
Citation: Bougoffa, A.; Benali, E.M.;

Benali, A.; Tozri, A.; Dhahri, E.; Graça,

M.P.; Valente, M.A.; Costa, B.F.O.

Structural, Dielectric, Electrical, and

Magnetic Characteristics of

Bi0.8Ba0.1Er0.1Fe0.96Cr0.02Mn0.02O3

Nanoparticles. Crystals 2024, 14, 445.

https://doi.org/10.3390/cryst14050445

Academic Editor: Ingo Dierking

Received: 14 March 2024

Revised: 2 May 2024

Accepted: 5 May 2024

Published: 7 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Structural, Dielectric, Electrical, and Magnetic Characteristics of
Bi0.8Ba0.1Er0.1Fe0.96Cr0.02Mn0.02O3 Nanoparticles
A. Bougoffa 1, E. M. Benali 1,2 , A. Benali 1,2,3, A. Tozri 4,*, E. Dhahri 1 , M. P. Graça 3 , M. A. Valente 3

and B. F. O. Costa 2,*

1 Laboratoire de Physique Appliquée, Faculté des Sciences, Université de Sfax, B.P. 1171, Sfax 3000, Tunisia;
amirabougoffa@gmail.com (A.B.); benaliemna93@gmail.com (E.M.B.); benaliadel96@gmail.com (A.B.);
essebti@yahoo.com (E.D.)

2 University of Coimbra, CFisUC, Physics Department, Rua Larga, 3004-516 Coimbra, Portugal
3 I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; mpfg@ua.pt (M.P.G.);

mav@ua.pt (M.A.V.)
4 Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
* Correspondence: amtozri@ju.edu.sa (A.T.); benilde@uc.pt (B.F.O.C.)

Abstract: Bi0.8Ba0.1Er0.1Fe0.96Cr0.02Mn0.02O3 (BBEFCMO) multiferroic ceramic was synthesized
through the sol-gel route. The impact of incorporating various dopants into both A and B sites
of the BiFeO3 was investigated, and structural, Raman, dielectric, electric, and magnetic properties
were studied. X-ray diffraction analysis and Raman spectroscopy revealed a rhombohedral structure
with the R3c space group for the doped material (BBEFCMO). Dielectric properties were examined
across a frequency range of 102–106 Hz. The present multiferroic material exhibits a colossal dielectric
constant and minimal dielectric loss tangent, making it suitable for applications in energy storage.
Furthermore, the Cole-Cole type of relaxation was deduced from the imaginary part of the modulus
for both grain and boundary-grain contributions. Overall, this study indicates that substituting ions
in both A and B sites of BiFeO3 significantly enhances its multiferroic properties, as evidenced by
dielectric and magnetic measurements.

Keywords: multiferroic; doped BiFeO3; colossal dielectric constant; Cole-Cole relaxation; ferromag-
netic interactions

1. Introduction

The multiferroic compounds with an ABO3 formula have drawn the attention of re-
searchers thanks to their unique properties and their various technological applications over
the past decades in fields such as sensors, optoelectronic devices, spintronics, and trans-
ducers [1–4]. As a material extensively researched for its multiferroic properties, BiFeO3
exhibits a rhombohedral structure with the R3c space group, displaying ferroelectricity,
ferro-elastic, and anti-ferromagnetism properties simultaneously at room temperature [5–8].

While the ferroelectricity behavior of this compound emanates from the distortion
of 6s2 of the Bi3+ ions, their magnetic characteristics are linked to the super-exchange
Fe-O-Fe interaction [9]. However, the significant leakage current densities, the weak
anti-ferromagnetic behavior, and the poor ferroelectric hysteresis block their application.
Unfortunately, the reduced polarization value is ascribed to the existence of secondary
phases for the BiFeO3 compound [10].

To address these drawbacks and enhance the characteristics of undoped BiFeO3, re-
searchers have explored partial substitution of Bi3+ (A-site doping) or Fe3+ (B-site doping),
potentially leading to a highly dielectric constant, improvement of ferroelectric and fer-
romagnetic (FM) characteristics, and the elimination of the small impurity phase of the
BiFeO3 [11–13].
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G. Catalan et al. [14] showed that the magnetic Néel temperature increased in the
Ca-doped BiFeO3 sample. Furthermore, the substitution of the Bi3+ ions for Ba2+ ones led
to a pronounced ferromagnetic hysteresis loop for the BiFeO3 sample [15].

The replacement of Iron (3+) ions by other transition metal ones, such as Mn ones,
increases not only the Iron–Oxygen–Iron angle, but also the super-exchange interaction
between Iron ions, and, therefore, enhances the magnetic properties [16].

