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Abstract: Novel antiepileptic drugs have been developed at an unparalleled rate during the past
15 years. Gabapentin (GBP), which was approved for the treatment of refractory localization-related
epilepsies in the U.K. and Europe in 1993, was one of the first drugs to come out of this era. Since
then, GBP has become well-known across the world, not only for its antiepileptic qualities but also
for its effectiveness in the treatment of chronic pain disorders, particularly neuropathic pain. In this
review, the crystal structures of GBP and GBP-related compounds have been analyzed and compared.
Particular attention has been paid to the polymorphism of GBP and its hydrates, their thermodynamic
stability, and conformational differences. In addition, the puckering parameters for the cyclohexane
ring of a total of 118 molecules of GBP found in the analyzed crystal structures have been calculated
and analyzed. The results of recent high-pressure crystallization studies and quantum chemical
calculations indicate that the entire landscape of GBP has not been revealed yet.
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1. Introduction

Gabapentin (GBP) is a common name for 1-(aminomethyl)cyclohexaneacetic acid
(C9H17NO2, CAS Registry No. 60142-96-3), a GABA (γ-aminobutyric acid) derivative
(Figure 1) and a popular active pharmaceutical ingredient (API) [1,2]. It has a molecular
weight of 171.34 and two pKa values of 3.68 and 10.70 [3,4]. Therefore, at physiological pH,
GBP exists in the form of a zwitterion. It was originally developed in 1977 in an effort to
create a structural analog of gamma-aminobutyric acid (GABA) with higher lipophilicity
than the original neurotransmitter, thus enhancing its ability to enter the central nervous
system [5].
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Figure 1. Chemical structure of GABA and its derivative, gabapentin (GBP).

Gabapentin is an antiepileptic drug that is considered a first-line treatment for the
management of neuropathic pain. GBP is also approved for the treatment of focal seizures.
However, it is ineffective in treating generalized epilepsy [4,6,7]. Aside from neuropathic
pain, off-label use in primary care is very common. These include the treatment of a wide
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range of conditions such as bipolar disorder, complex regional pain syndrome, attention
deficit disorder, restless legs syndrome, and periodic limb movement, alongside sleep
disorders, headaches, alcohol withdrawal syndrome, chronic back pain, fibromyalgia,
visceral pain, and acute postoperative pain [5].

Despite its quite simple formula, it took almost 25 years from the first synthesis to the
crystal structure determination of GBP in 2001. However, during the subsequent 23 years,
multiple forms of this API have been successfully obtained, and their crystal structures
have been solved. GBP, due to its relatively short half-life, is usually administered three
times daily. Therefore, exploration of the solid landscape of this drug has been, at least
partially, motivated by the desire to improve its pharmacokinetic properties.

This article reviews the solid forms of gabapentin, including its polymorphs, solvates,
salts, and cocrystals as well as even more complexed systems. It starts with a summary
of the pharmacological properties of this API, followed by a detailed look at 46 structures
in which GBP is present. Finally, the chosen molecular properties of GBP present in those
structures are presented and compared.

2. Materials and Methods

Crystal structures of systems containing GBP were downloaded using ConQuest ver-
sion 2022.3.0 [8]. An additional check was performed on 22 January 2024 using the online
version of the CCDC Access Structure application [9] to include the most recently deposited
structures. BIOVIA Materials Studio 2020 Visualizer [10] was used for visualization pur-
poses. Shinya Fushinobu Cremer-Pople parameter calculator [11] was used to determine
the puckering parameters.

3. Pharmaceutical Properties of GBP
3.1. Pharmacological Properties
3.1.1. Mechanism of Action

Despite multiple extensive studies, the exact mechanisms of action of GPB remain un-
known [4,12,13]. It has been proven in vivo that GBP does not bind to GABA receptors [12]
despite its structural similarity to this neurotransmitter. However, it displays a high affinity
for the α2δ-1 subunit of voltage-gated calcium channels (VGCCs) [12,14]. Therefore, it is
commonly considered that GBP’s analgesic effects are due to the suppression of calcium
currents by binding to the α2δ-1 subunit, resulting in reduced postsynaptic excitability [14].
This assumption, however, is inaccurate because GBP has not been demonstrated to reli-
ably inhibit Ca2+ currents [12]. Despite this, GBP is helpful in the therapy of neuropathic
pain, which is achieved by inhibiting the release of different neurotransmitters at neural
synapses [4,12].

