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Abstract: The effect of annealing treatment on the microstructure and texture of a Ti50Ni47Fe3 shape
memory alloy tube was studied. The results show that the recrystallization process of a cold-rolled
Ti50Ni47Fe3 alloy tube occurs at 600 ◦C. The microstructure changes from long striped grains to
equiaxed recrystallized grains. The main texture of the alloy tube is the fiber texture <111> parallel
to RD. With the increase in the annealing temperature, the crystal orientation of the alloy gradually
turned to (111)<112>, and a series of secondary textures were distributed along the γ orientation line
when the alloy was annealed at a lower temperature (450~600 ◦C). When the alloy was annealed
at 650 ◦C, the growth of recrystallized grains made the grain orientation change, which led to the
weakening of the γ-fiber texture and the formation of recrystallization textures.

Keywords: TiNiFe alloy; shape memory alloy; tube; texture; heat treatment

1. Introduction

Because of their good shape memory effect (SME) and superelasticity (SE), TiNi-based
shape memory alloys (SMAs) have been widely used for coupling joints, aircraft structures,
actuators, etc. [1–4]. Both the SME and SE are based on the martensitic transformation and
its reverse transformation, which is called a thermoelastic martensitic transformation [5,6].
Many efforts have been made to improve the strength and toughness of SMAs, for instance,
plastic deformation and alloying [7–9].

Cold deformation is widely used in the processing of TiNi-based SMAs, such as cold
rolling (CR), cold drawing, high-pressure torsion, and local canning compression [10–13].
By introducing high-density dislocations, nanophases, or amorphous phases, the recovery
stress, recovery strain, and tensile strength of TiNi-based SMAs can be improved [14]. For
example, cold rolling shows a significant effect on the morphology of the β-Nb phase and
the fraction of the precipitated phase in a Ti44.5Ni44.5Nb9Co2 alloy, leading to a dramatic
improvement in the yield stress and recovery properties [15]. However, large residual
stresses and high-density defects in the SMA are obtained by cold processing [16], which
is unfavorable to the plasticity of the alloy, so the subsequent annealing treatment is of
great significance to maintaining the plasticity. Furthermore, the annealing process after
deformation is highly related to the microstructure, mechanical properties, and SME of the
alloys [14]. Therefore, appropriate heat treatment is needed to reduce the internal stress and
homogenize the grains to improve the microstructure and mechanical properties [17,18].

An intermetallic compound can be formed because of the addition of Fe elements by
replacing Ni atoms, resulting in a lattice distortion and atomic relaxation [19,20]. TiNiFe
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SMAs have good SMEs and mechanical properties and a relatively low martensitic trans-
formation temperature [21], so they are also widely used in aerospace and other fields. At
present, research on TiNiFe SMAs mainly focuses on their alloying, phase transformation
behavior, mechanical properties, and SMEs. Chun-Hsiang Tu et al. found that Ti3Ni4 pre-
cipitation and the content change of Fe and Ni in the matrix during the aging process will
affect the two-stage R phase transformation [22]. Lai Y et al. found that a two-stage phase
transformation is induced by Fe in the matrix [23]. Wang T et al. found that synergistic
reinforcement combines Fe element doping, and a high-density grain boundary promotes
the high superelastic stress of TiNiFe SMA [24]. Liu X et al. studied the microstructure,
recovery properties, and transformation temperature of a hot-forged Ti50Ni47Fe3 alloy with
different annealing temperatures and found that an excessive heat treatment temperature
reduces the number of grain boundaries and the texture density, which affects the recovery
properties of the alloy [25].

It Is also necessary to study the effects of twinning, dislocation slips, and texture on
the SME and properties of TiNi-based SMAs. Kuranova NN et al. found that a Ti50Ni49Fe1
alloy forms a banded dislocation and twin structure, initiating the thermoelastic martensitic
transformation [26]. Liu X et al. found that the deformation behavior of the R phase
and martensitic phase reorientation and detwinning are some of the main deformation
mechanisms of TiNiFe alloys [27]. In the cold-rolled TiNi SMA sheets, an altering <100> slip
and {114}<221> twinning promotes the formation of the γ-fiber texture [28].