Moreover, the concurrent substitutions of A and B ions with Er, Ba, Cr, and Mn ions
exhibit an enhancement impact on dielectric, electric, and magnetic properties, as has
recently been proven by the studies on Ba/Cr [17,18], Ba/Mn [19,20], Er/Mn [21], and
Ba/Er [22] co-doped BFO materials. Furthermore, V.R. Palkar et al. [23] observed an
improvement in the magnetization of the La/Mn co-doped BiFeO3. Conversely, some
reports have demonstrated that the incorporation of Eu3+ and Co3+ ions into the A-site and
B-site of the BiFeO3 boosts the saturation magnetization (MS) and coercivity (HC) (20 times
more than the pure BiFeO3) [24].

Indeed, over the last decade, researchers have adopted a new strategy for further
enhancing the ferromagnetic and ferroelectric properties in BFO multiferroic material. This
involves the simultaneous doping of both A and B sites with more than two ions [25–28].
It is worth noting that only a few studies have focused on the co-doping of multiple
elements into both A and B sites of BiFeO3 materials. This approach fosters increased
ferromagnetic interactions and, concurrently, regulates structural transition and oxygen
vacancy concentrations, thus obtaining the perfect parameters of ferroelectric properties,
such as the high remnant polarization, the small coercive field, and reduced leakage current,
etc. [29].

In our recent investigation, we explored the structural, morphological, ac-electrical,
and dielectric characteristics of the (Bi0.8Ba0.1Er0.1)(Fe0.96Cr0.02Co0.02)O3 nanoparticles syn-
thesized through the sol-gel method. We have reported that the substitution of Lanthanum
and Calcium enhances the magnetization (10 times higher than the BiFeO3 sample) [30].

The present study accounts for the synthesis of Bi0.8Ba0.1Er0.1Fe0.96Cr0.02Mn0.02O3
(BBEFCMO) nanoparticles via the sol-gel method, followed by calcination at 800 ◦C. It
explores the impact of Cr3+ and Mn3+ ion incorporation into the B site on structural,
dielectric, electric, and magnetic properties. Remarkably, BBEFCMO material demonstrates
interesting dielectric and magnetic characteristics, making it a potential candidate for
diverse technological applications, particularly in energy storage.

2. Materials and Methods

Bismuth, Barium, Erbium, Iron, Chromium, and Manganese nitrates (from Sigma-
Aldrich) have been used to prepare Bi0.8Ba0.1Er0.1Fe0.96Cr0.02Mn0.02O3 (BBEFCMO) nanopar-
ticles with respect to the sol-gel Pechini method [31,32]. According to the respective stoi-
chiometric proportion, sufficient quantities of each nitrate were mixed and dissolved in
distilled water. Subsequently, citrate acid (C6H8O7) was introduced as a chelating agent
into the mixture of all nitrates, ensuring the specified molar ratio n(metal ions):n(citric) = 1:2.
The solution was kept at 70 ◦C under magnetic stirring until the obtention of a brown
viscose gel. The gel was heated at 170 ◦C to get a dark powder, which was ground-heated
at 300 ◦C for 12 h in order to eliminate all organic entities. Later, the obtained powder was
finely ground and then compressed into small cylindrical forms, measuring roughly 8 mm
in diameter and about 3 mm in thickness. These pellets were subsequently heated at 800 ◦C
for a duration of 4 h.

A Bruker 8D Advance X-ray powder diffractometer (Karlsruhe, Germany) was em-
ployed to study the phase and structural properties by adjusting the RXD pattern with
FullProf software (version: September-20) [33].

Transmission electron microscopy (TEM) (Hitachi H-800, Tokyo, Japan) was conducted
in a FEI Tecnai G2 microscope employing an accelerating voltage of 200 kilovolts. For
TEM observations, the powder was dispersed in ethanol by sonication and dropped on
carbon-coated copper grids.
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Mössbauer spectroscopy was used to record spectra at room temperature using a
WissEl (Germany) conventional transmission geometry spectrometer and a 57Co/Rh source.

Raman spectroscopy (Horiba, Vénissieux, France) at room temperature (RT) was con-
ducted with backscattering geometry, utilizing a Jobin Yvon HR 800 system and employing
an excitation wavelength of 473 nm.

Dielectric measurements were conducted across a temperature range of 120 to 400 K,
employing a cryostat setup with a nitrogen bath. During conducting measurements, the
materials were maintained in a Helium atmosphere to reduce thermal gradients, and the
sample temperature was regulated using an Oxford Research IT-C4 system in conjunction
with a platinum sensor. We measured the impedance of the samples using an Agilent 4294
Network Analyzer, which operated in the range of 100 Hz to 1 MHz, with a configuration
involving capacitance in parallel with resistance (Cp–Rp configuration) [34–36].

