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Abstract: The crystal structure of 3,5-bistrifluoromethylhydrocinnamic acid [systematic name: 3-[3,5-
bis(trifluoromethyl)phenyl]propanoic acid], C11H8F6O2, has been determined and described. The
structure was subject to the Hirshfeld surface-analysis and CE-B3LYP interaction-energies calculations.
The title compound crystallises in the monoclinic P21/c space group with one molecule in the
asymmetric unit. The propanoic acid side chain of the studied molecule has a bent conformation. The
key supramolecular motif in the crystal structure is a centrosymmetric O–H···O hydrogen-bonded
dimer (R2

2(8) in the graph set notation). According to CE-B3LYP, the molecules involved in this
motif exhibit the strongest pairwise interaction total energy (Etot = −67.9 kJ/mol). On the other
hand, there are seven other interacting molecular pairs with significant Etot values in the range of
−17 to −28 kJ/mol. In these, the energy is dominated by the dispersive contribution. A survey of
the Cambridge Structural Database revealed that in other 3-phenylpropanoic acid structures, the
middle dihedral angle of the propanoic acid side chain is always in the trans conformation. This
contrasts the current structure where this dihedral angle is in the gauche conformation. According to
the Density Functional Theory calculations in the gas phase (at the B3LYP/aug-cc-pvDZ level), the
presence of the two CF3 groups (strong electron-withdrawing character) increases the population of
the gauche conformers by a substituent electronic effect, and this may be a minor factor contributing
to the appearance of this conformation observed in the solid state.

Keywords: 3,5-bistrifluoromethylhydrocinnamic acid; 3-phenylpropanoic acids; DFT calculations;
crystal structure; conformational analysis; substituent effect

1. Introduction

In the investigation centred around NK1 receptor ligands, we dealt, among others,
with 3,5-bistrifluoromethylhydrocinnamic acid (Scheme 1a), which is a member of a wider
family of hydrocinnamic acids (3-phenylpropanoic acids, 3-PPAs, Scheme 1b). Despite its
commercial availability, the crystal structure of this compound has never been reported.
This appears to be a gap since 3-PPAs have an important role in synthetic, medicinal, and
structural chemistry.
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Despite its commercial availability, the crystal structure of this compound has never been 
reported. This appears to be a gap since 3-PPAs have an important role in synthetic, 
medicinal, and structural chemistry. 

 
Scheme 1. Structure of (a) 3,5-bistrifluoromethylhydrocinnamic acid and (b) 3-phenylpropanoic 
acid (3-PPA). 
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Scheme 1. Structure of (a) 3,5-bistrifluoromethylhydrocinnamic acid and (b) 3-phenylpropanoic acid
(3-PPA).

As to the synthetic aspect, 3-PPAs are valuable reagents for constructing complex
organic compounds of medicinal and agricultural significance [1], including those with

Crystals 2024, 14, 342. https://doi.org/10.3390/cryst14040342 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst14040342
https://doi.org/10.3390/cryst14040342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-8364-7955
https://orcid.org/0000-0003-4859-674X
https://doi.org/10.3390/cryst14040342
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst14040342?type=check_update&version=1


Crystals 2024, 14, 342 2 of 15

heterocyclic substructures. The title compound itself was used to synthesise various active
compounds [2–6].

Regarding bioactivity, many 3-PPAs and derivatives thereof were reported to have
antimicrobial activities [7,8]. Such action is also common for closely related (unsaturated)
cinnamic acids [9]. 3-(3,4-dihydroxyphenyl)propanoic acid was demonstrated to modulate
brain synaptic plasticity and peripheral inflammation [10]. Several 3-PPAs substituted at the
aromatic ring inhibit aromatic amino acid aminotransferase of Paracoccus denitrificans [11].
Some 3-PPAs were recently identified as L-lactate transport inhibitors [12]. More specifically
to the topic of this report, we showed that the title compound is a weak ligand of the human
NK1 receptor [13]. Other researchers reported some moderate antibacterial activity for
its close analogue (3,5-bis(trifluoromethyl)cinnamic acid) [14]. 3-phenylpropanoic acid
was used as a reference model to investigate the physicochemical properties of carboxylic
acid bioisosteres that are relevant to medicinal chemistry [15]. Ronacaleret (containing
a 3-PPA fragment) is a clinically considered investigational calcilytic for osteoporosis
treatment [16]. Furthermore, if one takes into account more complicated (branched at
the acid chain) derivatives of 3-PPAs, a list of their reported bioactivities is very long.
Some very recent examples include p-(benzyloxy)phenylpropanoic acids as ligands of free
fatty acid receptor 1 (GPR40) [17] or 2-(aryloxy)-3-phenylpropanoic acids as agonists of
peroxisome proliferator-activated receptors α and γ [18].

