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Kaja Bilińska and Maciej J. Winiarski *

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2,
50-370 Wrocław, Poland
* Correspondence: m.winiarski@intibs.pl

Abstract: A support vector regression model for predictions of the thermoelectric power factor of
half-Heusler phases was implemented based on elemental features of ions. The training subset was
composed of 53 hH phases with 18 valence electrons. The target values were calculated within the
density functional theory and Boltzmann equation. The best predictors out of over 2000 combinations
regarded for the p-type power factor at room temperature are: electronegativity, the first ionization
energy, and the valence electron count of constituent ions. The final results of support vector
regression for 70 hH phases are compared with data available in the literature, revealing good ability
to determine favorable thermoelectric materials, i.e., VRhGe, TaRhGe, VRuSb, NbRuAs, NbRuBi,
LuNiAs, LuNiBi, TaFeBi, YNiAs, YNiBi, TaRuSb and NbFeSb. The results and discussion presented in
this work should encourage further fusion of ab initio investigations and machine learning support,
in which the elemental features of ions may be a sufficient input for reasonable predictions of
intermetallics with promising thermoelectric performance.
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1. Introduction

Machine Learning (ML) models are increasingly used as support for ab initio calcula-
tions of various properties of half-Heusler (hH) alloys [1–3]. Depending on the relations and
character of the parameters investigated, different ML methods are employed, e.g., Boosted
Decision Tree Regression, Multiple Linear Regression [2], or Random Forest Regression [1].
Recently, numerous targets were studied: stability [4], atomic site occupancy [5], lattice
parameters [6], lattice thermal conductivity [7,8], characteristic features of band structures
and band gaps [9,10], as well as spin polarization [11].

Careful investigations among 2000 combinations of eleven elemental properties of
ions present in ternary hH compounds (up to 33-dimensional feature space) as potential
predictors of structural and electronic properties for arbitrarily chosen subsets of hH
systems (47 hH phases as the train-test records and 74 hH systems for predictions) were
presented in the recent study [3]. The root mean squared errors of ML-based predictions for
the lattice parameters (0.1 Å), bulk modulus (11–12 GPa), band gap (0.22 eV), and the lattice
thermal conductivity (9–9.5 W/mK) proved general ability of the Support Vector Regression
(SVR) methods to predict various properties of hH materials. The satisfactory performance
of ML calculations encourage further studies on physical quantities, which are difficult to
be obtained due to high computational cost, i.e., the examination of transport properties.

Thermoelectric (TE) performance of hH compounds draws wide interest due to very
high values of the Power Factor (PF) reported for NbFeSb [12]. Theoretical investigations
shown that the TE properties of this system may be successfully estimated based on the
semi-classical transport coefficients [13]. The recent study indicated that novel As-based
hH compounds (TaFeAs, VFeAs, and TiRuAs) may be thermodynamically stable and
potentially valuable TE materials [14]. In spite of the fact that the number of stable hH

Crystals 2024, 14, 354. https://doi.org/10.3390/cryst14040354 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst14040354
https://doi.org/10.3390/cryst14040354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://doi.org/10.3390/cryst14040354
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst14040354?type=check_update&version=1


Crystals 2024, 14, 354 2 of 11

compounds is limited, the search for novel compositions with potential for TE applications
remains an interesting field for further theoretical investigations.

The aim of the present work is to investigate PF of cubic XYZ hH phases that follow
the 18 valence electron rule. The X and Y are transition metal ions, whereas Z is a main
group element. First, the electronic structures of numerous novel hH systems are obtained
with the DFT methods and discussed in detail. Next, the semi-classical transport coefficients
of these phases are calculated. Finally, the values of PF for a large set of hH materials are
estimated with the ML methods. The elemental features of X, Y, and Z ions are considered
as predictors for ML models. The ability of SVR-based methods to determine hH systems
that are favorable in terms of potential TE applications is discussed. The findings presented
in this work may encourage further experimental efforts in synthesis of novel families of
hH intermetallics.