Hysteresis loops (M vs. µ0H) were recorded at room temperature, subject to an
applied field ranging from −10 to 10 Tesla. The measurements were conducted using a
VSM system from Cryogenics, with the sample axis aligned parallel to the direction of the
applied magnetic field.

3. Results and Discussion
3.1. Structural Properties
3.1.1. Powder X-ray Diffraction (XRD)

Figure 1a presents the XRD pattern of the (Bi0.8Ba0.1Er0.1)(Fe0.96Cr0.02Mn0.02)O3 com-
pound. As expected, the highest reflection peaks in the pattern precisely correspond to those
documented and recognized for the rhombohedral crystal structure of the BiFeO3 (JCPDS
file no. 71-2494) [37]. The pronounced intensities of these diffraction peaks indicate the
good crystallization of the compound under investigation. Nevertheless, supplementary
peaks with low intensities were observed and analyzed with Xpert-height score software.
The presence of the triclinic Bi4O7 (P-1 space group) and Ba2FeO4 (P12/c1 space group)
secondary phases were identified. These impurities emanate from the volatility of bismuth
ions that were identified in doped BiFeO3 materials [38,39]. To further analyze the substi-
tution effect on structural properties, we executed a Rietveld refinement using FullProf
software. We began by refining the profile, adjusting the lattice parameters for all phases.
Subsequently, atomic positions, the Biso, and the corresponding occupancy of all atoms
were individually adjusted for accuracy and enhancement of the structure. As presented in
Figure 1a, the observed (Yobs) data aligned closely with the refined XRD data (Ycal), giving
almost a linear behavior of their differences (Yobs–Ycal: blue line). The various resulting
parameters of all phases are listed in Table 1.
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Table 1. Refined structural parameters obtained for the BBEFCMO sample using rhombohedral
crystal structure with R3c space group.

Lattice Parameters

a = b (Å) 5.561 (3)

c (Å) 13.769 (3)

V (Å3) 368.818 (12)

Interatomic distances

Fe/Cr/Mn–O (Å) 2.2861/1.8025

Bi/Er/Ba–O (Å) 2.6444/2.1023

Fe–O–Fe (◦) 149.431

R-factors (%)

Rwp 4.873

Rexp 3.132

GOF 1.555

χ2 2.420

Atomic position parameters

Atom x y z

Bi/Er/Ba 0 0 0.2206

Fe/Cr/Mn 0 0 0

O 0.8812 0.6558 0.4533

As regards the quantitative phase compositions of the R3c, P-1, and P12/c1 phases
in the studied compound, they were found to be around 95.30%, 2.63%, and 2.07%,
respectively. It is worth mentioning that the c lattice parameter and cell volume V
were observed to be slightly lower than values reported in an earlier study about the
Bi0.8Ba0.1Er0.1Fe0.96Cr0.02Co0.02O3 nanoparticles [30], which can be attributed to the smaller
ionic radius of Mn3+ ions compared to Co2+ ones. Figure 1b presents the 3D schematic
representation of the crystal structure of the studied sample using the Vista software, ac-
cording to the structural refinement results. It is evident that the substitution in both the A
site and B site of the BiFeO3 oxide induces a tilt and a compaction of the Octahedron FeO6.

On the other side, we analyzed the average crystallite size of the studied compound
according to the Williamson–Hall formalism (Equation (1)) [40].

βhklcos(θ) =
0.9 × λ

DW−H
+ 4 × ε × sin(θ) (1)

ε represents the strain attributed to the nanoparticles, θ denotes the peak position, DW-H
indicates the crystallite size (measured in nanometers), λ stands for the wavelength of the
X-ray radiation source (which is 1.5406 angstroms), and β refers to the integral width. The
average calculated crystallite size was found to be equal to 52 nm.

3.1.2. Raman Spectroscopy

Research findings indicate that in pure BiFeO3 exhibiting rhombohedral distortion
and the R3c space group, there are eighteen optical modes that can be represented as
follows [41,42]:

Γ= 4A1+ 5A2 + 9E (2)

where the A1 mode and E mode are Raman active and IR. Conversely, A2 modes exhibit
Raman inactivity.
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The Raman spectra of the Bi0.8Ba0.1Er0.1Fe0.96Cr0.02Mn0.02O3 (BBEFCMO) sample with
an excitation wavelength of 532 nm at different temperatures (25 ◦C, 100 ◦C, and 400 ◦C)
are shown in Figure 2a. The experimental Raman spectra of the prepared sample were
fitted using the Lorentzian approach. The adjustment results are shown in Figure 2b–d,
and the peak positions are collected in Table 2.