As to the structural aspects, many crystal structures of 3-PPAs are deposited in the
Cambridge Structural Database. If we restrict ourselves only to compounds without any
modification in the propanoic acid chain, the available structures are those of the parent
3-phenylpropanoic acid [15,19] and of the analogues substituted in the aromatic ring with
one [19–28], two [26,29–32] or three [33–35] substituents. Some 3-PPA derivatives were
considered in co-crystal screening for a medicinally relevant compound [36]. The confor-
mations of certain 3-PPAs were studied by spectroscopic and theoretical methods [37–39].

In light of these facts that show great interest in 3-PPAs for modern chemistry, we deemed
it suitable to attempt a structure determination of 3,5-bistrifluoromethylhydrocinnamic acid
by using a single-crystal X-ray diffraction method. The results thereof are reported in this
contribution.

2. Materials and Methods
2.1. Synthesis and Crystallization

3,5-bis(trifluoromethyl)hydrocinnamic acid was obtained from a commercial source
(Sigma-Aldrich, Burlington, MA, USA) and recrystallised from methanol for single-crystal
structure measurements. The synthesis of this compound has been described several
times [4,5].

2.2. Single-Crystal X-ray Diffraction

Diffraction data of a single crystal of the title compound were collected at a low temper-
ature (100 K) using mirror-monochromated Cu Kα radiation (λ = 1.54184 Å) from a Rigaku
SuperNova E (dual source) four-circle diffractometer equipped with an Eos CCD detector.
CrysAlis PRO software (version 1.171.40.84a)_was used for all operations, including data
collection, data reduction, and multi-scan absorption correction. The structure was solved
by direct methods and refined by a full-matrix least-squares technique on F2 data using
SHELXTL programs [40] integrated with the OLEX2 crystallographic software [41]. All non-
hydrogen atoms were refined anisotropically. Hydrogen atoms bonded to carbon atoms
were inserted in calculated positions and refined isotropically using standard parameters.
The H atom of the hydroxyl group was located on a difference map, and its position was
freely refined. The MERCURY program [42] was applied for the graphical presentation of
the molecular and crystal structures.
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2.3. Hirshfeld Surface and Pairwise Interaction Energy Analyses

The CrystalExplorer program, version 17.5, was used to calculate CE-B3LYP model
energies and to perform Hirshfeld surface and energy-framework analyses [43]. The
pairwise interaction energies were calculated for molecules within a 3.8 Å radius around the
central molecule. The CE-B3LYP calculations were made with B3LYP/6-31G(d,p) electron
densities. The default scaling factors, as reported by Mackenzie et al., were applied [44].
The wavefunctions were generated by Tonto [45]. Energy-framework representations were
generated with the display threshold of 5 kJ/mol and the tube size set to 80.

2.4. Density Functional Theory Calculations

DFT calculations were performed by using the Gaussian 09 suite of programs [46].
Sets of plausible starting structures for conformers of the hydrocinnamic acid and the
3,5-bistrifluoromethylhydrocinnamic acid were manually prepared by rotating the flexible
bonds in these molecules. The structures were optimised at the B3LYP/aug-cc-pvDZ level.
The optimised geometries were used for harmonic frequency calculations at the same level
to determine the character of the stationary points found. Duplicated minima and the
structures with imaginary frequencies were discarded from further analysis. In the case of
3,5-bistrifluoromethylhydrocinnamic acid, it was possible to find many closely lying min-
ima resulting from low-barrier rotation of the trifluoromethyl groups (in these structures,
the conformation of the propionic side chain was identical). To simplify the analysis, in such
cases, only one minimum (lowest energy) for a given side-chain conformation is discussed
and shown. Partial atomic charges used in our discussion were those produced by the
Natural Population Analysis [47], as implemented in Gaussian 09. Additional calculation
variants, (1) with GD3 empirical correction for dispersion forces [48] and (2) in water with
the PCM solvent model [49], were also performed, and their results and a brief discussion
thereupon is given in Supplementary Materials Tables S1 and S2.