Most of the research on TiNiFe alloys focuses on the plate [29], wire [30], and rod [31].
Due to the high strain hardening index of a TiNiFe alloy, it is difficult for it to be processed by
cold deformation. The research on TiNiFe alloy tubes has not been very comprehensive. An
appropriate annealing temperature can mean that the alloy maintains good comprehensive
mechanical properties. So, it is necessary to study the effect of the annealing temperature
on the microstructure and texture of a Ti50Ni47Fe3 shape memory alloy tube.

2. Materials and Methods

The tube billet was obtained by processing the Ti50Ni47Fe3 alloy ingot prepared by
vacuum induction melting. The as-received Ti50Ni47Fe3 alloy tube was φ18 × 3 mm
and processed by cold rolling. The cold rolling reduction ratio of the billet is 25%. The
chemical composition of the as-received tube is listed in Table 1. The cold-rolled Ti50Ni47Fe3
alloy tube was annealed at 450~650 ◦C for 60 min followed by air-cooling (AC), with
a temperature interval of 50 ◦C.

Table 1. Chemical compositions of Ti50Ni47Fe3 alloy tube.

Element Fe Ni C O Ti

Content (wt.%) 3.27 52.16 0.0028 <0.002 Bal.

Most of the research studies the texture of the tube by testing the longitudinal- and
cross-section [32]. When the grain orientation of the alloy tube is preferentially distributed
along the radial direction, the grains are arranged in a circular outward radial arrangement,
and it is difficult to measure the texture directly. Therefore, an expansion method was
conducted to prepare the electron backscattered diffraction (EBSD) samples, as shown in
Figure 1. The intermediate ring of the tube with a thickness of 0.5 mm was obtained by
mechanical thinning first, and then it was thinned to less than 0.1 mm by pickling. The
EBSD sample of the circumferential plane of the tube with a size of 7 × 5 mm was obtained
after cutting and elastic expansion. The radial, circumferential, and axial directions of the
tube were determined as the RD, TD, and ND of the sample, respectively. The specimen
surfaces were grounded on a series of SiC papers and subsequently electrochemically
polished using a solution of 5 vol% HClO4 + 95 vol% CH3COOH. The microstructure and
texture of the circumferential plane for the tube were characterized by EBSD techniques at
a step size of 0.3 µm using a JEOL JSM-7900F equipped with TSL OIM Analysis 8 software.
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Figure 1. Schematic diagram of (a) direction of the tube and (b) EBSD specimen preparation by
expansion method.

The microhardness test of alloy tubes after heat treatment was carried out by using a
WILSON VH1150 Vickers durometer. Five points were taken from the outer circumference
to the inner circumference along the radial direction, and the average of the five measured
values was taken as the microhardness of the tube. The load force was 5 kg, and the loading
time was 10 s.

3. Results and Discussion
3.1. Microstructure of Cold-Rolled TiNiFe SMA Tube

The microstructure of the circumferential plane of the as-rolled alloy tube is shown
in Figure 2. The microstructure of the alloy is mainly composed of long strip grains along
the rolling direction. The grain orientation spread (GOS) map shows that 48% of the area
is composed of grains with severe plastic deformation. The total fraction of LAGBs is
71%, indicating that there is a high dislocation density and a large number of sub-grain
boundaries within the grains. According to the inverse pole figure (Figure 2f), the main
orientation direction of the as-rolled alloy is the <111> parallel to RD, which is a common
γ-fiber texture in TiNi-based SMAs [33].
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3.2. Microstructure Evolution of Alloy Tube Annealed at Different Temperatures

The microstructure of the cold-rolled alloy tube after different annealing treatments
was analyzed, and the statistical data, including IPF figures, image quality figures, grain
orientation spread (GOS) maps, average grain size, and misorientation angle chart are
illustrated in Figures 3–7. Accordingly, with the increase in the annealing temperature,
three different conditions can be observed. When the annealing temperature was lower
than 550 ◦C, as shown in Figures 3–5, the microstructures of the alloy were similar to
that of the CR alloy, which is composed of long strip grains, and the fraction of LAGBs
remained constant at about 70%. It is noted that the average grain size of the alloy after
annealing at 550 ◦C decreased dramatically to 1.13 µm, compared to the 1.57 µm of the
as-rolled alloy. Moreover, fine grains were generated from the grain boundaries of the
deformed long stripe-shaped grains when annealing at 550 ◦C, as seen from the GOS
maps in Figure 5f. When the annealing temperature reached 600 ◦C, the average grain
size increased to 2.37 µm, while the fraction of LAGBs decreased to 46%, indicating that
the alloy was in the recrystallization stage. When the annealing temperature increased to
650 ◦C, the microstructure of the alloy was already mainly composed of equiaxed grains
with an average grain size of 4.05 µm. Furthermore, the grain boundaries became clear,
and the fraction of LAGBs was decreased to approximately 32%.