Crystals 2024, 14, x FOR PEER REVIEW 5 of 20 
 

 

Γ= 4A1+ 5A2 + 9E (2)

where the A1 mode and E mode are Raman active and IR. Conversely, A2 modes exhibit 
Raman inactivity. 

The Raman spectra of the Bi0.8Ba0.1Er0.1Fe0.96Cr0.02Mn0.02O3 (BBEFCMO) sample with an 
excitation wavelength of 532 nm at different temperatures (25 °C, 100 °C, and 400 °C) are 
shown in Figure 2a. The experimental Raman spectra of the prepared sample were fitted 
using the Lorentzian approach. The adjustment results are shown in Figure 2b–d, and the 
peak positions are collected in Table 2. 

It can be clearly seen that the Raman spectra obtained for the BBEFCMO ceramic are 
consistent with previously reported findings in the literature for undoped BiFeO3 [43]. 
Moreover, the observed spectra accord well with the Raman active modes identified for 
the Er, Ba, Cr, and Co-doped BiFeO3 reported in our previous research [30]. 

In the low Raman range, A1 modes are related to the Bi-O vibration [44]. Compared 
to BiFeO3, we can plainly observe a shift in these modes. The change in this Bi-O vibration 
can be explained by the effect of the Ba and Er substitution in the A site. Moreover, the Er-
O bond (606 KJ/mol) and Ba-O bond (562 ± 13.4 KJ/mol) are stronger than the Bi-O bond 
(337.2 ± 12.6 KJ/mol), which induces more displacement in the center of the BiFeO3 sample 
[45]. 

Furthermore, the high-frequency E modes are attributed to the Fe-O vibrations [46]. 
The shift of the modes in this range is due to the introduction of the Mn and Cr atoms in 
the Fe site which form more stable Cr-O and Mn-O bonds, thus causing significant 
distortion of FeO6 octahedra [47]. 

We will discuss the evolution of the Raman peaks of our sample around the anti-
ferromagnetic phase transition TN (≈643 K) of the non-doped BiFeO3. In this regard, Figure 
2d shows the mode frequencies of the Raman modes as a function of temperature for the 
Bi0.8Ba0.1Er0.1Fe0.96Cr0.02Mn0.02O3 ceramic, obtained from Lorentzian fittings. 

We can confirm that the overall spectral signature remains consistent within the 
temperature range of 25 °C and 400 °C, suggesting that our sample maintains its room 
temperature structure up to 400 °C. However, it is worth noting that, upon heating, there 
is a noticeable alteration in both spectra shape and intensity. Furthermore, a distinct step-
like evolution of the wave number for several bands is clearly observed. 

  

Crystals 2024, 14, x FOR PEER REVIEW 6 of 20 
 

 

  

 
Figure 2. (a) Three-dimensional Raman spectra of BBEFCMO sample at different temperatures; (b), 
(c), and (d) deconvolution of the Raman spectra of the sample at 25 °C, 100 °C, and 400 °C, 
respectively. (e) Temperature-dependent evolution of the Raman bands position for the studied 
compound. 

Table 2. The Raman modes of the prepared BBEFCMO sample. 

Raman Mode [21] 25 °C/(cm−1) 100 °C/(cm−1) 400 °C/(cm−1) 
A1-1 127.90 128.57 123.67 
A1-2 138.22 164.27 158.15 
A1-3 166.28 184.96 192.74 
A1-4 238.88 248.22 248.15 
E 258.74 273.73 279.74 
E 283.14 307.18 310.92 
E 374.10 376.39 397.65 
E 463.25 449.73 458.66 
E 490.03 475.36 484.28 
E 512.37 500.71 507.51 
E 597.08 595.86 589.96 
E 617.02 617.50 612.65 
E 640.04 643.85 653.32 

  

Figure 2. (a) Three-dimensional Raman spectra of BBEFCMO sample at different temperatures;
(b), (c), and (d) deconvolution of the Raman spectra of the sample at 25 ◦C, 100 ◦C, and 400 ◦C,
respectively. (e) Temperature-dependent evolution of the Raman bands position for the studied
compound.
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Table 2. The Raman modes of the prepared BBEFCMO sample.

Raman Mode [21] 25 ◦C/(cm−1) 100 ◦C/(cm−1) 400 ◦C/(cm−1)

A1-1 127.90 128.57 123.67

A1-2 138.22 164.27 158.15

A1-3 166.28 184.96 192.74

A1-4 238.88 248.22 248.15

E 258.74 273.73 279.74

E 283.14 307.18 310.92

E 374.10 376.39 397.65

E 463.25 449.73 458.66

E 490.03 475.36 484.28

E 512.37 500.71 507.51

E 597.08 595.86 589.96

E 617.02 617.50 612.65

E 640.04 643.85 653.32

It can be clearly seen that the Raman spectra obtained for the BBEFCMO ceramic are
consistent with previously reported findings in the literature for undoped BiFeO3 [43].
Moreover, the observed spectra accord well with the Raman active modes identified for the
Er, Ba, Cr, and Co-doped BiFeO3 reported in our previous research [30].