3. Results and Discussion
3.1. Crystal Structure and Hirshfeld Surface Analysis

The title compound crystallises in the monoclinic P21/c space group with one molecule
in the asymmetric unit. Selected crystallographic data and refinement details are given
in Table 1. The molecular structure is shown in Figure 1. All bond lengths and angles fall
within normal ranges.

The benzene ring, carbon atoms of both CF3 groups and one carbon atom (C9) of
the propanoic acid chain lie in an almost ideal plane. The carbon atom of one of the
trifluoromethyl substituents (C7) and the C9 atom are slightly displaced from this plane by
0.044(2) Å and 0.061(2) Å, respectively. In turn, the plane formed by the propanoic acid side
chain is not perfect because the C9, C10, and O2 atoms are deflected from it by 0.117(2),
0.151(2), and 0.098(2) Å, respectively. This side-chain plane is close to perpendicular to
the aromatic ring plane, and the angle between them is 84.16◦ (αrsc). The propanoic acid
part is skewed with the dihedral angles equal to 75.65◦ (θ1, C2−C1−C9−C10), 67.31◦ (θ2,
C1−C9−C10−C11), and 17.39◦ (θ3, C9−C10−C11−O1).

The Hirshfeld surface (HS) analysis, described in detail earlier [50,51], was used
to explore the non-covalent interactions between neighbouring molecules in the crystal
packing of the studied compound. HS mapped with dnorm helps to visualise areas around
the molecule responsible for the strongest intermolecular interactions that influence the
stabilization of the crystal lattice. This surface typically contains red, blue, and white
colours corresponding to interatomic contacts, which are shorter, longer, and equal to the
sum of the van der Waals radii, respectively [50,51].
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Table 1. Crystallographic data and structure-refinement parameters for the title compound.

Chemical formula C11H8F6O2
Formula weight 286.17
Crystal system Monoclinic
space group P21/c
a, b, c (Å) 5.00408(19), 13.7194(5), 16.6021(5)
α, β, γ (◦) 90, 97.603(3), 90
V (Å) 1129.76(7)
Z 4
Dcalc (g·cm−3) 1.682
µ (mm−1) 1.625
F (000) 576
Crystal size (mm) 0.12 × 0.06 × 0.04
Reflections collected 4063
Unique reflections 2090
Reflections I > 2σ(I) 1793
Rint 0.0197
Restraints/parameters 0/177
Goodness-of-fit 1.051
R1, wR2 (I > 2σ(I)) 0.0340, 0.0820
R1, wR2 (all data) 0.0407, 0.0869
Max. peak/hole (e·A−3) 0.304, −0.291
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Figure 1. The molecular structure of the title compound with the atom numbering scheme plotted
with a 50% probability of displacement ellipsoids.