3.1.2. Pharmacokinetics

GBP is absorbed in the small intestine. The only factor that affects GBP absorption is
L-type amino acid transporter (LAT), which is easily saturable and causes dose-dependent
pharmacokinetics [15]. More specifically, LAT-1 actively carries GBP across the blood–brain
barrier. The area under the plasma concentration–time curve (AUC) does not rise in
proportion to an increase in GBP dosage. This API has no affinity for plasma proteins.
Peak levels of cerebrospinal fluid require a median of 8 h to reach, which is a considerably
longer time than peak plasma levels. GBP does not influence spinal neurotransmitter
concentrations of glutamate, norepinephrine, substance P, or calcitonin gene-related peptide.
The volume of distribution of GPB is 0.8 L/kg, and it is highly water soluble. Although
GBP is not metabolized by the liver and does not impact the major isoenzymes of the
cytochrome P450 system, case studies have reported drug-induced hepatotoxicity [16].
Elimination is mostly performed by the kidney and is proportional to creatinine clearance.
Adverse reactions may arise from accumulation, leading to renal failure [5].
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3.2. Medical Uses
3.2.1. Neuropathic Pain

Gabapentin is effective in the therapy of postherpetic neuralgia and diabetic neuropa-
thy; however, there is limited evidence in other types of neuropathic pain [12]. Numerous
international and regional professional organizations have released clinical practice guide-
lines recommending gabapentinoids, including GBP, as first-line therapy. For neuropathic
pain other than trigeminal neuralgia, the National Institute of Clinical Excellence (NICE)
guidelines prescribe gabapentin, pregabalin, amitriptyline, or duloxetine as the first line of
treatment [12].

3.2.2. Seizures

GBP is a second-generation antiseizure drug, which has been shown to be effective as
an addition to other anticonvulsants in the treatment of partial seizures and generalized
tonic–clonic seizures in children over the age of 12 [4]. In three extensive multicenter,
double-blind, randomized dosage, controlled studies, 649 patients were involved, and the
results showed that gabapentin, when used alone, was both safe and effective in treating
partial seizures [4]. Gabapentin is ineffective in absence seizures [17].

3.2.3. Drug Dependence

GBP is one of several anticonvulsants that have been studied for the treatment of
drug abuse disorders. Their effectiveness in treating cocaine addiction has been shown to
be ineffective [18], and while the evidence for treating alcohol and cannabis addiction is
promising, it is either not sufficient or of low quality [19,20].

3.2.4. Restless Legs Syndrome

In a comparative analysis of suggested therapies for restless legs syndrome, GBP
was found to be linked to comparable reductions in the International Restless Legs Syn-
drome, receiving a similar score as dopamine agonists [21]. On the other hand, a higher
improvement in the Periodic Limb Movement Index was linked to dopamine agonists [21].
Regarding the Clinical Practice Guideline of the American Academy of Sleep Medicine,
GBP has been accepted as a possible therapeutic choice for this syndrome [22]. However,
only GBP enacarbil is approved in the United States for the treatment of this illness [5].

3.3. Dosages

Gabapentin is well tolerated at doses ranging from 800 to 1800 mg/day [13]. However,
according to the medication package insert of some drugs, patients may be treated with
doses as high as 3600 mg/day [4].