2. Computational Details

The feature space for ML-support considered in this work encompasses properties
of 53 hH phases with 18 valence electrons. The systems selected are expected to be stable
according to the zero hull distance EHD or likely stable (EHD ≤ 0.1 eV) [15–17]. The elec-
tronic structure calculations were performed with the use of the VASP package [18–21].
The fully relativistic mode was employed due to the strong spin–orbit coupling in hH
systems. The cut-off energy of the plane–wave basis was set to 500 eV. The Exchange-
Correlation (XC) functionals employed were Perdew-Burke-Ernzerhof [22] (GGA) and
modified Becke–Johnson [23] (MBJGGA). The relaxation time of carriers, required for calcu-
lations of electrical conductivity, was obtained with the use of the Deformation Potential
(DP) theory [24]. The lattice thermal conductivity was approximated following the Slack’s
formula [25]. The transport properties were calculated with the Boltzmann transport
equation (BoltzTraP2 [26]). The 50 × 50 × 50k-point mesh was used for this task.

The method of ML predictions was SVR [27] implemented in the sklearn library [28].
The gaussian radial basis kernel function was applied [29,30]. The essence of the SVR ap-
proach is a selection of a hyperplane in the multidimensional feature space that maximizes
the number of points that fall within the decision boundary line [31]. SVR parameters,
C (connected to the trade-off between the fitting the training data and the regularization),
and γ (responsible for the flexibility of the model), were determined as follows: C = 1,
γ = (n ∗ XVAR)

−1, where XVAR is a variation among the predictors and n is a number of
features. Furthermore, the standard scaler as the train-test feature scaling was implemented.
The cross-validation applied to the SVR models was the Leave One Out (LOO) approach [32].
The accuracy measure for the SVR model examination was the root mean square error

(RMSE =
√

1
n ∑n

i=1(acalc
i − apred

i )2, where a is a quantity considered). The feature space of
elemental properties for predictors was based on data taken from the WebElements periodic
table (University of Sheffield [33]).

3. Results

The set of compounds considered in this work was created out of 34 novel stable
hH systems [14], four already investigated Sb-bearing phases (YNiSb, YPdSb, LuNiSb,
LuPdSb) [34], and additional 15 hH phases with the hull distance smaller or equal to 0.1 eV
(according to the open quantum materials database [15,16]). Such a range of hull distance
indicates stable or likely stable materials [17]. The theoretical estimations of formation
energies for particular phases may be inaccurate and real systems often adopt metastable
phases with values of the total energy above the hull curve. The resulting set of hH phases
contains various transition metal ions at the atomic positions X and Y, as well as numerous
Z ions from the p-block of the periodic table of elements. The large set of materials selected
at this stage is expected to be a reasonable starting point for creation of feature spaces
for SVR-models. Some well-known phases are included (mainly antimonides) in order
to examine the performance of DFT calculations and SVR modelling with respect to the
available literature data for hH alloys.
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The selected properties of the 15 novel and additional Sb-bearing phases are listed in
Table 1. The lattice parameters (from 5.796 Å for VRhGe up to 6.608 Å for YPdSb) and bulk
modulus (from 88.15 GPa for YPdSb up to 185.13 GPa for TaRhGe) were obtained within
the GGA approach. The band gaps EXC, effective mass m for the hole- and electron-like
carriers were obtained with the GGA and MBJGGA XC functionals. The novel hH systems
are expected to exhibit narrow band gaps (smaller than 1.0 eV, except ZrCoAs, ZrRhAs and
TaRhGe). Materials with Eg below 0.5 eV are generally desirable for TE performance at
room temperature (e.g., Eg of 0.51 eV was reported for NbFeSb [13]). However, the systems
with slightly bigger band gaps may also exhibit enhanced TE properties (e.g., TaFeSb with
Eg of 0.81 eV [14]). In some cases, a strong disproportion between the electron and hole
effective mass is found, which may favor one carrier regime in terms of the potential TE
performance due to relatively long relaxation time of carriers, e.g., the n-type carriers
in NbRuAs, VRuSb, and TaRhGe. Furthermore, some systems exhibit small mh and me
(e.g., HfRhAs and NbRuAs). Extremely low values of me (below 0.16) are predicted for
NbRuAs, NbRuBi, TaRhGe with both XC functionals.