The red spots in Figure 2 show places where there are hydrogen-bonding interactions
between neighbouring molecules. The most intensively red spots are present around the
carboxyl group, which interacts with the same neighbouring moiety to form centrosym-
metric O–H···O hydrogen-bonded dimers, with an O1···O2 intermolecular distance of
2.655(1) Å and an O1···H2–O2 bond angle of 173.4◦ (Figure 3). The adjacent dimeric units
are separated by the C···O contacts of 3.196(2) Å (Figure 3). Other red spots are connected
with the formation of weaker C–H···O and C–H···F intermolecular interactions. The de-
tailed parameters related to hydrogen-bonding contacts in the studied crystal structure
are presented in Table 2. The molecular packing is also stabilised by weak π···π stacking
interactions between parallel aromatic rings of adjacent molecules (Figure 3). The shortest
contacts between symmetry-related benzene rings are 3.603(2) (C1···C4), 3.831(2) (C2···C4),
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and 3.843(2) Å (C1···C5). However, the shortest distance between centroids of aromatic
rings is much longer and equal to 5.004 Å (Cg···Cg), indicating the formation of very weak
π···π interactions. The presence of CF3 groups further significantly affects the arrangement
of the aromatic rings relative to each other. The shortest C···F contact equals 3.651(2) Å
(C6···F5). In addition, the molecules in the crystal lattice are stabilised through C–H···O and
C–H···F intermolecular interactions. The shortest distances between neighbouring F atoms
are 3.001(2) (F2···F2) and 3.038(2) Å (F3···F6). Such interactions leading to the formation of
specific channels between the CF3 groups of neighbouring acid molecules, extending along
the a axis, can also be considered stabilising for the crystal structure [52,53].
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mapped (colour coded in the range from −0.1533 (red) to 1.1510 (blue) au), highlighting neighbouring
molecules associated with the hydrogen-bonding contacts.
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Figure 3. Fragments of the crystal structure showing the intermolecular interactions between neigh-
bouring molecules (Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x − 1, y, z; (iii) −x, −y + 1,−z + 1;
(iv) −x + 1, y − 1

2 , −z + 1
2 ; (v) x + 1, −y + 3

2 , z + 1
2 ). The geometric details of the interactions are given

in Table 2.
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Table 2. Geometrical parameters (Å, ◦) for the hydrogen-bond interactions in the studied compound
(symmetry codes are as in the caption to Figure 3).

D−H···A D−H H···A D···A <(D−H···A)

O2−H2···O1 i 0.87(2) 1.794(1) 2.655(1) 173.4(1)
C2−H2A···F3 ii 0.95 2.764 3.213(2) 109.8

C10−H10A···O2 ii 0.99 2.672 3.577(2) 152.1
C6−H6···F6 ii 0.95 2.755 3.281(2) 115.8

C10−H10A···O1 iii 0.99 2.840 3.417(2) 117.9
C10−H10B···F5 iv 0.99 2.517 3.439(2) 154.8
C4 iv−H4 iv···O2 0.95 2.606 3.489(2) 154.9
C6 i−H6 i···F1 iv 0.95 2.556 3.485(2) 165.9
C2 i−H2A i···F4v 0.95 2.581 3.505(2) 164.3

Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x – 1, y, z; (iii) −x, −y + 1, −z + 1; (iv) −x + 1, y – 1
2 , −z + 1

2 ;
(v) x + 1, −y + 3

2 , z + 1
2 .

The percentage contributions of interatomic contacts to the HS area are shown in Figure 4.
The most numerous interactions in the structure of 3,5-bistrifluoromethylhydrocinnamic acid
belong to the F···H and F···F contacts, which both account for 57.2% of the total HS area.
The other significant interatomic contacts are C···H, O···H and H···H, contributing in sum
34.8%. The remaining interatomic interactions are negligible.
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3.2. Intermolecular Interaction Energies and Energy Frameworks

In order to get insight into crystal packing on a ‘whole-of-molecules’ level, we per-
formed a calculation of CrystalExplorer (CE) model energies [44,54] for the pairs present
in the crystal structure. In the CE model, the interaction energy (Etot) for selected pairs of
molecules is constructed as a sum of four contributions scaled by scale factors (k):