3.3.1. Dosages in Epilepsy

Gabapentin oral doses are administered three times daily due to its relatively short
half-life [4]. For adults and children over 12 years old with epilepsy, dosages up to 2400 mg
per day are advised. Rapid titration can be performed with doses of 300 mg once daily on
the first day, which are usually at bedtime to avoid side effects like sedation and drowsiness,
300 mg twice daily on the second day, and 300 mg three times daily on the third day. If
efficacy is not obtained at this dose, the dosage may be increased further.

3.3.2. Dosages in Neuropathic Pain

The starting dose for the treatment of neuropathic pain is 300 mg three times per day,
with escalation if necessary to a daily maximum of 3600 mg, although there have been
reports of doses up to 4200 mg. The beneficial effects of gabapentin in neuropathic pain and
in a variety of other chronic pain disorders are supported by evidence from both animal
and human trials [4].
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3.4. Side Effects

Dizziness, sedation, somnolence, peripheral edema, and weight gain are the most
frequent adverse effects; these side effects appear to be dose-dependent. GBP’s relative lack
of interactions and severe side effects make it a desirable therapeutic alternative [5].

4. Overview of the Crystal Structures of Systems Containing GBP

As stated in the Introduction, chronologically, the first determined were the structures
of anhydrous GBP (QIMKIG) and its monohydrate (QIMKOM). However, during subse-
quent years of crystallographic studies, multiple new forms of GBP have been successfully
obtained, and their structures have been determined.

The table below (Table 1) presents the crystal structures of systems containing GBP.
To facilitate the analysis, they have been grouped into several categories. The first one
includes the polymorphic forms of anhydrous GBP, which have been described in detail
below in Table 2.

The second group consists of hydrates of GBP in the zwitterionic form [23] as well as
in the form of hydrochloride. This group has also been described below in Table 3.

The third group includes salts of GBP. So far, in all the deposited structures of salts,
GBP exists solely as a cation, despite its ability to form anions due to the presence of
a carboxyl group. The variety of anions found in this group is large and includes both
simple organic anions such as oxalate, picrate, or salicylate as well as inorganic ions such
as [AuCl4], nitrate, or dihydrophosphate [24].

The next group of structures includes cocrystals and inclusion complexes with macro-
cycles, in which GBP exists as a guest.

Due to the presence of an ionized carboxyl group, GBP can serve as a Lewis base [25].
Throughout the years, multiple systems have been obtained in which GBP exists as a ligand.
This includes complexes with both commonly encountered metals such as Cu [26], Zn [27],
and Mn and also with more unusual ones such as Er or Y. Interestingly, in one of those
structures, VIXQAW, there are 16 GBP ligands in the asymmetric unit.

While in most structures, GBP exists either as zwitterion or cation, in one of the
structures, FOXNUC, presenting gabapentin hydrogenbis(4-hydroxybenzoate), a quite
unusual form of GBP can be observed, which from the formal point of view can be described
as GBP2H+ (Figure 2).
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Table 1. Crystal structures of systems including GBP.

Chemical Name CCDC Refcode Molecular Structure Reference and Year
of Depositon

Methods of Physicochemical
Analysis Other than SCXRD

Gabapentin polymorphs

Gabapentin α (II) polymorph

QIMKIG
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Table 1. Cont.

Chemical Name CCDC Refcode Molecular Structure Reference and Year
of Depositon

Methods of Physicochemical
Analysis Other than SCXRD

Gabapentin monohydrate

QIMKOM
(I) polymorph
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Table 1. Cont.

Chemical Name CCDC Refcode Molecular Structure Reference and Year
of Depositon

Methods of Physicochemical
Analysis Other than SCXRD

Gabapentin hydrochloride hemihydrate

AWUWIY
C 2/c polymorph

Crystals 2024, 14, x FOR PEER REVIEW 7 of 30 
 

 

AWUWIY02 

C 2/c polymorph 

 

[37] 2016 
PXRD 

DSC 

Gabapentin salts  

Gabapentin  

with terephthalic acid 
AVILOH  

 