Table 1. Selected properties of 15 novel hH systems and (Y;Lu)(Ni;Pd)Sb: lattice parameter a (Å), bulk
modulus B (GPa), GGA-derived band gap EGGA, MBJGGA-derived band gap EMBJ (eV), effective
mass of electrons mn and hole-like carriers mp obtained with the GGA and MBJGGA functionals.

Comp. a B EGGA EMBJ mp
GGA mn

GGA mp
MBJ mn

MBJ

TiPdPb 6.328 103.88 0.352 0.324 0.65 0.70 0.66 0.64
TiPdGe 5.964 131.38 0.619 0.584 0.61 0.57 0.61 0.57
VRhGe 5.796 172.54 0.433 0.748 1.20 0.21 1.10 0.24
ZrCoAs 5.831 147.58 1.203 1.229 1.02 3.49 1.05 3.31
ZrRhAs 6.110 143.97 1.117 1.292 0.36 0.98 0.30 1.70
HfPdGe 6.142 133.71 0.552 0.506 0.40 0.61 0.31 0.61
HfRhAs 6.063 160.02 0.282 0.816 0.43 0.29 0.28 0.32
TaRhGe 5.973 185.13 1.044 1.026 0.79 0.14 0.83 0.15
VRuSb 6.044 165.64 0.189 0.631 0.53 0.19 0.52 0.23
ZrNiGe 5.893 141.57 0.679 0.654 0.83 0.71 0.60 0.74
ScPdAs 6.099 111.31 0.432 0.451 0.35 3.17 0.20 4.23
NbRuAs 5.961 183.13 0.337 0.506 0.36 0.11 0.37 0.12
TiNiPb 6.038 115.66 0.341 0.292 0.66 0.42 0.67 0.41
NbRuBi 6.307 151.77 0.383 0.557 0.42 0.13 0.52 0.16
LuNiAs 5.989 106.94 0.409 0.475 0.20 4.03 0.18 3.06
YNiSb 6.350 93.02 0.270 0.283 0.26 2.63 0.22 4.16
YPdSb 6.608 88.15 0.147 0.160 0.17 5.06 0.14 4.94
LuNiSb 6.269 97.16 0.207 0.193 0.21 2.70 0.18 3.56
LuPdSb 6.544 89.30 0.106 0.103 0.25 6.17 0.16 4.56

The lattice parameters obtained here for the (Y;Lu)(Ni;Pd)Sb phases are in good
accordance with the literature data calculated within the full potential approach [34].
Similar comparisons for band gaps lead to relatively small discrepancies of 10–30 meV.
The biggest one was found in the case of YPdSb, for which the reported previously EGGA
of 0.230 eV and EMBJ of 0.198 eV [34] are clearly bigger than the values presented here:
EGGA of 0.147 eV and EMBJ of 0.165 eV. Considering the bulk modulus, the discrepancy
between the obtained here and literature results is complicated. The values of bulk modulus
presented here for YNiSb and LuPdSb are close to the literature data [34,35], whereas the
clear discrepancy is found for YPdSB and LuNiSb. It may be connected with the different
ab initio software used (pseudopotential vs. full potential approach) and the fact that the
high accuracy of the second derivative of the total energy is very difficult to be obtained.
The values of the effective masses for Sb-bearing systems are close to those previously
reported up to 0.05, 0.06, and 0.07 me (depending on the XC functional used) for YNiSb,
YPdSb, and LuNiSb, respectively.
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The band structures calculated for the 15 novel hH phases are presented in Figure 1. It
is worth recalling that the spin-orbit coupling is a crucial factor for reasonable description
of electronic structure of narrow band gap hH systems [34]. Although the effect of SOC is
noticeable in valence band splittings of Ru-, Rh-, and Pd-bearing phases in Figure 1, it is
relatively weak when compared to those reported for hH antimonides with lanthanide X
ions. The materials studied here exhibit semiconducting character with the dominant indi-
rect transition type, except HfRhAs and ZrRhAs with the direct Γ–Γ one (GGA). The band
structures of NbRuAs and LuNiAs are similar to those of NbFeSb [12,13] and LuNiBi [36],
respectively. ScPdAs and LuNiAs exhibit the specific shape of the conduction bands, with
Conduction Band Minumum (CBM) located at the X point (from the MBJ approach for
ScPdAs) or in between the X and Γ points (LuNiAs from GGA/MBJGGA and GGA-derived
results for ScPdAs). The modifications in Valence Band Maximum (VBM) or CBM locations
obtained with different XC functionals are observed in some cases, but not as commonly
as the underestimation of EGGA with respect to EMBJ . It is a well-known fact that the
modified Becke-Johnson potential is dedicated to studies on semiconductors. Despite that
MBJGGA-derived results may be assumed to be more realistic than the GGA ones [23], hH
alloys are complex intermetallics and final examinations of theoretical predictions of their
electronic structures should be based on further experimental investigations.
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Figure 1. Bandstructures of hH alloys with hull distance ranged from 0 eV < EHD ≤ 0.1 eV. The
results of GGA and MBJGGA are marked with black and red lines, respectively.