Etot = keleEele + kpolEpol + kdisEdis + krepErep

The terms in the equation are those accounting for electrostatic (Eele), polarization
(Epol), dispersion (Edis), and repulsion (Erep) contributions to energy. The scale factors (k)
were calibrated so that the total energies agree with the quantum mechanical results at a
selected level of theory [44,54].
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Within a 3.8 Å radius from a central molecule with symmetry code x, y, z (marked
as 0 in Figure 5), there are 13 neighbour molecules. Among these, it is possible to discern
eight non-redundant pairs. The interaction energetics in these pairs are shown in Table 3.
As expected, according to the CE-B3LYP calculation, the strongest pairwise interaction
was found for the pair (molecules 0 and a in Figure 5), which is bonded by classical H-
bonds between the carboxylic acid groups. Here, the total interaction energy amounts
to −67.9 kJ/mol and is dominated by the electrostatic term. A much weaker but still
significant interaction energy of −28.1 kJ/mol was found for two pairs of molecules from
neighbouring unit cells, related by translation along the a-axis (molecules 0 and b1 or b2,
Figure 5). In this case, the interaction energy comes almost exclusively from the dispersion
term, with the electrostatic contribution of negligible magnitude. This is consistent with
the type of contacts found in these pairs (weak π···π, C6−H6···F6ii, C10−H10A···O2ii and
C2−H2A···F3ii contacts).
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Figure 5. Colour coding of neighbouring molecules in the studied structure in relation to the central
molecule (black).

There are three further types of pairs (molecules 0 and c, 0 and d, and 0 and e) for
which the total interaction energy is predicted to be slightly lower than −20 kJ/mol. The
electrostatic contribution in these is cancelled out by the repulsion, and so, the dispersive
term again dominates. In pairs (molecules 0 with c1 and c2 in Figure 5) related by a two-fold
screw axis parallel to the b-axis and translation along this axis, the shortest contacts include
the CPh−H···O (i.e., C4iv−H4iv···O2) and C−H···F (i.e., C10−H10B···F5iv) interactions,
and the total interaction energy is −19.3 kJ/mol. A very similar Etot value of −19 kJ/mol
is found for the pair of molecules (0 and d, Figure 5) that are related by inversion and
translation along the a-axis. The shortest contacts between these molecules involve carboxyl
groups (C11···O1iii and C10−H10A···O1iii). In turn, the shortest C−H···F contact and the
pairwise energy interaction equal to −17.4 kJ/mol are present for the two molecule pairs (0
with e1 and e2, Figure 5) related by the 21 screw axis and translation along the b-axis. The
remaining three types of pairs (involving molecules f, g, and h, Figure 5) are characterised
by a much lower Etot value below −10 kJ/mol.

An energy-framework analysis (Figure 6) shows that the crystal packing energetics are
anisotropic and dominated by electrostatic contribution. It is clearly seen that the thickest
cylinders of the total energies are those corresponding to the thick cylinders of the Coulomb
energies. On the other hand, the contribution of dispersion forces is still important, as it
provides non-negligible stabilization (as judged by the relative thickness of the cylinders)
in pairs with no electrostatic stabilization.
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Table 3. CE-B3LYP interaction energies (kJ/mol) of the molecular pairs in the first coordination
sphere of the title compound in the crystal structure (scaling factors for the energy contributions are
kele = 1.057, kpol = 0.740, kdisp = 0.871 and krep = 0.618).

Molecule Paired to
Molecule 0 N Sym op R Eele Epol Edis Erep Etot

a 1 −x + 1, −y + 1, −z + 1 9.26 −115.6 −25.3 −15.0 139.3 −67.9

b 2 x − 1, y, z; x + 1, y, z 5.00 −0.8 −2.0 −44.3 20.7 −28.1

c 2
−x + 1, y − 1

2 , −z + 1
2 ;

−x + 1, y + 1
2 , −z + 1

2
7.23 −8.0 −0.8 −19.9 11.5 −19.3

d 1 −x, −y + 1, −z + 1 9.96 −8.7 −2.1 −15.9 9.2 −19.0

e 2
−x, y − 1

2 , −z + 1
2 ;