[38] 2011 

PXRD 

HSM 

DSC 

TGA 

FTIR 

[29] 2004 1H IS NMR

AWUWIY01
I 2/a polymorph [36] 2010

AWUWIY02
C 2/c polymorph [37] 2016 PXRD

DSC

Gabapentin salts

Gabapentin
with terephthalic acid AVILOH

Crystals 2024, 14, x FOR PEER REVIEW 7 of 30 
 

 

AWUWIY02 

C 2/c polymorph 

 

[37] 2016 
PXRD 

DSC 

Gabapentin salts  

Gabapentin  

with terephthalic acid 
AVILOH  

 

[38] 2011 

PXRD 

HSM 

DSC 

TGA 

FTIR 

[38] 2011

PXRD
HSM
DSC
TGA
FTIR



Crystals 2024, 14, 257 8 of 30

Table 1. Cont.

Chemical Name CCDC Refcode Molecular Structure Reference and Year
of Depositon

Methods of Physicochemical
Analysis Other than SCXRD

Gabapentin hemikis(oxalate) SOCYUF
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Table 1. Cont.

Chemical Name CCDC Refcode Molecular Structure Reference and Year
of Depositon

Methods of Physicochemical
Analysis Other than SCXRD
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Table 1. Cont.

Chemical Name CCDC Refcode Molecular Structure Reference and Year
of Depositon

Methods of Physicochemical
Analysis Other than SCXRD
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Table 1. Cont.

Chemical Name CCDC Refcode Molecular Structure Reference and Year
of Depositon

Methods of Physicochemical
Analysis Other than SCXRD

Gabapentin nitrate IKATIY
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Table 1. Cont.

Chemical Name CCDC Refcode Molecular Structure Reference and Year
of Depositon

Methods of Physicochemical
Analysis Other than SCXRD
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Table 1. Cont.

Chemical Name CCDC Refcode Molecular Structure Reference and Year
of Depositon

Methods of Physicochemical
Analysis Other than SCXRD

Gabapentin
3-hydroxybenzoic acid FOXNOW
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Table 1. Cont.

Chemical Name CCDC Refcode Molecular Structure Reference and Year
of Depositon

Methods of Physicochemical
Analysis Other than SCXRD

C-butylpyrogallol[4]arene
bis(gabapentin) ANISAS

Crystals 2024, 14, x FOR PEER REVIEW 13 of 30 
 

 

Pyrogallol[4]arene  

with gabapentin 
ELUNOP 

 

[45] 2011  

C-butylpyrogallol[4]arene 

bis(gabapentin) 
ANISAS 

 

[45] 2011  [45] 2011

bis(C-butylpyrogallol[4]arene)
tetrakis(gabapentin) ANISEW

Crystals 2024, 14, x FOR PEER REVIEW 14 of 30 
 

 

bis(C-butylpyrogallol[4]arene) 

tetrakis(gabapentin) 
ANISEW 

 

[45] 2011  

[1-

(azaniumylmethyl)cyclohexyl]a

cetate 2,8,14,20-

tetrapropylpentacyclo[19.3.1.13,7

.19,13.115,19]octacosa-

1(25),3(28),4,6,9(27),10,12,15(26),

16,18,21,23-dodecaene-

4,5,6,10,11,12,16,17,18,22,23,24-

dodecol 1,2-dichlorobenzene  

EFIVIB 

 

[46] 2019  

[45] 2011



Crystals 2024, 14, 257 15 of 30

Table 1. Cont.

Chemical Name CCDC Refcode Molecular Structure Reference and Year
of Depositon

Methods of Physicochemical
Analysis Other than SCXRD

[1-(azaniumylmethyl)cycloh-
exyl]acetate 2,8,14,20-te-

trapropylpentacyclo[19.3.1.13,7.19,13.115,19]-
octacosa-1(25),3(28),4,6,9(27),-

10,12,15(26),16,18,21,23-dodecaene-
4,5,6,10,11,12,16,17,18,22,23,24-dodecol

1,2-dichlorobenzene

EFIVIB
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Table 1. Cont.