One may find some general similarities between the positions and shapes of VBM
and CBM in compounds with similar composition (e.g., TiNiPb, TiPdPb, and TiPdGe). The
widening of Eg due to the relatively light ion Z is observed between TiPdPb and TiPdGe
from both XC functionals applied. However, the opposite effect is present in NbRuAs and
NbRuBi, which is related to a relatively big volume of a unit cell of the Bi-based phase. The
widening of Eg connected with the relatively heavier Y ion is also found in TiNiPb and
TiPdPb. Furthermore, the differences between the band structures of ZrCoAs and ZrRhAs
are substantial in terms of the shift in positions of VBM and CBM.

Based on the commonly held belief that heavy carriers result in good TE performance
due to high Seebeck coefficient, one shall desire possibly flat valence bands in the vicinity
of VBM (the p-type regime) or in the vicinity of CBM (the n-type regime). However,
Pei et al. [37] questioned this statement, providing examples of good TE hH materials with
low effective mass (inferred from the steep bands in the vicinity of VBM or CBM). The
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low values of effective mass were also reported for hH antimonides [34]. They lead to
very long relaxation times, which is desirable for TE performance. According to the results
for n- or p-type carries, gathered in Table 1, some systems considered in this work may
exhibit exceptional relaxation times (e.g., the Ru-bearing phases in the n-type regime). The
presence of additional valence bands below VBM in arsenides and germanides may indicate
high values of Seebeck coefficient in the p-type channel in these systems. Some germanides,
i.e., VRhGe and TaRhGe, may exhibit the almost degenerate VBM at the L and Γ points.

The TE PF at room temperature for the novel hH systems, based on the results of
transport calculations, is presented in Figure 2. The majority of hH phases considered
here are expected to exhibit PF lower than 2 mW/K2m, regardless of the applied XCF. The
highest values of PF are found for the n-type carriers. In particular, the greatest PF of over
4 mW/K2m was obtained (GGA) for NbRuAs. Similarly, VRuSb, TaRhGe, VRhGe, LuNiAs
and LuNiSb (in order corresponding to decreasing PF) emerge as promising candidates
on TE systems in the n- or p-type regimes. It is worth noting that the optimal carrier
concentrations (1018–1020) are rather feasible to be obtained in real materials.
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Figure 2. Maximal PF at room temperature for 15 novel hH systems and (Y;Lu)(Ni;Pd)Sb. The results
of GGA and MBJGGA are marked with black and red colors. Different point types indicate electrons
(full dots for the n-type regime) and holes (circles for the p-type regime). The respective values of
carrier concentration are given in the bottom plot.