−x, y + 1
2 , −z + 1

2
7.41 −4.2 −1.0 −21.9 11.2 −17.4

f 2
x − 1,−y + 3

2 , z + 1
2 ;

x, −y + 3
2 , z − 1

2
8.52 −0.2 −0.5 −12.6 5.2 −8.4

g 1 −x, −y, −z 10.13 −1.4 −0.1 −3.4 0.3 −4.3

h 2
x,−y + 3

2 , z + 1
2 ;

x − 1,−y + 3
2 , z − 1

2
9.31 0.2 −0.2 −3.4 0.1 −2.8

N—number of pairs found in the first coordination sphere. Sym op—symmetry operation for the neighbouring
molecules, as presented in Figure 5. R—distance between molecular centroids in Å. Eele—electrostatic contribution
to interaction energy. Epol—polarization contribution to interaction energy. Edis—dispersion contribution to
interaction energy. Erep—repulsion contribution to interaction energy. Etot—total interaction energy.
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Figure 6. Energy-framework plots for the title compound. The electrostatic and dispersion energy
components and the total energy interaction are shown separately in projections along the a, b, and
c-axis. The cylinders are lines joining the molecular centroids, and their thickness is proportional to
the magnitude of a given interaction. The tube size and the cut-off energy are set to 80 and 5 kJ/mol,
respectively. The plots were produced with CrystalExplorer [43].
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3.3. Comparison with Crystal Structures of Other 3-Phenylpropanoic Acids (3-PPAs)

For comparative purposes, we analysed the available structures of other 3-phenylpro
panoic acids (Table 4). 3-phenylpropanoic acid salts (3-phenylpropionates and others),
metal complexes, co-crystals, inclusion complexes, and solvates were excluded from this
analysis.

Table 4. Selected geometrical parameters of 3-PPAs crystal structures. The entries are sorted by
ascending with the ring-plane/chain-plane αrsc angle.

CSD Code Substituent Pattern Space Group Molecule
Side-Chain Dihedral Angles 1

αrsc
2 Reference

θ1 θ2 θ3

YASFUV 3-OMe P21/a A 0 180 0 0 [19]

YASFUV 3-OMe P21/a B 0 180 0 0 [19]

CUQBEW 4-C≡C−o-Tol P21/n A −178 177 −2 1 [24]

BOPSOO 2-Me P21/c A 180 −178 0 1 [23]

CPPROP 4-Cl P21/a A 180 180 3 2 [21]

VOQLUJ 4-CF3 P1 A 0 177 5 3 [25]

WIKRUE 4-OCH2CO2H P1 A 180 −177 2 4 [27]

YASFIJ01 unsubstituted P21/n A 171 180 4 5 [15]

YARQIU 2,4-bis-Me P21/c A −178 177 −3 5 [30]

YASFIJ02 unsubstituted P21/n A −170 179 1 10 [55]

YABJUI 2-OMe P21/c A 178 −171 167 10 [26]

YASFIJ unsubstituted P21/a A 177 −170 −177 11 [19]

MOWZEG 3,4-bis-Ph P1 A −18 −179 −5 20 [31]

DITHPA10 3,5-bis-I, 4-OPh(4OH) P21/c A −81 −177 65 23 [56]

VOXHOF 2-OH P21/c A 75 −174 118 34 [20]

YABJOC 2-OH, 4-Me P21/c A 142 −166 71 40 [26]

YASFOP 3-Me P21/c A −96 173 −55 41 [19]

YASFOP 3-Me P21/c B 144 −151 166 42 [19]

AFUFIS 3,4-bis-OH P21/c A −70 179 −175 67 [32]

YUYGEE 4-OH P21/c A 113 178 −2 68 [22]

YUYGEE01 4-OH P21/c A −113 −178 1 68 [28]

YASFIJ unsubstituted P21/a B −100 156 −173 77 [19]

YOLPEW 3,5-bis-tBu, 4-F P21/c A −91 −178 20 77 [35]

JUBKUP 3,5-bis-tBu, 4-OH P21/c A −90 −178 19 77 [33]

UHUGUB 2,5-OMe C2/c A 84 −172 20 79 [29]

3,5-bis-CF3 P21/c A 76 67 17 84 this work

YASFIJ01 unsubstituted P21/n B 80 −178 3 85 [15]

LIWJEI 3,5-bis-tBu, 4-F P21/c A 88 −178 6 86 [34]

YASFIJ02 unsubstituted P21/n B 93 177 −2 88 [55]

YABKAP 4-OMe P21/n A 86 175 16 88 [26]

VASDOM 3-(CH=CH2CO2H),
4-OMe C2/c A 100 180 −14 88 [57]