In the low Raman range, A1 modes are related to the Bi-O vibration [44]. Compared to
BiFeO3, we can plainly observe a shift in these modes. The change in this Bi-O vibration
can be explained by the effect of the Ba and Er substitution in the A site. Moreover, the
Er-O bond (606 KJ/mol) and Ba-O bond (562 ± 13.4 KJ/mol) are stronger than the Bi-O
bond (337.2 ± 12.6 KJ/mol), which induces more displacement in the center of the BiFeO3
sample [45].

Furthermore, the high-frequency E modes are attributed to the Fe-O vibrations [46].
The shift of the modes in this range is due to the introduction of the Mn and Cr atoms in the
Fe site which form more stable Cr-O and Mn-O bonds, thus causing significant distortion
of FeO6 octahedra [47].

We will discuss the evolution of the Raman peaks of our sample around the anti-
ferromagnetic phase transition TN (≈643 K) of the non-doped BiFeO3. In this regard,
Figure 2d shows the mode frequencies of the Raman modes as a function of temperature
for the Bi0.8Ba0.1Er0.1Fe0.96Cr0.02Mn0.02O3 ceramic, obtained from Lorentzian fittings.

We can confirm that the overall spectral signature remains consistent within the
temperature range of 25 ◦C and 400 ◦C, suggesting that our sample maintains its room
temperature structure up to 400 ◦C. However, it is worth noting that, upon heating, there is
a noticeable alteration in both spectra shape and intensity. Furthermore, a distinct step-like
evolution of the wave number for several bands is clearly observed.

3.1.3. Transmission Electron Microscopy (TEM)

Figure 3a displays a selected micrograph obtained from transmission electron mi-
croscopy (TEM) of the synthesized BBEFCMO compound. Nanoparticles with a combina-
tion of spherical and rectangle shapes are observed in Figure 3a. The distribution profile of
the particles size was obtained using Image-J software and is presented in Figure 3b. The
average size of the BBEFCMO particles was found to be around 76 nm, which accords well
with the crystallites size found from the Williamson–Hall formalism.
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Figure 3. (a) TEM image of the BBEFCMO compound; (b) Lorentzian fit of the particles size distribu-
tion obtained using Image-J software.

3.2. Magnetic Properties

Figure 4a presents the magnetic hysteresis loops of the BBEFCMO nanoparticles in
an applied field in the range of −10 T to 10 T, measured at 7 K and 300 K. The mag-
netization data displayed a significant hysteresis loop, indicating finite values for both
coercive and remanent magnetization (MS), and importantly an unsaturated magnetiza-
tion under high fields. The unsaturated behavior indicates an antiferromagnetic (AFM)
behavior [48–50]. Moreover, the important remanent magnetization value (nonzero), be-
low which the magnetization sharply increased, serves as evidence for the presence of
a ferromagnetic (FM) contribution presence within the compound [51]. As reported by
D. Lebeugle et al., it is worth mentioning that the M(H) plots of the pure BiFeO3 (BFO)
depict an almost unsaturated linear behavior, indicating a G-type antiferromagnetic (AFM)
configuration with the pitching of Fe3+ ions [52]. In the present work, the magnetization of
the BBEFCMO compound was found to be around 27 times higher than what was found
for the undoped BFO system [53,54], and 1.5 times higher than what was found for the
(Bi0.8Er0.1Ba0.1)(Fe0.96Cr0.02Co0.02)O3 compound [55], which is essentially due to the pres-
ence of Manganese ions, as was previously reported [56–58]. Moreover, it was confirmed
that the introduction of small quantities of Manganese ions in the BiFeO3 system induces a
John–Teller distortion which would enhance the magnetization [58].
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To confirm and quantify the ferromagnetic contribution in the Bi0.8Er0.1Ba0.1Fe0.96Cr0.02
Mn0.02O3 compound, the M-H magnetic loop was adjusted according to the following
equation [59,60]:

M(H) =

{
2

MS
FM
π

tan−1

((
H ± Hci

Hci

)
tan

(
π × MR

FM

2 × MS
FM

))}
+ {χH} (3)

where the first term is related to the ferromagnetic contribution, while the second one
represents the linear behavior from the antiferromagnetic contribution (AFM). MS

FM, MR
FM,

and Hci are the ferromagnetic saturation magnetization, remnant magnetization, and
intrinsic coercive field, respectively. The resulting adjusted curves are presented in Figure 4b
together with the experimental data showing a good adjustment quality. From the adjusted
magnetic parameters (Table 3), the ferromagnetic contribution was found to be equal
to 40.37%. With the replacement of Cobalt ions by Manganese ones, the magnetization
increased from 5.068 to 8.05 emu/g, which is related to a 2.05% increase in the ferromagnetic
contribution.