Some electronic properties of the 15 novel compounds were already discussed in
the literature, e.g., the band gap of TiPdPb in terms of potential TE applications [38]
and its lattice thermal conductivity (theoretical analysis) [7,8]. The DFT (GGA) study
by Kalita et al. [39] on TiPdPb resulted in a relatively low value of the lattice thermal
conductivity (0.98 W/mK) and a figure of merit (ZT) of 0.64 at 1000 K in the p-type regime.
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Similar value of ZT was obtained for TiPdGe, but at high temperature [39]. However, PFp
GGA

of these systems was not explicitly discussed. The Ge-bearing phases, VRhGe and HfPdGe,
were also analyzed in terms of TE performance at high temperature [40,41]. Considering
antimonides, Kaur et al. reported VRuSb as the favourable TE material [42]. NbRuAs is
the only system among the As-bearing hH alloys, which was investigated in terms of the
potential TE application. Cherifi et al. [43] predicted ZT of 0.30 at room temperature and
0.62 at 1000 K for this compound in the p-type regime. The relatively high PF in NbRuAs
is also reflected in the results presented here. The lack of any data for other As-bearing
phases (ZrCoAs, ZrRhAs, HfRhAs, ScPdAs, and LuNiAs) may encourage further studies
on this family of compounds. Also, there is a lack of literature reports on TE performance
of TiNiPb and NbRuBi [8,44]. The comprehensive theoretical results (GGA and MBJGGA)
were only reported for antimonides: YNiSb, YPdSb, LuNiSb, and LuPdSb [34]. The PF
values obtained here with the pseudopotenial approach are significantly lower. However,
the dominant character of the p-type regime is clearly noticeable and the promising TE
performance of LuNiSb and YNiSb is confirmed. The origin of a relatively big discrepancy
in PF between the present results and literature data for antimonides is connected with a
complex scheme of calculations of the relaxation time of carriers. Namely, a small variation
in the deformation potential may lead to a significant reduction or extension in relaxation
time for a particular compound.

As the predictors for SVR models, the following features of the elements in the XYZ
phases were employed: atomic mass u, atomic radius r, molar volume V, density of a solid g,
electronegativity n, Debye temperature T, thermal conductivity k, I–III ionization energies:
i(I), i(II), i(III), and Valence Electron Count VEC. According to the previous ML
studies [2,3,7,8], these features were found to be relevant for modelling of various properties
of hH phases. The targets examined based on the listed predictors were PF and ZT at 300 K
in the p and n-regimes. All possible combinations of the predictors (starting with a single
predictor up to the feature space constructed out of eleven elemental features for each ion
in XYZ) were examined for each target. The SVR model predicting PF (GGA) for the p-type
carriers at room temperature was found to be the best among the set considered and the
properties and results of this model are further discussed. It is worth recalling that an
estimation of PF for a material may be more desirable for discussion of TE performance of
real devices than a search for high ZT [45].

As depicted in Figure 3a, the lowest values of RMSE are achieved for feature sets with
limited cardinality. The biggest RMSE values were obtained for single-predictor feature
spaces (i.e., i(III)), whereas the optimal RMSE was revealed for more than one dominant
combination. Neither the most nor the least numerous combinations of predictors mini-
mize RMSE for the particular model, which justifies the requirement of testing of various
combinations of predictors. Analogous observations were reported for SVR models for
different physical properties of hH systems [3]. Nevertheless, the general hint on the crucial
elemental factors for the target may be the fact that over 150 favourable combinations
(from RMSE of 0.319 mW/K2m for [n, r, k, i(I), VEC] and [n, i(I), VEC] to RMSE
of 0.339 mW/K2m for [g, k, i(III), VEC]) included at least one of the following pre-
dictors: n, i(I), and VEC. The significance of the indicated properties is in accord with the
favourable features found in SVR modelling of other parameters of hH phases [3], i.e., i(I)
and VEC were crucial for band gaps. Whereas n and i(I) may reflect the width of a band
gap and the effective mass, VEC may be connected with some characteristic features of band
structures, e.g., the number and shape of valence bands. The predictive power of SVR
model based on such a simple combination of three fundamental properties of elements is
particularly interesting due to the fact that TE performance is a complex phenomenon.