It is well known that the cold-rolled alloy will undergo three stages, recovery, re-
crystallization, and grain growth during annealing at different temperatures [29]. Large
quantities of deformed grains are induced by cold working and will store a large amount
of deformation energy. When annealed at a lower temperature (450~550 ◦C), the grains are
mainly in a recovery process, and recrystallized nuclei occur at some severely deformed
grains with large residual stored energy at 550 ◦C. Due to a large number of crystal defects
that are generated during CR and the high energy at the grain boundary, the position of the
recrystallization nucleation increases significantly at the deformed grain boundaries. This
leads to a decrease in the recrystallized grain size. These driving forces of recrystallization
nucleation increase greatly with the increase in the annealing temperature. When annealing
at 600 ◦C, the stored internal deformation energy is almost released, and the residual stress
and dislocation density are sharply decreased, which leads to a decrease in LAGBs. At
this time, the grains of the alloy are mostly finely recrystallized, indicating that the alloy
is under the recrystallization stage at 600 ◦C. Furthermore, when the alloy is annealed at
650 ◦C, the higher annealing temperature promotes the growth of fine recrystallized grains,
and thus increases the average grain size, as shown in Figure 7.

The GOS is the average difference in orientation between the average grain orientation
and all measurements within a single grain [34]. This value is small for recrystallized
grains, so the recrystallization fraction can be calculated from the EBSD-GOS figures. In
our experimental work, the grains will be defined as recrystallized grains when the GOS is
less than 2. When the GOS value is between 2 and 7, recovery grains will be defined, and
deformed grains will be defined for 7 and higher [21]. As shown in Figure 5, the fraction
of deformed grains is still very high when annealed at 550 ◦C, so the alloy is still in the
recovery stage. However, after annealing at 600 ◦C, the fraction of recrystallized grains is
increased to 63%, indicating that the alloy is in the recrystallization stage.

Figure 8 shows the schematic diagram of the proportion of twins and their parent
phases of the alloy at different annealing temperatures. The Kernel Average Misorientation
(KAM) figures of the alloy when annealed at different temperatures are also illustrated,
which can reflect the degree of plastic deformation and the dislocation density. KAM
is widely used in plasticity characterization, and it is closely related to Geometrically
Necessary Dislocations (GNDs) [35]. The dislocation density of the alloy analyzed by KAM
can also reflect the stage of the alloy in the annealing process. The calibration results show
that <110> twins are the main type of twins. With the increase in the annealing temperature,
the proportion of grains without twins gradually increases, and the proportion of twins
gradually decreases to a certain level. When annealing at a lower temperature, for instance,
below 600 ◦C, the alloy is mainly in the recovery stage, the density of deformation twins
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remains unchanged, and the defect energy of the dislocations increases, and some of the
dislocations begin to move. The softening effect is the priority of the recovery process.
When the alloy is annealed at 600 ◦C, the alloy recrystallization occurs, and most of the
lattice distortion is effectively eliminated; consequently, the twin density decreases greatly.
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Figure 8. Schematic diagrams of the proportion of twins and their parent phases: (a1) 450 ◦C/60 min/AC;
(b1) 500 ◦C/60 min/AC; (c1) 550 ◦C/60 min/AC; (d1) 600 ◦C/60 min/AC; (e1) 650 ◦C/60 min/AC
and KAM figures: (a2) 450 ◦C/60 min/AC; (b2) 500 ◦C/60 min/AC; (c2) 550 ◦C/60 min/AC;
(d2) 600 ◦C/60 min/AC; (e2) 650 ◦C/60 min/AC in the alloy annealed at different temperatures.