Table 3. Obtained adjusted parameters of the room temperature magnetic hysteresis loop of BBE-
FCMO compound.

Observed
Magnetization (emu/g)

AFM
Contribution (×105

emu*Oe/g)

FM Contribution

HCI (kOe) MFM
S (emu/g) MFM

R (emu/g)

8.051 0.325 4.208 4.801 1.947

On the other hand, Figure 5 illustrates the room temperature Mössbauer spectrum
of the BBEFCMO compound. The spectrum was fitted with three Fe3+ sextets and a Fe3+

doublet, as in the case of the replacement of Mn by Co [55]. The fitted parameters are
tabulated in Table 4. The presence of a doublet is likely to emanate from the Bi2FeO9
impurity phase (5.3%). Indeed, despite being non-magnetic, it could be associated with the
pure BFO compound, as well as the first sextet. The second sextet with a hyperfine field of
49.3 T, accounting for 47%, is attributed to Fe3+ ions in the tetrahedral coordination and
AFM ordering in the pure BFO compound. The first and third sextets are ascribed to Fe3+

at octahedral environments and are related to FM. Together, their relative amounts total
47.5%, representing 45% of the magnetic part of the sample.
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Table 4. Hyperfine parameters resulted from the fitting procedure of the Mössbauer spectrum of the
BBEFCMO compound. Isomer shifts are given relatively to α-Fe.

Site δ (mm/s) ∆ (mm/s) B (T) Γ (mm/s) % Coordination

Doublet 0.23 (1) 0.550 (1) - 0.47 (1) 5.3 Fe3+

Sext 1 0.39 (1) 0.034 (1) 50.7 (1) 0.45 (1) 42.3 Fe3+

Sext 2 0.38 (1) 0.032 (1) 49.3 (1) 0.47 (1) 47.2 Fe3+

Sext 3 0.25 (1) 0.049 (1) 41.5 (1) 0.67 (1) 5.2 Fe3+

Compared to the Mössbauer results of the (Bi0.8Er0.1Ba0.1)(Fe0.96Cr0.02Co0.02)O3 com-
pound, the introduction of Mn ions induces a reduction in the third sextet and a slight
change in its isomer shift. This sextet has the lowest hyperfine field (41.5 T), and its relative
area decrease is related to a higher saturation magnetization of the sample, compared with
the one with Co2+ in the B site.

3.3. Dielectric Study
3.3.1. Dielectric Constant and Dielectric Loss Tangent tg(δ)

In Figure 6a,b, we plot the frequency and temperature dependence of the dielectric
constant ε′ of the Bi0.8Ba0.1Er0.1Fe0.96Cr0.02Mn0.02O3 (BBEFCMO) compound. At low fre-
quencies, ε′ presents extraordinarily high values (≈8 × 105), indicating a colossal dielectric
constant nature of the studied compound. This can be explained by a potential barrier
generated by space charge polarization at the grain boundaries inducing a charge accumu-
lation. Such materials with a high value of ε′ are candidates for energy storage devices [61].
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Furthermore, it was observed that the dielectric constant rises as temperature increases,
primarily ascribed to the increase in various polarization contributions, resulting from
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thermally activated charge carriers [62]. The presented curves of the dielectric constant
show 3 plateaus (with a slight dependence on frequency) at around 400, 104, and 3 × 105,
between which the curves decrease rapidly with increasing frequency. It is also important to
mention that the step-like decrease shifted to high frequencies with the rise in temperature,
indicating a thermally activated relaxation process [63]. These observations confirm that
the studied compound is composed of three different contributions.

To further confirm the presence of different relaxation processes from dielectric con-
stant curves, we calculated the logarithmic derivative of the dielectric constant component
(known as the Kramers–Kronig transformation [64–66]) and we plotted the results at differ-
ent temperatures in Figure 6c. The appearance of three different relaxation peaks aligns
well with the presence of three different contributions.

