Steric Effects of Alcohols on the [Mn4O4] Cubane-Type Structures
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Measurements
2.2. Synthesis of Li(dhd)
2.3. Synthesis of Mn2(dhd)4(iPrOH)2 (1)
2.4. Synthesis of Mn4(dhd)4(OEt)4(EtOH)4 (2)
2.5. Synthesis of Mn4(dhd)6(OMe)2(MeOH)2 (3)
2.6. X-ray Crystallographic Procedures
3. Results and Discussion
3.1. Synthesis
3.2. Single Crystal Structures of 1, 2 and 3
3.3. Electronic Structures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, J.-Z.; Sellitto, E.; Yap, G.P.A.; Sheats, J.; Dismukes, G.C. Trapping an Elusive Intermediate in Manganese−Oxo Cubane Chemistry. Inorg. Chem. 2004, 43, 5795–5797. [Google Scholar] [CrossRef]
- Sessoli, R.; Tsai, H.L.; Schake, A.R.; Wang, S.; Vincent, J.B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D.N. High-Spin Molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 1993, 115, 1804–1816. [Google Scholar] [CrossRef]
- Lampropoulos, C.; Koo, C.; Hill, S.O.; Abboud, K.; Christou, G. Synthesis, Magnetism, and High-Frequency EPR Spectroscopy of a Family of Mixed-Valent Cuboctahedral Mn13 Complexes with 1,8-Naphthalenedicarboxylate Ligands. Inorg. Chem. 2008, 47, 11180–11190. [Google Scholar] [CrossRef]
- Brechin, E.K.; Clegg, W.; Murrie, M.; Parsons, S.; Teat, S.J.; Winpenny, R.E.P. Nanoscale Cages of Manganese and Nickel with “Rock Salt” Cores. J. Am. Chem. Soc. 1998, 120, 7365–7366. [Google Scholar] [CrossRef]
- Soler, M.; Wernsdorfer, W.; Folting, K.; Pink, M.; Christou, G. Single-Molecule Magnets: A Large Mn30 Molecular Nanomagnet Exhibiting Quantum Tunneling of Magnetization. J. Am. Chem. Soc. 2004, 126, 2156–2165. [Google Scholar] [CrossRef]
- Stamatatos, T.C.; Abboud, K.A.; Wernsdorfer, W.; Christou, G. “Spin Tweaking” of a High-Spin Molecule: An Mn25 Single-Molecule Magnet with an S = 61/2 Ground State. Angew. Chem. Int. Ed. 2007, 46, 884–888. [Google Scholar] [CrossRef]
- Manoli, M.; Alexandrou, S.; Pham, L.; Lorusso, G.; Wernsdorfer, W.; Evangelisti, M.; Christou, G.; Tasiopoulos, A.J. Magnetic “Molecular Oligomers” Based on Decametallic Supertetrahedra: A Giant Mn49 Cuboctahedron and its Mn25Na4 Fragment. Angew. Chem. Int. Ed. 2016, 55, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Tasiopoulos, A.J.; Vinslava, A.; Wernsdorfer, W.; Abboud, K.A.; Christou, G. Giant Single-Molecule Magnets: A {Mn84} Torus and Its Supramolecular Nanotubes. Angew. Chem. Int. Ed. 2004, 43, 2117–2121. [Google Scholar] [CrossRef] [PubMed]
- Miyasaka, H.; Clérac, R.; Wernsdorfer, W.; Lecren, L.; Bonhomme, C.; Sugiura, K.-i.; Yamashita, M. A Dimeric Manganese(III) Tetradentate Schiff Base Complex as a Single-Molecule Magnet. Angew. Chem. Int. Ed. 2004, 43, 2801–2805. [Google Scholar] [CrossRef] [PubMed]
- Lecren, L.; Roubeau, O.; Coulon, C.; Li, Y.-G.; Le Goff, X.F.; Wernsdorfer, W.; Miyasaka, H.; Clérac, R. Slow Relaxation in a One-Dimensional Rational Assembly of Antiferromagnetically Coupled [Mn4] Single-Molecule Magnets. J. Am. Chem. Soc. 2005, 127, 17353–17363. [Google Scholar] [CrossRef]
- Zhou, C.-L.; Wang, Z.-M.; Wang, B.-W.; Gao, S. A Oximato-Bridged Linear Trinuclear [MnIVMnIIIMnIV] Single-Molecule Magnet. Dalton Trans. 2012, 41, 13620–13625. [Google Scholar] [CrossRef] [PubMed]
- Dismukes, G.C.; Brimblecombe, R.; Felton, G.A.N.; Pryadun, R.S.; Sheats, J.E.; Spiccia, L.; Swiegers, G.F. Development of Bioinspired Mn4O4−Cubane Water Oxidation Catalysts: Lessons from Photosynthesis. Acc. Chem. Res. 2009, 42, 1935–1943. [Google Scholar] [CrossRef] [PubMed]