Due to the limitation of the length, size, and inner surface state of the tube, it is
difficult to test the mechanical properties of the tube. In a previous study, it was proven
that the changing trend of microhardness is similar to that of mechanical properties [29].
Therefore, it is feasible to study the effect of the annealing temperature on the mechanical
properties of the tube by analyzing the change in the microhardness of the tube. The
microhardness of the alloy at different annealing temperatures is shown in Table 2. When
the annealing temperature is below 600 ◦C, the microhardness of the alloy decreases with
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the increase in the annealing temperature. When the annealing temperature is above 600 ◦C,
the microhardness of the alloy remains stable. Twins and dislocations can significantly
affect the strength of the alloy. The recovery and recrystallization process significantly
increases the defect energy of the dislocations and promotes the dislocations to move, thus
reducing the internal defects and twin density of the alloy, resulting in a decrease in the
strength of the alloy. This is consistent with the microhardness of the alloy at different
annealing temperatures.

Table 2. Microhardness of Ti50Ni47Fe3 alloy after annealing at different temperatures.

Annealing Temperature (◦C) 450 500 550 600 650

Microhardness (HV5)

284.4 268.9 251.8 223.4 226.3
289.2 267.4 253.4 225.2 225.2
284.4 264.9 254.4 227.4 228.7
278.5 264.9 250.5 228.0 229.1
283.4 264.9 252.1 228.3 227.3

Average microhardness (HV5) 284.0 266.2 252.4 226.5 227.3

3.3. Texture Evolution of Alloy Tube Annealed at Different Temperatures

The fiber texture in the rolled plate of the SMA can promote the specific orientation
to have a higher recovery strain [36]. Similarly, a tube with a strong radial direction
texture has strong recovery stress. To better understand the changes in texture during the
annealing process at different temperatures, the IPFs and (111) PFs of the alloy are shown
in Figures 9 and 10. With the increase in the annealing temperature, the <111> is the main
texture in the alloy. The main texture orientation and texture intensity exhibit no obvious
change. When the annealing temperature exceeds 600 ◦C, as shown in Figure 11d, there is
also a texture existing along the axial direction.
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Figure 11. ODF sections in the Euler space with a constant φ2 = 45◦ of the Ti50Ni47Fe3 alloy tube an-
nealed at different temperatures: (a) 450 ◦C/60 min/AC; (b) 500 ◦C/60 min/AC; (c) 550 ◦C/60 min/AC;
(d) 600 ◦C/60 min/AC; (e) 650 ◦C/60 min/AC.

Figure 11 shows the ODF cross-section φ2 = 45◦ of the alloy after annealing at different
temperatures. The main reason for selecting the ODF cross-section of φ2 = 45◦ for the tex-
ture observation is that this cross-section can easily display the most preferred orientations
existing in the alloy [33]. The results show that the texture is mostly located on the γ orien-
tation line (φ1 = 0–90◦; Φ = 54.7◦; φ2 = 45◦). With the increase in the annealing temperature,
the main texture of the alloy is (111)[uvw], distributed along the γ orientation line. The
distribution map of the orientation intensity along the γ orientation line of the as-annealed
alloy is shown in Figure 12 for convenient analysis. The f(g) is for the orientation density.
The alloy has a strong single (111)[231] texture at 450 ◦C. When the annealing temperature is
over 500 ◦C, the texture density decreases first and then remains unchanged. It can be seen
that texture (111)<110> and texture (111)<112> exist when the alloy is annealed at 500 ◦C.
A series of secondary textures, distributed along the γ orientation line, occurs when the
alloy is annealed at 550 ◦C. This is to a certain extent similar to the conclusion obtained from
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a study on the microstructure and texture of a TiNi rolled plate [37]. Then, when the alloy
is annealed at 600 ◦C, the main texture of the alloy transforms into (111)<112>. The texture
of the alloy gradually transforms into a single texture. When the alloy is annealed at 650 ◦C,
according to Figure 11e, it can be seen that the main texture of the alloy is (111)<121>, and
the texture density is similar to the texture density (111)<112> when the alloy is annealed
at 600 ◦C. According to the change in the orientation density in Figure 12, it can be seen
that with the increase in the annealing temperature, the orientation {111}<110> decreased,
and the crystal orientation of the alloy gradually turned to {111}<112>.

Crystals 2024, 14, x FOR PEER REVIEW 12 of 14 
 

 

 
Figure 12. Orientation density of the alloy annealed at different temperatures along the γ orientation line. 

