σ

(A1 + B1ε + · · ·+ Bnεn)(1 + C1 ln
.
ε
∗
)
= eλT∗

(18)
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Taking log ln for the left and right sides of (18), (18) can be converted into Equation (19):

ln

[
σ

(A1 + B1ε + · · ·+ Bnεn)(1 + C1 ln
.
ε
∗
)

]
= λT∗ (19)

When the strain variable is certain, the stress values are substituted for dif-
ferent temperatures and strains, and the fitted curve is plotted for the relationship
ln
[

σ
(A1+B1ε+···+Bnεn)(1+C1 ln

.
ε
∗
)

]
−T∗, that is, one rate condition, where the strain corresponds

to four sets of strain rate curves similarly. The fitted curves ln
[

σ
(A1+B1ε+···+Bnεn)(1+C1 ln

.
ε
∗
)

]
− T∗

for the strain of 0.05~1 are plotted separately for the two reference point conditions, and
the slopes of the curves correspond to the values of λ. Figure 11 displays the fitted curves
for the two reference temperatures at a strain rate of 1 s−1. Concerning the fitted curves,
the slopes, i.e., the values of λ of the curves, are −0.01043 and −0.0067, respectively. Since
λ = (λ1 + λ2 ln

.
ε
∗
), the λ − ln

.
ε
∗ scatter plot is plotted and linearly fitted under different

strain conditions, the slope of the curve is λ2, and the intercept of the curve is λ1. The
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modified Johnson–Cook model provides the intrinsic equations for the GH4079 alloy before
and after the phase transition as follows:

σ =
(
84.1762 + 2818.394ε − 14405.7352ε2 + 34424.1465ε3 − 44315.63ε4+

29512.6963ε5 − 7954.1041ε6)(1 + 0.1975 ln
.
ε
∗
) · exp[(−1.9334 ln

.
ε
∗ − 0.0041)T∗]

σ =
(
51.4210 + 139.8094ε − 593.8341ε2 + 1067.2163ε3 − 868.8292ε4+

230.5474ε5 + 33.2785ε6)(1 + 0.3193 ln
.
ε
∗
) · exp[(0.000129 ln

.
ε
∗ − 0.00747)T∗]

(20)Crystals 2025, 15, x FOR PEER REVIEW 14 of 23 
 

 

  

Figure 11. Relationships between 
n

ln n

σ T
A B ε B ε C ε1 1 1（ + + + ）(1+ ln )*

é ù
ê ú -
ê ú×××ë û&

 and (a) reference tem-

perature of 1050 °C, (b) reference temperature of 1150 °C. 

Different strain variables are substituted into the fitting equation and the accuracy of 
predicting stress by plotting scatter plots of predicted values and stress–strain curves is 
analyzed, as shown in Figure 12, and there are significant differences between the pre-
dicted and the experimental values for those conditions. 

Table 4. Improved Johnson–Cook model parameters. 

 A1 B1 B2 B3 B4 B5 B6 C1 λ1 λ2 
Before 

the phase 
change 

84.18 2818.39 14,405.73 34,424.15 44,315.63 29,512.70 7954.10 0.20 −0.004 −1.93 

After the 
phase 

change 
51.42 139.81 −539.83 1067.12 −868.83 230.55 33.28 0.32 −0.007 0.00013 

Figure 11. Relationships between ln
[

σ
(A1+B1ε+···+Bnεn)(1+C1 ln

.
ε
∗
)

]
− T and (a) reference temperature

of 1050 ◦C, (b) reference temperature of 1150 ◦C.

Different strain variables are substituted into the fitting equation and the accuracy of
predicting stress by plotting scatter plots of predicted values and stress–strain curves is
analyzed, as shown in Figure 12, and there are significant differences between the predicted
and the experimental values for those conditions.

