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Abstract: This manuscript presents a comprehensive exploration of the band gap structure of
(CoCrFeNiMn)3O4 powders through a series of experimental investigations. The combined use
of optical techniques and X-ray photoelectron spectroscopy in this study leads to a comprehensive
characterization of the band gap structure in (CoCrFeNiMn)3O4 powders. The findings contribute to
the understanding of this material’s electronic properties and pave the way for potential applications
in electronic and optical devices.
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1. Introduction

High-entropy ceramic powders are characterized by the incorporation of a greater
number of elements in diverse proportions, giving rise to a structurally intricate and
disordered arrangement [1]. The distinctive amalgamation of these elements holds the
potential to yield properties that surpass those attainable with traditional ceramics, thereby
presenting novel prospects for applications across diverse scientific domains [2].

Investigations into high-entropy oxides (HEOs) are currently in their nascent phase,
with researchers actively investigating diverse combinations of constituent elements and
employing various processing techniques to enhance the properties of these materials [3].
The envisaged applications for these ceramics span critical sectors such as aerospace, elec-
tronics, and energy storage, where the demand for advanced materials with meticulously
engineered properties is particularly pronounced [4–6].

Crystal structure formation has been reported before [7–10], but the chemical states of
the individual elements have not been reported yet. The exploration of high-entropy alloys
has given rise to an innovative materials design concept [11–14].

HEO composites display bandgaps ranging from 1.91 to 3.0 eV, along with valence
and conduction bands suitable for facilitating water splitting [15]. Their heightened photo-
catalytic activity can be primarily attributed to the increased accessibility of active sites,
promoting the generation of radicals responsible for the degradation of pollutants [16]. The
materials demonstrate successful hydrogen production through both photocatalytic water
splitting and electrocatalysis [17,18].

Advancing our comprehension of the synergistic properties inherent in high-entropy
materials involves demonstrating that the band gap transcends a simple average of the end
members. A notable shift in the energy levels of transition metals is observed within high-
entropy spinel oxide, signifying a fundamental change. The synthesis methods employed
can introduce variability in the band gap due to the distinct oxidation states of the cations.
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This topic’s importance lies in the prediction of HEO applications based on band
gap values. This manuscript consists of a description of the synthesis procedure and
composition characterizations for confirmation of phase purity. The following presentation
of chemical states at different temperatures helps us to understand electronic structure
changes. Finally, band gap calculations are provided for a demonstration of the electronic
structure of the synthesized materials.

This manuscript presents a groundbreaking exploration of the band gap characteristics
of (CoCrFeNiMn)3O4 powders, an intricate mixed-metal oxide, employing a combination
of optical and spectroscopic techniques. To our knowledge, this study marks the inaugural
attempt to define the band gap and chemical states of the individual elements within this
specific material.

2. Materials and Methods

The examined samples were prepared from precursor powders using a solid-state
reaction. Firstly, the following precursor oxides, with their corresponding purity in brackets,
were weighed to create an equimolar structure of (CoCrFeNiMn)3O4 in the final product:
Co3O4 (99.7%, Thermo Fisher Scientific, Waltham, MA, USA), Cr2O3 (99.0%, Erb Lachema,
Brno, Czech Republic), Fe2O3 (99.0%, Thermo Fisher Scientific, USA), NiO (99.0%, Thermo
Fisher Scientific, USA), and MnO (99.0%, Sigma Aldrich, St. Louis, MO, USA).

The mixture of oxides was milled with 5 mm zirconia balls in ethanol in a planetary
mill (Fritsch Pulverisette 6, Idar-Oberstein, Germany) at 300 RPM for 60 min to improve
the homogeneity of the mixture.

After milling, the mixture was dried, crushed, and filtered with a 100 µm mesh (CCC0).
Several batches were prepared for calcination in an air atmosphere using the following
regimes: temperatures of 850 (CCC850), 900 (CCC900), and 950 ◦C (CCC950) for 12 h and
5 ◦C/min heating and cooling rates [10].

Calcinated/reacted powders were again crushed and filtered with a 56 µm mesh.
These powder batches were subjected to an X-ray diffraction (XRD) analysis using a Rigaku
Smart Lab 3 kW X-ray powder diffractometer and a scanning electron microscopy with
energy-dispersive X-ray (SEM-EDX) analysis using a high-resolution FEI Verios 460 L
scanning electron microscope to clarify whether the calcination was sufficient to produce
the desired high-entropy ceramic structure.

The chemical composition of the samples was investigated using an AXIS SupraTM
X-ray photoelectron spectrometer (XPS) from Kratos Analytical Ltd., Manchester, UK. Data
acquisition was performed at an emission current of 15 mA, utilizing a resolution of 80
with a step of 1 eV for wide spectra and a resolution of 20 with a step of 0.1 eV for element
spectra. All spectra were calibrated using the C1s peak to 284.6 eV.