- Hocking, R.K.; Brimblecombe, R.; Chang, L.-Y.; Singh, A.; Cheah, M.H.; Glover, C.; Casey, W.H.; Spiccia, L. Water-Oxidation Catalysis by Manganese in a Geochemical-Like Cycle. Nat. Chem. 2011, 3, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Holm, R.H.; Lo, W. Structural Conversions of Synthetic and Protein-Bound Iron–Sulfur Clusters. Chem. Rev. 2016, 116, 13685–13713. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Mandal, S.K.; Bhaduri, S.; Armstrong, W.H. Manganese Clusters with Relevance to Photosystem II. Chem. Rev. 2004, 104, 3981–4026. [Google Scholar] [CrossRef] [PubMed]
- Chernev, P.; Fischer, S.; Hoffmann, J.; Oliver, N.; Assunção, R.; Yu, B.; Burnap, R.L.; Zaharieva, I.; Nürnberg, D.J.; Haumann, M.; et al. Light-Driven Formation of Manganese Oxide by Today’s Photosystem II Supports Evolutionarily Ancient Manganese-Oxidizing Photosynthesis. Nat. Commun. 2020, 11, 6110. [Google Scholar] [CrossRef] [PubMed]
- Mayilmurugan, R.; Suresh, E.; Palaniandavar, M. A New Tripodal Iron(III) Monophenolate Complex: Effects of Ligand Basicity, Steric Hindrance, and Solvent on Regioselective Extradiol Cleavage. Inorg. Chem. 2007, 46, 6038–6049. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.-P.; Kong, X.-J.; Hu, X.-Y.; Sun, M.; Long, L.-S.; Huang, R.-B.; Zheng, L.-S. Influence of Steric Hindrance of Organic Ligand on the Structure of Keggin-Based Coordination Polymer. Inorg. Chem. 2006, 45, 4016–4023. [Google Scholar] [CrossRef] [PubMed]
- SAINT. Part of Bruker APEX3 Software Package, (Version 2016.9-0); Bruker AXS: Billerica, MA, USA, 2016.
- SADABS. Part of Bruker APEX3 Software Package, (Version 2016.9-0); Bruker AXS: Billerica, MA, USA, 2016.
- Sheldrick, G.M. SHELXT–Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Heitz, S.; Aksu, Y.; Merschjann, C.; Driess, M. Methylmagnesium Alkoxide Clusters with Mg4O4 Cubane- and Mg7O8 Biscubane-Like Cores: Organometallic Precursors for Low-Temperature Formation of MgO Nanoparticles with Variable Surface Defects. Chem. Mater. 2010, 22, 1376–1385. [Google Scholar] [CrossRef]
- Kitos, A.A.; Papatriantafyllopoulou, C.; Tasiopoulos, A.J.; Perlepes, S.P.; Escuer, A.; Nastopoulos, V. Binding of Ligands Containing Carbonyl and Phenol Groups to Iron(III): New Fe6, Fe10 and Fe12 Coordination Clusters. Dalton Trans. 2017, 46, 3240–3251. [Google Scholar] [CrossRef] [PubMed]
- Serna, Z.; De la Pinta, N.; Urtiaga, M.K.; Lezama, L.; Madariaga, G.; Clemente-Juan, J.M.; Coronado, E.; Cortés, R. Defective Dicubane-like Tetranuclear Nickel(II) Cyanate and Azide Nanoscale Magnets. Inorg. Chem. 2010, 49, 11541–11549. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Wei, Z.; Barry, M.C.; Filatov, A.S.; Dikarev, E.V. Heterometallic Molecular Precursors for a Lithium–Iron Oxide Material: Synthesis, Solid State Structure, Solution and Gas-Phase Behaviour, and Thermal Decomposition. Dalton Trans. 2017, 46, 5644–5649. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Han, H.; Filatov, A.S.; Dikarev, E.V. Changing the Bridging Connectivity Pattern within a Heterometallic Assembly: Design of Single-Source Precursors with Discrete Molecular Structures. Chem. Sci. 2014, 5, 813–818. [Google Scholar] [CrossRef]
- Ruettinger, W.F.; Campana, C.; Dismukes, G.C. Synthesis and Characterization of Mn4O4L6 Complexes with Cubane-like Core Structure: A New Class of Models of the Active Site of the Photosynthetic Water Oxidase. J. Am. Chem. Soc. 1997, 119, 6670–6671. [Google Scholar] [CrossRef]
- Nguyen, A.I.; Ziegler, M.S.; Oña-Burgos, P.; Sturzbecher-Hohne, M.; Kim, W.; Bellone, D.E.; Tilley, T.D. Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation. J. Am. Chem. Soc. 2015, 137, 12865–12872. [Google Scholar] [CrossRef] [PubMed]