Chemical Name CCDC Refcode Molecular Structure Reference and Year
of Depositon

Methods of Physicochemical
Analysis Other than SCXRD

Complexes with metals

tetrakis(µ2-[1-(amm-
oniomethyl)cyclohexyl]acetato)-bis([1-
(ammoniomethyl)cyclohexyl]acetato)-

diaqua-dichloro-di-erbium tetrachloride
octahydrate

VIXBUB [Er2GBP6(H2O)2Cl2]Cl4 · 8H2O [48] 2014

PXRD
DSC
TGA

HPLC
1H IS NMR

octakis(µ2-[1-(amm-
oniomethyl)cyclohexyl]acetato)-bis([1-
(ammoniomethyl)cyclohexyl]acetato)-
tetraaqua-tri-lanthanum nonachloride

dodecahydrate

VIXCAI [La3GBP10(H2O)4]Cl9 · 12H2O [48] 2014

PXRD
DSC
TGA

HPLC
1H IS NMR

bis([1-(ammoniomethyl)-
cyclohexyl]acetato)-diaqua-dichloro-

manganese(ii)
VIXCEM [MnGBP2(H2O)2Cl2] [48] 2014

PXRD
DSC
TGA

HPLC
1H IS NMR

bis([1-(ammoniomethyl)-
cyclohexyl]acetato)-diaqua-dichloro-

manganese(ii)
VIXCEM01 [MnGBP2(H2O)2Cl2] [48] 2014

PXRD
DSC
TGA

HPLC
1H IS NMR

bis(µ2-[1-(ammoniomethyl)-
cyclohexyl]acetato)-tetrakis(µ2-chloro)-

bis([1-(ammoniomethyl)-
cyclohexyl]acetato)-diaqua-dichloro-tri-

manganese

VIXCIQ [Mn3GBP4(H2O)2Cl6] [48] 2014

PXRD
DSC
TGA

HPLC
1H IS NMR

tetrakis(µ2-[1-(ammoniomethyl)-
cyclohexyl]acetato)-bis([1-

(ammoniomethyl)cyclohexyl]acetato)-
diaqua-dichloro-di-neodymium

tetrachloride octahydrate

VIXCUC [Nd2GBP6(H2O)2Cl2]Cl4 · 8H2O [48] 2014

PXRD
DSC
TGA

HPLC
1H IS NMR
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Table 1. Cont.

Chemical Name CCDC Refcode Molecular Structure Reference and Year
of Depositon

Methods of Physicochemical
Analysis Other than SCXRD

tetrakis(µ2-[1-(ammoniomethyl)-
cyclohexyl]acetato)-bis([1-

(ammoniomethyl)cyclohexyl]acetato)-
diaqua-dichloro-di-yttrium
tetrachloride octahydrate

VIXDAJ [Y2GBP6(H2O)2Cl2]Cl2 · 8H2O [48] 2014

PXRD
DSC
TGA

HPLC
1H IS NMR

catena-[pentakis(µ2-[1-
(ammoniomethyl)-

cyclohexyl]acetato-O,O′)-tris(µ2-[1-
(ammoniomethyl)cyclohexyl]acetato-

O,O,O′)-penta-aqua-tri-yttrium
nonachloride decahydrate]