1 Dihedral angles θ1, θ2, θ3 connected with the propanoic acid part defined analogously, as in the crystal structure
presented in this paper; 2 αrsc—the angle between planes formed by the aromatic ring and propanoic acid chain.
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The vast majority of the analysed derivatives, with only a few exceptions, crystallised
in monoclinic space groups having a two-fold screw axis and differing only in the sliding
plane. The crystal structures of the analysed 3-PPAs exhibit the R2

2(8) H-bond motif
common for carboxylic acids [58,59], and the title compound is no exception here. In all but
two structures, this motif is associated with the formation of cyclic dimers by the carboxylic
groups of the propanoic acid side chains. The exceptions (WIKRUE and VASDOM) are
structures of derivatives with two different carboxylic acid side chains in one molecule. In
WIKRUE, the dimers are formed between the two different side chains located para to each
other (propanoic acid to 2-oxyethanoic acid). In VASDOM, the cyclic dimer is formed by
prop-2-enoic acid side chains, while the propanoic acid fragment is involved through its
COOH group in noncentrosymmetric hydrogen-bond interactions with the C=CH−C=O
moiety of the neighbouring prop-2-enoic acid part.

A second point for comparison is the overall molecule’s shape (mutual orientation of
the ring and the side chain). In the structure presented herein, the side-chain plane is close to
perpendicular to the aromatic ring’s plane. In the previously published 3-phenylpropanoic
acids (Table 4), the mutual arrangement of the ring and side chain (αrsc angle) is found to
be either in one plane or almost perpendicular (as in the title structure) or in the middle
between these two extremities. No clear pattern of a substituent effect on this behaviour is
easily recognizable. Interestingly, in the crystal structures of the parent unsubstituted 3-
phenylpropanoic acid (YASFIJ, YASFIJ01, and YASFIJ02), there are two crystallographically
independent molecules (marked in Table 4 as A and B), and each has a different geometry.

Another point for analysis is the conformation of the propanoic acid side chain. In
the structure presented herein, the side chain is bent and skewed, giving the (c,sc,sp)
conformation of the θ1, θ2, and θ3 dihedral angles, respectively. For the other 3-PPAs
presented in Table 4, the conformations of the propanoic acid side chain are either (p,ap,p) or
(c,ap,p), and the synclinal conformation of the θ2 dihedral angle, as in the title compound’s
structure, is not found.

3.4. Quantum Chemical Conformational Analysis

The quantum chemical (DFT) conformational analysis was performed for the title
compound and its parent analogue, hydrocinnamic acid. The calculations were made in
the gas phase at the B3LYP/aug-cc-pvDZ level (the results of the additional calculation
variants are shown and briefly discussed in the Supplementary Materials, Tables S1 and S2).
The aim of this modelling was to see if the appearance of the synclinal conformation of
the dihedral angle θ2 may be related to the substituent effect of the CF3 groups on the
conformational properties of the molecule. The conformers found for both molecules are
shown in Figure 7, and their geometric and energetic parameters are displayed in Table 5.

In both cases, the trans-1 (c,ap,sp) conformer is the global minimum. The second
most stable conformer in the unsubstituted hydrocinnamic acid is trans-flat (sp,ap,sp)
(∆G = 2.7 kJ/mol). The gauche-1 conformer (c,sc,sp) is fourth in the ranking, with
∆G = 5.0 kJ/mol. The introduction of 3,5-bis-CF3 substitution reverses this order of con-
former stabilities. In this substituted analogue, the gauche-1 is the second lowest in energy
(∆G = 3.3 kJ/mol), while the trans-flat conformer is fourth in the ranking (∆G = 5.6 kJ/mol).