- Tsaroucha, M.; Aksu, Y.; Irran, E.; Driess, M. Synthesis of Stannyl-Substituted Zn4O4 Cubanes as Single-Source Precursors for Amorphous Tin-Doped ZnO and Zn2SnO4 Nanocrystals and Their Potential for Thin Film Field Effect Transistor Applications. Chem. Mater. 2011, 23, 2428–2438. [Google Scholar] [CrossRef]
- Piga, F.; Moro, F.; Krivokapic, I.; Blake, A.J.; Edge, R.; McInnes, E.J.L.; Evans, D.J.; McMaster, J.; Van Slageren, J. Magnetic Properties of a Novel Family of Ferrous Cubanes. Chem. Commun. 2012, 48, 2430–2432. [Google Scholar] [CrossRef] [PubMed]
- Navulla, A.; Huynh, L.; Wei, Z.; Filatov, A.S.; Dikarev, E.V. Volatile Single-Source Molecular Precursor for the Lithium Ion Battery Cathode. J. Am. Chem. Soc. 2012, 134, 5762–5765. [Google Scholar] [CrossRef]
- Magnus, P.; Payne, A.H.; Waring, M.J.; Scott, D.A.; Lynch, V. Conversion of α, β-Unsaturated Ketones into α-Hydroxy Ketones Using an MnIII Catalyst, Phenylsilane and Dioxygen: Acceleration of Conjugate Hydride Reduction by Dioxygen. Tetrahedron Lett. 2000, 41, 9725–9730. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
Compound | 1 | 2 | 3 |
---|---|---|---|
CCDC | 2351735 | 2351736 | 2351734 |
Moiety Formula | C38H68Mn2O10·C3H8O | C48H96Mn4O16 | C52H92Mn4O16 |
Formula weight | 854.89 | 1149 | 1193.01 |
Temperature (K) | 150 | 150 | 150 |
Wavelength (Å) | 0.71073 | 0.71073 | 0.71073 |
Crystal system | Triclinic | Monoclinic | Monoclinic |
Space group | P | P21/n | P21/n |
a (Å) | 10.621(2) | 17.5839(13) | 14.0445(8) |
b (Å) | 13.017(3) | 17.189(10) | 14.7969(8) |
c (Å) | 19.727(5) | 21.0431(15) | 15.6796(8) |
α (°) | 77.996(5) | 90 | 90 |
β (°) | 88.842(4) | 107.029(2) | 107.7926(2) |
γ (°) | 67.691(4) | 90 | 90 |
V (Å3) | 2462.81(10) | 6081.52(7) | 3102.581(3) |
Z | 2 | 4 | 2 |
ρcalcd (g·cm−3) | 1.153 | 1.255 | 1.277 |
μ (mm−1) | 0.562 | 0.869 | 0.854 |
F(000) | 920 | 2448 | 1264 |
θ range for data collection (°) | 1.058–25.098 | 2.422–21.124 | 2.75–25.53 |
Reflections collected | 10,566 | 38,019 | 27,346 |
Independent reflections | 7479 (Rint = 0.0764) | 11115 (Rint = 0.1252) | 8309 (Rint = 0.0855) |
Transmission factors (min/max) | 0.602/0.745 | 0.888/0.942 | 0.679/0.746 |
Data/restraints/params. | 10,566/198/591 | 11,115/378/807 | 8309/3/342 |
R1 a, wR2 b (I > 2σ(I)) | 0.0640/0.1465 | 0.0708/0.1592 | 0.0525/0.1016 |
R1 a, wR2 b (all data) | 0.0455/0.1230 | 0.1235/0.2098 | 0.0855/0.1272 |
Goodness-of-fit c | 1.077 | 1.043 | 1.030 |
Largest diff. peak and hole (ē·Å−3) | 0.447 and −0.442 | 0.683 and −0.382 | 0.531 and −0.448 |
Mn–O Bond Length | 1 | 2 | 3 | LiMn2(thd)5 [32] | Mn(thd)3 [33] |
---|---|---|---|---|---|
Mn–Odhd (chelating) | 2.149 | 2.150 | 2.133 | / | / |
Mn–Odhd (bridging) | 2.209 | / | 2.249 | / | / |
Mn–OOR | / | 2.191 | 2.147 | / | / |
Mn–OROH | 2.202 | 2.254 | 2.278 | / | / |
Mn–Ototal | 2.168 | 2.188 | 2.168 | / | / |
MnII–Othd | / | / | / | 2.176 | / |
MnIII–Othd | / | / | / | / | 1.988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Zhou, Z.; Han, H. Steric Effects of Alcohols on the [Mn4O4] Cubane-Type Structures. Crystals 2024, 14, 478. https://doi.org/10.3390/cryst14050478
He Y, Zhou Z, Han H. Steric Effects of Alcohols on the [Mn4O4] Cubane-Type Structures. Crystals. 2024; 14(5):478. https://doi.org/10.3390/cryst14050478
Chicago/Turabian StyleHe, Yan, Zheng Zhou, and Haixiang Han. 2024. "Steric Effects of Alcohols on the [Mn4O4] Cubane-Type Structures" Crystals 14, no. 5: 478. https://doi.org/10.3390/cryst14050478
APA StyleHe, Y., Zhou, Z., & Han, H. (2024). Steric Effects of Alcohols on the [Mn4O4] Cubane-Type Structures. Crystals, 14(5), 478. https://doi.org/10.3390/cryst14050478