3.4. Comparison of Strain-Compensated Arrhenius Eigenmodes, Segmented Strain-Compensated
Arrhenius Eigenmodes, and Improved J-C Model

To further analyze and compare the accuracy of the three aforementioned models, we
introduced the correlation coefficient (R) and average relative error (AARE) to determine
the accuracy of each model. The formulas for these values are as follows:

AARE =
1
N

N

∑
i=1

∣∣∣∣Ei − Pi
Ei

∣∣∣∣× 100% (21)

where Ei and Pi denote the experimental and theoretical rheological stresses, respectively.
Table 5 (A)(B)(C) shows the comparative analysis statistics of the relative errors of the
GH4079 alloy in different conditions. After calculation, the relative error values of the strain-
compensated Arrhenius model, the strain-compensated Arrhenius constitutive model
based on segmentation before and after the phase transition temperature, and the improved
Johnson–Cook model are 21.09%, 10.62%, and 20.47%, respectively. Figure 13 illustrates
the correlation analysis between the predicted and experimental values of the rheological
stresses for the three models. The correlation coefficients for three constitutive equations
are as follows: the strain-compensated Arrhenius constitutive equation has a coefficient of
0.9449, the Arrhenius constitutive equation based on the segmentation of the phase transi-
tion temperature has a coefficient of 0.9787, and the improved Johnson–Cook constitutive
equation has a coefficient of 0.9274. Among these three equations, the Arrhenius consti-
tutive equation that incorporates the segmentation of the phase transition temperature



Crystals 2025, 15, 148 14 of 20

demonstrates the highest prediction accuracy. It is particularly effective in predicting the
rheological stress of the GH4079 alloy with greater accuracy.
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Table 5. A comparison of the AARE values under different deformation conditions for the
three models.

T/K
.
ε/s−1 AARE (A) AARE (B) AARE (C)

1298

0.001 0.48 0.13 0.78
0.01 0.16 0.19 0.36
0.1 0.16 0.03 0.10
1 0.13 0.02 0.10

1323

0.001 0.36 0.10 0.70
0.01 0.44 0.25 0.01
0.1 0.18 0.07 0.14
1 0.05 0.03 0.17

1373

0.001 0.12 0.09 0.18
0.01 0.44 0.37 0.18
0.1 0.11 0.06 0.15
1 0.14 0.11 0.19

1423

0.001 0.23 0.11 0.14
0.01 0.06 0.13 0.01
0.1 0.13 0.08 0.03
1 0.19 0.04 0.13
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Table 5. Cont.

T/K
.
ε/s−1 AARE (A) AARE (B) AARE (C)

1473

0.001 0.33 0.18 0.48
0.01 0.18 0.04 0.07
0.1 0.16 0.11 0.04
1 0.18 0.04 0.17
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3.5. Microstructure Analysis

During hot deformation of high-temperature alloys, the increase and decrease in flow
stress is linked to dislocation changes [25]. During the prethermal deformation period,
with increasing temperature and strain rate, the amount of distortion energy stored inside
the grains increases rapidly, causing dislocation proliferation rapidly and accumulating at
the grain boundary. The work-hardening effect is significant, leading to a rapid increase
in rheological stress. As strain increases, the effects of dynamic recrystallization (DRX)
and dynamic recovery (DRV) also become more pronounced [26]. With the enhancement
in dynamic softening and the balance of work hardening, viscous stress rises slowly and
eventually stabilizes after reaching its peak. At this time, DRV and DRX become the main
mechanism; the macroscopic manifestation is the decrease in flow stress, and the micro-
scopic manifestation is the annihilation of dislocation [27]. Hence, in this paper, the KAM
(kernel-averaged orientation difference) map, obtained through EBSD post processing,
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was utilized for in-depth analysis of the recrystallization behavior of the high-temperature
alloys under study [28]. The KAM is proportional to the dislocation density, and accord-
ing to the KAM plot, the color gradually changes from red to blue, which indicates that
the KAM value varies from large to small, and the low KAM indicates a low dislocation
density [29,30]. Figure 14a~c represent the KAM plots at a strain rate of 0.01 s−1 and a
temperature of 1050 ◦C~1150 ◦C, respectively, and Figure 14d~f represent the KAM plots
at the deformation temperature of 1100 ◦C and a strain rate of 0.001 s−1~1 s−1, respectively.
Through comparative analysis, under conditions of a low temperature and high strain rate,
dislocations tend to accumulate easily, resulting in a relatively high density. The energy
and time required to form the dynamic softening effect are insufficient, the number of
recrystallized grains is relatively small, and the main concentration is at the original grain
boundaries, leading to a relatively weak dynamic softening effect. Additionally, a signifi-
cant number of dislocations are plugged, and their density increases, thus generating an
obvious work-hardening phenomenon, and the macroscopic reaction is an increase in flow
stress. In contrast, at high deformation temperatures and low strain rates, the activation
energy increases, the motion of atoms being more active, promoting the rearrangement and
disappearance of dislocations, resulting in a lower dislocation density in the alloy. Simul-
taneously, sufficient time allows for the growth of recrystallization nuclei, enhancing the
dynamic softening effect. In addition, as shown in Figure 14b, there are obvious necklaces
of recrystallized grains around the larger deformed grains, and dislocations are clustered
at the grain boundaries, which gradually expands to the inside of the deformed grains.
Additionally, there are almost no dislocations inside the newly formed recrystallized grains,
which suggests that, during the process of dynamic recrystallization., it is necessary to
absorb dislocations continuously to achieve the transformation of the subcrystalline grains
into recrystallized grains from the subcrystalline grains [31].