The examples of learning curves for LOO cross-validation for the favourable three com-
binations of predictors ([n, r, k, i(I), VEC], [n, k, i(I), VEC], [n, i(I), VEC] are
depicted in Figure 3b. One can notice the relatively high initial RMSE for the least nu-
merous train subsets: RMSEn=25 = 0.438, 0.433, and 0.447 mW/K2m for [n, r, k, i(I),
VEC], [n, k, i(I), VEC], and [n, i(I), VEC], respectively. There is a clear decrease in



Crystals 2024, 14, 354 7 of 11

RMSE with the increasing size of the training subsets and the final values of RMSE are
significantly lower (RMSEn=50 = 0.324, 0.326, and 0.308 mW/K2m for [n, r, k, i(I),
VEC], [n, k, i(I), VEC], and [n, i(I), VEC], respectively). Although no clear plateau
was reached, the range of PF targets in the training set is relatively wide and the RMSE
value of ≈0.3 mW/K2m may be considered as satisfactory. It is also worth noting that
the number of stable hH materials limits the training data and the set of compounds for
final predictions.

Figure 3. Parameters and results of the SVR model. In (a), the distribution of over 2000 combinations
of the elemental predictors (from a single element to all eleven predictors included) as the function of
the RMSE for PFp

GGA (mW/K2m) predictions. In (b), the learning curves for [n, r, k, i(I), VEC]
(blue), [n, k, i(I), VEC] (green), and [n, i(I), VEC] (red). In (c), the validation with the use of
DFT and SVR-derived values of PF for GGA parametrization for three combinations of predictors:
[n, r, k, i(I), VEC] (blue), [n, k, i(I), VEC] (green), and [n, i(I), VEC] (red).

Figure 3c displays the validation of PFp
GGA (DFT-derived vs. SVR-based results)

for the optimal sets of predictors. The SVR models yield the average of the predicted
values based on the n − 1 repetitions of modeling with the use of the LOO approach.
The [n, i(I), VEC] set is the most favourable, because it minimize not only RMSE, but
also the number of predictors required. The distributions shown in Figure 3c indicate
a general consistency between models compared. A clear (but not exactly linear) trend
between the SVR-derived predictions and DFT-based results is noticeable in all cases.
The range of predicted target values is reduced when compared with that of the train-



Crystals 2024, 14, 354 8 of 11

ing data. The predictions of PFp
GGA for the majority of systems fall within the RMSE

range for the best combinations of predictors (i.e., 0.319 mW/K2m for [n, r, k, i(I),
VEC] and [n, i(I), VEC]; 0.321 mW/K2m for [n, k, i(I), VEC]). As one may expect,
the greatest discrepancies ∆PFp

GGA between the DFT- and SVR-derived values (for pre-
dictors [n, i(I), VEC]) were observed in the cases of the highest PFp

GGA, e.g., for Lu-
NiAs (PFp

GGA calculated = 1.87 mW/K2m, ∆PFp
GGA = 0.96 mW/K2m) and LuNiSb (PFp

GGA
calculated = 1.84 mW/K2m, ∆PFp

GGA = 0.89 mW/K2m). This finding is a direct conse-
quence of the poor ability of any ML model to predict values that strongly deviate and
are sparse due to the lack of sufficient data available [27]. One may consider SVR-based
estimations as a rather qualitative results, which may be useful in a large scale search for
novel materials. Systems selected within this approach should be further investigated with
exact theoretical methods or in experimental studies.

The results of final SVR predictions of PFp
GGA based on [n, i(I), VEC] feature

space are gathered in Table 2. The range of PFp
GGA is from 0.16 mW/K2m (ScPdSb) to

1.11 mW/K2m (LuNiBi). The median and mean values for 70 hH systems are almost equal
(0.47 and 0.48 mW/K2, respectively). One of the most comprehensively investigated hH
phases is NbFeSb with remarkably high PF and ZT from both experimental and theoretical
reports on various temperature ranges [12,13]. The value of PFp

GGA obtained for this com-
pound with SVR is smaller than those reported in the literature, but NbFeSb is still one of
the most promising hH phases (PFp

GGA of 0.83 mW/K2m). Similar discussion was already
presented for high-PF systems in the training set (LuNiAs and LuNiSb). The highest PF
was predicted for LuNiBi, which was recently reported to exhibit relatively high PF at room
temperature in the p-type regime [36,46]. Another hH phases with high TE performance
predicted here are: TaFeBi, YNiAs, YNiBi, TaRuSb, TaRuBi, TaOsSb, VOsAs, NbOsAs,
VRuAs and ScNiAs. According to the literature data, TaFeBi [47], TaOsSb [48], YNiBi (ZT
up to 0.12 [49]), TaRuSb (PF over 10 mWm/K2 [50]), VRuAs (PF up to 185.37 W/msK2 at
1000 K [51]), and ScNiAs [52,53] were already considered as high-PF hH phases. How-
ever, some promising TE candidate compounds were predicted here to exhibit low PF,
e.g., ScPtSb [35]. Some phases may also adopt different crystal structures, e.g., YNiAs may
prefer the hexagonal P63/mmc phase according to the formation energies [15,16].