On the other hand, typically, the step-like decrease in the dielectric constant is accom-
panied by a relaxation peak in the dielectric loss tangent tg(δ). We plotted in Figure 7a the
frequency dependence of the dielectric loss tangent for the temperature range between
120 K and 400 K. In fact, it was observed that the dielectric loss tangent exhibits two distinct
and well-defined relaxation peaks at low and high frequencies for each temperature. More-
over, a third relaxation peak is almost hidden in the intermediate frequency region, which
is clear in the Kramers–Kronig transformation of the dielectric loss tangent at 170 K, as
presented in Figure 6c. The dielectric relaxations at low and high frequencies are associated
with the electrode and grain contributions, respectively, while the dielectric relaxation at
intermediate frequencies is due to the grain boundary contribution. Figure 7b shows the
temperature dependence of the relaxation frequency behavior of both relaxations at low
and high frequencies, which obeys the linear Arrhenius law between Ln(fmax) and 1/T. The
calculated activation energies obtained for electrode and grain contributions are equal to
0.553 eV and 0.319 eV, respectively.
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3.3.2. Imaginary Part of Modulus

The complex modulus study has been adapted to investigate the dielectric relaxation
behavior and to differentiate the grain, the grain boundaries, and the electrode contributions
in our sample.

Figure 8a shows a 3D presentation of the imaginary part M′′ of the complex modulus
of the prepared compound. A close inspection of the M′′ plot shows the appearance of
two peaks, the first of which is located at a low-frequency region and the second one
appears at a high-frequency range, which implies the existence of a relaxation process in
this material [67]. The low frequency side of the peaks presents the range in which the
ions are mobile over long distances and perform successful hopping from one site to the
neighboring one. Furthermore, at the high frequency side, the ions are confined to their
wells and can execute only localized motion [68].
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We can clearly confirm that the peaks gradually shift to high frequencies and tem-
perature, as shown in Figure 8b. This behavior suggests that the relaxation is thermally
activated [69].

To better study the dielectric relaxation processes, a model function of Havriliak–
Negami (HN) given by (Equation (3)) [70] is adopted to fit the experimental data of the
imaginary part of Modulus M′′.

M′′ (ω) = M∞ +
M0 − M∞[

1 + (jωτHN)
α]β

(4)

where τHN is the average relaxation time, the parameters α (0 < α < 1) and β (0 < α < 1) are
the shape factors related to the width of the relaxation and the asymmetry of curves, and
M∞ and M0 are the dielectric modulus at low and high frequency sides of the relaxation.

L.C. Brazzano et al. [71] have confirmed that the HN function is obtained by a simple
generalization of a single time relaxation, which illustrates the response of a Debye process
when α = β = 1. Nevertheless, if β = 1 (α ̸= 1) or α = 1 (β ̸= 1), the relaxation process is
according to Cole-Cole [72] and Cole-Davidson [73] models, respectively. The result of the
adjustment is plotted in Figure 8b.

The obtained parameters are used to identify the model of the dielectric relaxation.
Figure 9a presents the temperature dependence of α and β parameters. We can deduce
that the Cole-Cole model fits well with both the low and high-frequency ranges, which are
accredited to boundary grains and grains, respectively. These results are in good agreement
with those obtained in our previous work for the Bi0.8(La0.8Ca0.2)0.2FeO3 compound [32].
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Furthermore, the obtained HN relaxation time parameters were used to calculate the
activation energies. The logarithmic variation in the relaxation time Ln(τHN) as a function
of the 1000/T in terms of the Arrhenius law is depicted in Figure 9b, from which it can be
inferred that the activation energy of the boundary grains exceeds those of the grains. On
the other hand, the obtained values are very close to those previously calculated from the
permittivity plots.

3.4. Electrical Investigation
3.4.1. DC Conductivity

Figure 10a presents the variation in the Ln(ρ/T) versus 1/T of the BBEFCMO sam-
ple. It is found that the resistivity decreases rapidly with the increase in temperature
until reaching a slow variation above T = 363 K. This behavior implies a rise in material
conductivity, reaching a saturation value at this temperature, indicating a semiconductor
behavior. Beyond 370 K, the temperature-independence conductivity may be explained by
the stability of the parameters governing the microstructure of the material (inter-site or
inter-gain distances, the resistance of the insulating barrier). Additionally, the saturation of
σdc can be attributed to the stability of the factors affecting the transfer of a small polaron
between two sites (the jump and disorder energies, the radius of the polaron, the resistance
of the grains, and the mobility of the charge carriers and their concentrations).

However, below 363 K, the conductivity steadily increases with temperature increases.
This suggests that the DC conduction is described by the variable range-hopping (VRH)
process at lower temperatures and transitions to a thermal activation by the small polaron-
hopping (SPH) process at higher temperatures [74].