Figure 15 presents the TEM images taken at a temperature of 1050 ◦C with a strain
rate of 0.01 s−1, and at 1100 ◦C with a strain rate of 1 s−1, respectively. Figure 15a shows
that a significant number of reticulations or high-density entanglements are formed inside
the alloy under low-temperature conditions, and Figure 15b shows relatively few disloca-
tion interactions; the dislocation wall gradually forms, and obvious bowing out of grain
boundaries can be observed, which is an obvious dynamic recrystallization phenomenon,
indicating that the dislocations need to be absorbed continuously during the process [32,33],
while Figure 15c shows many elongated deformed grains and surrounding high-density
entangled dislocation structures. Furthermore, as demonstrated in Figure 15a, the pre-
cipitated phase is concentrated in the region with a dense dislocation distribution and
interacts with it. This interaction suggests that the precipitated phase possesses a crucial
role in the deformation process of the GH4079 alloy during the preheating deformation
stage [34]. In summary, the thermal deformation process of the GH4079 alloy is closely
related to changes in the dislocation configuration and the role of precipitates. The changes
in the microstructure are consistent with the judgments made earlier, and by combining
the Arrhenius-type constitutive equation based on the phase transition temperature seg-
ments, we can accurately predict the flow stress of the GH4079 alloy. This method allows
us to anticipate shifts in microstructural organization, thereby significantly reducing the
potential for cracking in real-world applications.
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4. Conclusions
1. In the thermal deformation experiment of alloy GH4079, the value of the flow stress is

directly proportional to the deformation temperature and inversely proportional to
the strain rate.

2. The rheological stresses of the GH4079 alloy were computed by applying the strain-
compensated Arrhenius constitutive equation, the Arrhenius constitutive equation
based on the segmentation of the phase transition temperature, and the improved
Johnson–Cook constitutive equation. The correlation coefficients of the three models
were 0.94449, 0.9787, and 0.9274, respectively, and the AARE values were 21.09%,
10.62%, and 20.47%, respectively. Combining these three models, the Arrhenius
constitutive equation based on phase transition temperature segmentation has the
highest accuracy.

3. The alloy identified as GH4079 demonstrates a significantly higher dislocation density
during the thermal deformation process at low temperatures and high strain rates,
which directly impacts the macroscopic rheological stress. Furthermore, the presence
of precipitated phases plays a crucial role in influencing the rheological behavior of
the material. Therefore, by integrating the Arrhenius constitutive equation based
on the segmentation of the phase transition temperature with a high precision to
predict the microstructural evolution of the alloy under various conditions, we can
avoid cracking issues in practical applications. This approach not only enhances the
material’s performance but also ensures reliability in demanding environments.
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