The band gap of the prepared powders was examined using a JASCO V-770 UV/VIS
spectrometer. The powders were packed inside a special 16 mm-diameter holder for pow-
ders, and the holder was attached to a 60 mm integrating sphere to collect the reflectance
spectra relative to a specular reflectance reference sample with an angle of incidence of ~5◦.

3. Results and Discussion

The XRD data obtained from the samples prior to annealing indicated the presence
of various oxide phases, confirming the expected mixed composition. Upon subjecting
the samples to an elevated temperature of 900 ◦C, the XRD results revealed a noteworthy
transformation, showcasing the emergence of a distinct pure spinel phase, as illustrated
in Figure 1. This observation aligns with the anticipated changes in crystal structure and
composition during the annealing process, providing valuable insights into the thermal
behavior and phase transitions of the samples.
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Figure 1. XRD spectra of the samples before and after calcination.

The combined SEM and EDX analysis (Figure 2) enables a comprehensive assessment
of how the microstructure and elemental composition of the samples respond to different
annealing temperatures. The EDX analysis complements the SEM observations by offering
elemental information. The EDX analysis provides comprehensive information about the
elemental composition and distribution.
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Co2p 6.23 4.65 6.07 6.58 
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Figure 2. SEM and EDX images of samples (a) annealed at 850 ◦C; (b) annealed at 900 ◦C; (c) annealed
at 950 ◦C.

There is an increase in the oxygen content according to an evaluation of atomic
percentages from survey spectra (Figure 3, Table 1). The most significant difference could
be found in nickel and manganese contents after calcination.
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Figure 3. XPS survey spectra of samples annealed at 850 ◦C, annealed at 900 ◦C and annealed at
950 ◦C before calcination.

Table 1. Evaluation of sample composition from survey XPS spectra.

Peak Name At%, No
Calcination At%, 850 ◦C At%, 900 ◦C At%, 950 ◦C

O1s 65 75.17 83.05 78.92
Ni2p 5.06 1.37 1.75 1.8
Mn2p 15.56 6.86 1.12 3.41
Cr2p 3.80 4.67 3.74 3.64
Co2p 6.23 4.65 6.07 6.58
Fe2p 4.35 7.27 4.26 5.63
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It is known that cations in different oxidation states are present during the crystalliza-
tion of oxides into high-entropy composites. The oxidation state of Ni decreases with the
increase in temperature. This was evaluated using peak deconvolution in CasaXPS software
(version 2.3.23, Kratos Analytical Ltd., Manchester, UK) using a Gaussian–Lorentzian line
shape and a Shirley background. Nickel tends to create stable complexes when it is in
the +2 oxidation state. The high-resolution spectra of Ni at different calcination states
are presented in Figure 4 at different temperatures. Moreover, the rate of increase in Ni2+

content as a function of the calcination temperature is presented in Table 2. The notable
changes in the Ni satellite peak in the ceramic, high-entropy composite are likely due to the
complex interactions and structural changes that occur when nickel is part of a complex
system, as shown in Figure 4.
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Figure 4. XPS spectra of the Ni2p3/2 component.

Table 2. Evaluation of component ratio using individual peak areas for Ni2p.

Peak Name %, No
Calcination %, 850 ◦C %, 900 ◦C %, 950 ◦C

Ni2+ 2p3/2 17.18 26.78 29.08 39.82
Ni3+ 2p3/2 52.40 43.92 39.11 37.00

Ni sat 2p3/2 30.42 29.30 31.80 23.17

The increase in the Mn4+ oxidation state in the powder means that it forms two bonds
with oxygen atoms, forming manganese (IV) oxide. This state is linked to stable oxygen-
containing compounds of manganese. However, a continuous decrease in Mn2+ as a
function of the calcination temperature can be observed in Figure 5 and Table 3.
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Figure 5. XPS spectra of the Mn2p component.

Table 3. Evaluation of component ratio using individual peak areas for Mn2p.