A possible explanation for this stability gain of the gauche-1 conformer may be
derived from the fact that the CF3 substituent strongly withdraws electrons from the Cortho
atom and increases the positive partial charge on the Hortho atom (partial charges from
the natural population analysis shown in Figure 8). This results in increased attractive
interaction between the carbonyl oxygen and the Hortho (shortening of the distance between
these atoms, Figure 8) and adds some stabilization for the gauche-1 conformer. Such an
explanation is consistent with another earlier experimental report (NMR measurements in
solution), in which electron-withdrawing substituents were shown to increase the gauche
population of 3-(para-substituted)phenylpropanoic acids [60].
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Table 5. Geometric and energetic parameters for the conformers of the unsubstituted hydrocinnamic
acid and 3,5-bis-trifluoromethylhydrocinnamic acid (B3LYP/aug-cc-pvDZ level, gas phase).

hydrocinnamic Acid 3,5-Bistrifluoromethylhydrocinnamic Acid

Side-Chain Dihedral Angles Side-Chain Dihedral Angles

∆G [kJ/mol] θ1 θ2 θ3 ∆G [kJ/mol] θ1 θ2 θ3

1 trans-1
(c,ap,sp) 0.0 89 180 0 1 trans-1

(c,ap,sp) 0.0 90 180 0

2 trans-flat
(sp,ap,sp) 2.7 0 180 0 2 gauche-1

(c,sc,sp) 3.3 93 −74 −17

3 trans-2
(c,ap,c) 3.6 89 −178 93 3 trans-2

(c,ap,c) 4.3 90 −178 92

4 gauche-1
(c,sc,sp) 5.0 92 −74 −24 4 trans-flat

(sp,ap,sp) 5.6 0 180 0

5 gauche-2
(c,sc,ac) 8.3 99 −65 133 5 gauche-2

(c,sc,ac) 7.8 100 −63 137

It seems then that 3,5-bis-CF3 substitution increases the population of the gauche-1
conformer and decreases the population of the trans-flat conformer in comparison with
the unsubstituted hydrocinnamic acid. This could be one of the factors that favour the ap-
pearance of the gauche-1 conformer in the solid-state structure of the 3,5-bis-CF3 analogue.
On the other hand, since the discussed conformational energetic differences are relatively
small, the substituent effect is likely not a key factor but rather one of the contributors here,
with most of the influence coming from the supramolecular interactions.
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Interestingly, in the previously published gas-phase spectroscopic and theoretical
conformational investigations for 3-PPAs [37,39], only gauche-1 (a minor conformer) and
trans-1 (a dominating conformer) conformations of the side chain were mentioned, and
the trans-flat conformation was not reported at all. This is in contrast to the presence of
the trans-flat conformer in solid-state structures of 3-PPAs and our gas-phase QM results,
according to which this conformer is a significant low-energy minimum.

4. Conclusions

In the present work, we have structurally characterised 3,5-bistrifluoromethylhydrocin
namic acid, which is a member of the important family of 3-phenylpropanoic acids. The
key structural motif in the analysed crystal is centrosymmetric O–H···O hydrogen-bonded
dimer (R2

2(8) motif). CE-B3LYP calculations show that the molecules involved in this motif
exhibit the strongest pairwise interaction (Etot = −67.9 kJ/mol), but seven other interacting
molecular pairs have significant Etot values in the range of −17 kJ/mol to −28 kJ/mol. In
these latter pairs, the energy is dominated by the dispersive contribution. On surveying
the CSD database, it has been found that other 3-PPA crystals do not exhibit the gauche
conformation of the middle dihedral angle of the propanoic acid side chain, which in turn,
is observed in the current structure. DFT calculations in the gas phase show that strong
electron-withdrawing CF3 substituents increase the population of the gauche conformation
for the discussed dihedral angle, probably via the electronic substituent effect. It seems that
this may be some minor factor contributing to the appearance of this conformation in the
solid state. Experimental and theoretical work to systematically explore the substituent
effect on the conformations of 3-PPAs is underway.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/cryst14040342/s1, Table S1. Geometric and energetic parameters for
the conformers of the unsubstituted hydrocinnamic acid and 3,5-bis-trifluoromethylhydrocinnamic
acid (B3LYP/aug-cc-pvDZ level, gas-phase, with Grimme D3 correction for dispersion); Table S2.
Geometric and energetic parameters for the conformers of the unsubstituted hydrocinnamic acid and
3,5-bis-trifluoromethylhydrocinnamic acid (B3LYP/aug-cc-pvDZ level, with PCM solvent [water]
model).
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