Table 2. SVR-derived values of PFp
GGA (mW/K2m) at 300 K based on the [n, i(I), VEC] predictors.

Compd PFp
GGA Compd PFp

GGA Compd PFp
GGA Compd PFp

GGA Compd PFp
GGA

HfNiGe 0.40 NbIrPb 0.29 TaIrSn 0.53 VCoSn 0.68 YPdAs 0.30
HfRhBi 0.47 NbCoSn 0.69 TaIrPb 0.35 VRhSn 0.26 YPtSb 0.37
HfNiPb 0.31 NbCoPb 0.34 TaRuSb 0.84 VIrSn 0.41 ZrNiSn 0.34
HfRhSb 0.55 NbOsSb 0.60 TaRuBi 0.77 VRuAs 0.72 ZrNiPb 0.30
HfPdPb 0.19 NbFeSb 0.83 TaOsSb 0.77 VOsSb 0.61 ZrPdGe 0.22
HfPtSn 0.24 NbFeBi 0.70 TaCoPb 0.41 VRuBi 0.49 ZrPdPb 0.18
HfPtPb 0.18 ScNiAs 0.72 TaFeBi 1.10 VOsAs 0.73 ZrPtSn 0.23
HfCoSb 0.51 ScNiSb 0.64 TiNiSn 0.28 VOsBi 0.53 ZrCoSb 0.51
LuNiBi 1.11 ScNiBi 0.59 TiPdSn 0.19 VCoPb 0.35 ZrCoBi 0.52

NbRhGe 0.34 ScPdSb 0.16 TiPtPb 0.18 VRhPb 0.38 ZrRhSb 0.56
NbOsAs 0.72 ScPtSb 0.28 TiCoSb 0.65 VIrPb 0.30 ZrRhBi 0.47
NbOsBi 0.53 TaRhSn 0.64 TiRhSb 0.52 VFeBi 0.68 ZrIrAs 0.31
NbRhSn 0.27 TaRhPb 0.43 TiIrAs 0.54 YNiAs 0.90 ZrIrSb 0.25
NbRhPb 0.37 TaIrGe 0.58 TiIrBi 0.35 YNiBi 0.85 ZrIrBi 0.22

The TE properties of YNiAs, NbOsAs, TaRuBi, and VOsAs were not studied up to
now. The TE performance of hH arsenides seems to be an interesting direction for further
investigations. The findings based on SVR modeling are consistent with the characteristic
features of electronic structure of As-based hH compounds, which were discussed in
detail for NbRuAs (low effective mass and numerous valence bands). The recent interest
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in As-bearing hH phases [38,51,54–57] supports this suggestion and encourage further
experimental efforts in synthesis of such materials.

4. Conclusions

DFT calculations for novel hH phases revealed comprehensive insight into their
electronic structure and TE performance in the p and n-type regimes for two XC functionals
(GGA and MBJGGA). High values of n-type PF calculated for VRhGe, TaRhGe, VRuSb, and
NbRuAs indicate these systems as new promising TE compounds. Their superior transport
properties are directly connected with characteristic features of band structures, i.e., low
effective mass of carries and numerous bands in the vicinity of CBM.

Further SVR modelling of p-type regime PFGGA (found the best due to the RMSE and
validation), based on elemental features of XYZ ions (electronegativity, the first ionization
energy, valence electron count), also revealed predictive power for novel TE materials.
Numerous phases: ZrCoAs, ZrRhAs, HfRhAs, ScPdAs, LuNiAs, and NbRuBi are expected
to be interesting subjects for extended theoretical and experimental studies. Despite
some limitations, the combined DFT- and ML-based investigations may accelerate the
development in computational materials science.
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