Peak Name %, No
Calcination %, 850 ◦C %, 900 ◦C %, 950 ◦C

Mn2+ 2p3/2 38.94 35.88 24.77 22.80
Mn4+ 2p3/2 31.29 35.58 46.88 49.70
Mn 2p3/2 29.78 28.55 28.35 27.50

A JASCO V-770 UV/VIS spectrometer was used to study the prepared powders [12,13].
The tested range was 200–1200 nm, and the Kubelka–Munk equation was used to measure
the corresponding absorption coefficient parameter F as follows [14]:

F =
(1 − R)2

2R
(1)

After obtaining F for all the samples, Tauc and Urbach plots were used to measure the
allowed direct and allowed indirect energy gaps, along with the Urbach tailing energies for
the tested powders [19,20]. Tauc plots have the form of (αhν)n vs. hν, where n = 2 when
measuring the allowed direct energy gap, n = 1/2 when measuring the allowed indirect
energy gap, and hν is the photon energy. The energy gap is extracted from a Tauc plot from
the x-axis value of the interception point of the extension of the straight-line part of the
plot and the plot baseline. Moreover, Urbach plots have the form of ln(α) vs. hν, where the
slope of the straight-line part is used to obtain the Urbach tailing energy (EU = 1/Slope).

Studying the Urbach energy is important because it is related to important factors.
The first factor is the change in the conductivity of the powder structure as a function of
the density of states at different calcination temperatures. The narrower the energy gap at
a lower density of states, the higher the possibility of creating an exciton, increasing the
conductivity of the powder. The second factor is studying the phonon–electron interaction,
Ee−γ = EU/KBT́ (all the energies are measured in eV; KB is the Stephan Boltzmann constant
and T́ is the absolute temperature of the powder). At room temperature, KBT́ = 0.0257 eV,
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which yields Ee−γ = EU/0.0257. Figure 6 shows the Tauc plots (Figure 6a,b) for the
four tested samples along with the Urbach plot (Figure 6a). The analysis results are sum-
marized in Table 4.
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Table 4. Evaluation of the allowed direct and allowed indirect energy gaps along with the Urbach
tailing energy and the electron–phonon interaction strength. The results were obtained by analyzing
the Figure 5.

Sample Edir
g

(eV)
Eindir

g
(eV)

EU
(eV) Ee−γ

CCC0 1.441 1.320 0.331 12.88
CCC850 1.272 1.121 0.444 17.28
CCC900 1.213 1.112 0.466 18.13
CCC950 1.166 1.105 0.525 20.43

The results show a decrease in the energy gap value when increasing the calcination
temperature, where the reported values for the energy gap were 1.441 eV for the reference
sample (with no calcination CCCA), 1.272 eV for the sampled calcinated at 850 ◦C (CCCA-
850), 1.213 eV for the sample calcinated at 900 ◦C (CCCA-900), and 1.166 for the sample
calcinated at 950 ◦C (CCCA-950). Moreover, the results show an increase in the Urbach
tailing energies in the range 0.331–0.525 eV, which can be caused by the reduction in
scattering events caused by the electron–phonon interactions after the calcination process.
Figure 7 presents the changes in the energy band structure in both the linear momentum
and density of state spaces.
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The fundamental electronic characteristic known as the band gap pertains to the energy
difference between a material’s valence and conduction bands. The nature and extent of
this band gap exert a profound influence on the electrical and optical behaviors exhibited by
the substance. Consequently, a nuanced comprehension and deliberate manipulation of the
band gap are imperative for the customization of materials tailored to specific applications,
spanning the domain from semiconductors to optoelectronic devices.

Additionally, the electronic structure and reactivity of a material are markedly in-
fluenced by the chemical states of its constituent elements. While conventional methods
have yielded valuable insights into material compositions, our manuscript pioneers an
investigation into the chemical states of cobalt (Co), chromium (Cr), iron (Fe), nickel (Ni),
and manganese (Mn) within (CoCrFeNiMn)3O4 powders. This meticulous exploration,
facilitated by X-ray photoelectron spectroscopy, not only affirms the samples’ composi-
tion but also reveals the chemical environments and oxidation states characterizing each
individual element.

4. Conclusions

Optical techniques were employed to characterize the band gap properties of the sam-
ples. The optical analyses provided insights into the electronic transitions and absorption
features, shedding light on the fundamental optical properties of the material. The obtained
results showed that energy gap values were affected by calcination temperatures, where
the energy gap values were decreased by increasing the temperatures, as reported earlier
in Table 4.

To complement these studies, X-ray photoelectron spectroscopy was conducted to
confirm the composition of the samples and to ascertain the chemical states of the individual
elements within the (CoCrFeNiMn)3O4 powders. This spectroscopic technique allowed
for a precise determination of the elemental composition, aiding in the validation of the
experimental results and providing valuable information on the chemical environments of
the constituent elements.



Crystals 2024, 14, 295 9 of 10

Our research findings indicate that the band gaps of HEOs are influenced by changes in
the oxidation states of the two cations. Subsequent investigations will explore how the band
gap varies with defect states and crystallite size. This exploration is crucial as these materials
hold potential not only for photocatalysis but also for visible-light-harvesting applications.
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