The IPF figures of the recrystallized grains of the alloy annealed at 550–650 °C are 
illustrated in Figure 13. When the alloy is annealed at 650 °C, both <101> and <111> 
orientation grains exist, as shown in Figure 13c. The growth of the recrystallized grains 
makes the grain orientation change, which leads to the weakening of the γ-fiber texture 
and the formation of other new textures (Figure 10e). As the annealing temperature 
continues to increase or extend the annealing time, according to the study by Inagaki H 
[40], the {111}<110> orientation will be the final stable orientation during the 
recrystallization process. Moreover, the tube is subjected to both axial compressive stress 
and radial stress during the cold rolling process, resulting in a more complicated stress 
state. Further research on the mechanical properties of the tube is needed. In addition, the 
relationship between the microstructure, texture, and mechanical properties is also an 
aspect that needs to be further studied in the future. 

 
Figure 13. IPF figures of the recrystallized grains of the annealed alloys: (a) 550 °C/60 min/AC; (b) 
600 °C/60 min/AC; (c) 650 °C/60 min/AC. 

4. Conclusions 
1. With the increase in the annealing temperature, the cold-rolled Ti50Ni47Fe3 alloy tube 

undergoes a recovery, recrystallization, and grain growth process, and the microstructure 

Figure 12. Orientation density of the alloy annealed at different temperatures along the γ orientation line.

As for the recrystallization texture formed in the annealing process of the alloy, the
main theories, such as orientated nucleation and orientated growth, are well accepted.
Generally, the capability of storing the deformation energy would increase in the order of
{100} < {112} < {111} < {110}, and the nucleation by sub-grain growth mechanisms should be
the fastest where the stored energy is the greatest [38]. Therefore, the orientation density
of the {111} orientation is the highest after the recrystallization stage when the alloy is
annealed at 600 ◦C and 650 ◦C. During the recrystallization process, there is a Coincident
Site Lattices (CSLs) relationship between orientation {111}<110> and {111}<112>, resulting
in a competitive nucleation and growth. In the BCC-structured alloy, the growth of the
recrystallized nuclei is generally carried out by merging the deformation regions with the
same orientation first, and then merging the deformation orientation regions nearby [39].
The recrystallized nucleation of orientation {111}<112> is formed in orientation {111}<110>,
which leads to the advantage of orientation {111}<112> in the subsequent grain growth
process. Therefore, a strong texture {111}<112> is formed in the alloy.

The IPF figures of the recrystallized grains of the alloy annealed at 550–650 ◦C are illus-
trated in Figure 13. When the alloy is annealed at 650 ◦C, both <101> and <111> orientation
grains exist, as shown in Figure 13c. The growth of the recrystallized grains makes the grain
orientation change, which leads to the weakening of the γ-fiber texture and the formation
of other new textures (Figure 10e). As the annealing temperature continues to increase or
extend the annealing time, according to the study by Inagaki H [40], the {111}<110> orien-
tation will be the final stable orientation during the recrystallization process. Moreover, the
tube is subjected to both axial compressive stress and radial stress during the cold rolling
process, resulting in a more complicated stress state. Further research on the mechanical
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properties of the tube is needed. In addition, the relationship between the microstructure,
texture, and mechanical properties is also an aspect that needs to be further studied in
the future.
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4. Conclusions

1. With the increase in the annealing temperature, the cold-rolled Ti50Ni47Fe3 alloy tube
undergoes a recovery, recrystallization, and grain growth process, and the microstruc-
ture changes from long striped grains to equiaxed grains. The recrystallization mainly
occurs at 600 ◦C.

2. The main texture of the as-annealed alloy tube is (111)<uvw>, distributed along
the γ orientation line. With the increase in the annealing temperature, the orienta-
tion density dramatically decreases first and then remains stable. The orientation
(111)<110> decreases, and the crystal orientation of the alloy gradually turns to
(111)<112>. A series of secondary textures are distributed along the γ orientation line
when the alloy is annealed at a lower temperature (450~600 ◦C).

3. A recrystallization texture (111)<112> is formed during the recrystallization process.
When the alloy is annealed at 650 ◦C, <101> and <111> orientation grains appear,
which promotes the generation of recrystallization textures and weakens the fiber
texture that is formed in the CR process.
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