To verify the validity of SPH conduction model, we plotted the variation in Ln (σdc.T)
versus the inverse of temperature according to the Arrhenius law. This plot exhibits three
distinct slopes corresponding to three different activation energies. According to Mott-
theory, in the high-temperature region above θD/2, where the obtained activation energy is
around 338 meV, the conduction process is typically characterized by thermally activated
SPH conduction. This activation energy, Ea, arises from polaron formation via a banding
energy (EP = EH/2; EH: polaron-hopping energy) and the disorder energy (ED) due to the
variations in the local arrangements of ions [75–77]. Conversely, at the low-temperature
region, the Mott revealed that the conduction is purely governed by the disorder energy,
which is approximately 33 meV, with negligible hopping and banding energies.
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In light of these findings, the temperature dependence of the DC conductivity of the
present sample can be described by the following expression [78,79]:

σdc = σ0T.e(−
Ea

kBT ) (5)

where σ0 is a pre-exponential factor, T is the absolute temperature, and kB is the Boltzmann
constant.

The activation energy is given by

Ea ≈
{

Ea = EH + ED
2 f or T > θD

2
Ea = ED f or T < θD

4
(6)

where EH and ED are the polaron-hopping energy and the disorder energy, respectively. As
can be seen from Figure 10b, describing the dependence of Ln (σdc) on T−1/4. This figure
clearly proves a linear slope at lower temperatures (below θD/4), confirming the validity
of the Mott-VRH model to describe the transport process of the studied material at the
low-temperature region, by the following expression of DC conductivity [80]:

σdc = Ae(−
B

T1/4 ) (7)



Crystals 2024, 14, 445 14 of 18

where A and B are constants and B is given by

B = 2.1
(

α3

kBN(EF)

)1/4

(8)

where N(EF) is the density of the state at the Fermi level.
Furthermore, in the intermediate temperature range, the DC conductivity is not

considered a Mott-VRH Model. As shown in Figure 10c, Greaves revealed that the DC
conductivity can be investigated based on the following expression [79]:

σdc
T
2
= Ae(−

B
T1/4 ) (9)

3.4.2. AC Conductivity

Figure 11a reveals the frequency dependence of the AC conductivity in the temperature
range from 120 K to 400 K. It is clearly seen that σac is affected only at the high-frequency
region, attesting a dispersion behavior due to the ionic relaxation after the particles’ move-
ment, following the universal power law of AωS [80].
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According to the temperature dependence of the already-discussed dielectric features,
it is clear that only one dispersion behavior is observed in the low-temperature region
and a second one is detected in the high-temperature region. These findings reveal that
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the conductivity enhancement is likely to emanate from that of the hopping probability of
charge carriers by the frequency rise.

On the other hand, the Ln(σac × T) vs. 1000/T curves at different frequencies are plot-
ted in Figure 11b. As it can be clearly seen, the curves show two different regions in which
the electric conductivity behaves differently. While at high temperatures, the conductivity
seems to depend only on temperature, at the low-temperature region, it becomes frequency
and temperature dependent. The activation energy in the high-temperature region was
calculated to be equal to 0.431 eV, which is close to that found for the boundary grains
contribution (M′′ vs. frequency curves).

Meanwhile, the AC conductivity curves have been fitted (red lines in Figure 11a) by
the following relation [81]:

σac(ω) =

[
σs

1 + τ2ω2 +
σ∞τ2ω2

1 + τ2ω2

]
+ A.ωs (10)

Here, σS represents the conductivity at low frequencies, while σ∞ denotes the conduc-
tivity at high frequencies. ω stands for the angular frequency, τ signifies the relaxation
time, A denotes a constant influenced by temperature, and s represents an exponent charac-
terizing the interaction degree between mobile ions and their surrounding environment.

Figure 11c proves the evolution of the exponent s in the studied temperature range.
The behavior of this exponent under temperature variation presents a great indicator of the
origin of the conduction process. As previously observed, the decrease in this exponent
between 120 K and 230 K indicates the correlated barrier-hopping (CBH) conduction
mechanism while in the region above 240 K, the power law exponent s changes without
any obvious trend. This is due to the fact that the AC conductivity at high temperatures is
frequency independent, as deduced previously.

4. Conclusions

The synthesis of a multi-doped Bi0.8Ba0.1Er0.1Fe0.96Cr0.02Mn0.02O3 nanomaterial was
carried out using the sol-gel Pechini method. The characterization revealed that these
nanoparticles (DTEM = 76 nm) crystalized in the cubic structure with the R3c space group as
confirmed by X-ray diffraction and Raman spectroscopy. Notably, the compound exhibited
significant magnetization, primarily attributed to the 40.37% of ferromagnetic contribution
from the total magnetization. Furthermore, the BBEFCMO compound displayed a colossal
dielectric constant (>5.105), coupled with minimal dielectric loss tangent values, thus con-
firming its promising potential for energy storage applications. Three different relaxation
processes were identified for the compound, related to electrode, boundary grains, and
grain contributions.

Moreover, the conduction processes were studied through analysis of DC and AC
conductivity values, proving that the conduction is due essentially to the polaron hopping
between Iron states.
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