VIXDEN [Y3GBP8(H2O)5]Cl9 · 10H2O [48] 2014

PXRD
DSC
TGA

HPLC
1H IS NMR

tetradecakis(µ2-[1-(ammoniomethyl)-
cyclohexyl]acetato)-bis([1-

(ammoniomethyl)cyclohexyl]acetato)-
decaaqua-tetrachloro-hexa-cerium

tetradecachloride icosahydrate

VIXQAW [Ce6GBP16(H2O)10Cl4]Cl14 · 20H2O [48] 2014

PXRD
DSC
TGA

HPLC
1H IS NMR

octakis(µ2-[1-(ammoniomethyl)-
cyclohexyl]acetato)-bis([1-

(ammoniomethyl)cyclohexyl]acetato)-
tetraaqua-tri-cerium nonachloride

dodecahydrate

VIXQEA [Ce3GBP10(H2O)4]Cl9·12H2O [48] 2014

PXRD
DSC
TGA

HPLC
1H IS NMR

bis(µ3-hydroxo)-tetrakis(µ2-[1-
(carboxylatomethyl)cyclohexyl]-

methanaminium)-tetraaqua-
bis(nitrato)-tetra-zinc(ii) tetranitrate

UQUMOJ [Zn4(OH)2(NO3)2(C9H17-NO2)4(H2O)4](NO3)4 [49] 2011

Dichloro-bis(1-(ammoniomethyl)-
cyclohexane acetate)-zinc(ii) DOBBIG [ZnCl2(GBP)2] [50] 2008 PXDR

Dichloro-bis(1-(ammoniomethyl)-
cyclohexane acetate)-copper(ii) DOBBOM [CuCl2(GBP)2] [50] 2008 PXDR

(gabapentin)-penta-aqua-nickel(ii)
sulfate monohydrate JALXEC [Ni(H2O)5(GBP)]SO4 · H2O [51] 2014
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Table 1. Cont.

Chemical Name CCDC Refcode Molecular Structure Reference and Year
of Depositon

Methods of Physicochemical
Analysis Other than SCXRD

bis{[1-(aminomethyl)cyclohex-
yl]acetato}-bis{[1-(aminome-

thyl)cyclohexyl]acetic
acid}-diaqua-cobalt(ii)

JALXAY [Co(H2O)2(GBP)4] [51] 2014

Other

Gabapentin
hydrogenbis(4-hydroxybenzoate) FOXNUC
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Table 2. Crystal structures of polymorphic forms of anhydrous GBP.

Refcode Polymorph Space
Group a [Å] b [Å] c [Å] α [◦] β [◦] γ [◦] V [Å3] Z Z′

QIMKIG α 14 P21/c 5.88 6.92 22.26 90.00 90.08 90.00 905.17 4 1
QIMKIG01 α 14 P21/c 5.90 6.92 22.48 90.00 90.06 90.00 918.09 4 1
QIMKIG06 α 14 P21/c 5.90 6.92 22.46 90.00 90.00 * 90.00 917.68 4 1
QIMKIG02 β 14 P21/c 14.54 6.63 9.83 90.00 105.92 90.00 911.91 4 1
QIMKIG04 β 14 P21/c 14.74 6.67 9.89 90.00 106.09 90.00 933.39 4 1
QIMKIG03 γ 15 C2/c 30.55 5.93 10.88 90.00 108.32 90.00 1870.58 8 1
QIMKIG05 γ 15 C2/c 30.58 5.93 10.92 90.00 108.31 90.00 1879.87 8 1

* The β angle is not strictly 90◦ but 90.00(3)◦.

Table 3. Crystal structures of hydrates of GBP.

Refcode Polymorph Space
Group a [Å] b [Å] c [Å] α [◦] β [◦] γ [◦] V [Å3] Z Z′

Monohy-
drates

QIMKOM I 14 P21/c 14.57 9.22 7.65 90.00 93.38 90.00 1025.19 4 1
QIMKOM01 I 14 P21/c 14.63 9.31 7.67 90.00 93.16 90.00 1043.11 4 1
QIMKOM03 I 14 P21/c 14.63 9.30 7.65 90.00 93.11 90.00 1039.08 4 1
QIMKOM04 II 61 P b c a 9.22 7.64 29.00 90.00 90.00 90.00 2040.90 8 1
QIMKOM02 II 61 P b c a 29.14 9.30 7.66 90.00 90.00 90.00 2074.35 8 1

Heptahy-
drate YUZTET 2 P-1 6.80 7.32 15.84 86.30 78.92 72.71 737.49 2 1

5. Polymorphism of Anhydrous and Hydrated Forms of GBP

There are several forms of GBP that have been the subject of numerous research
studies, patent applications, and grants of patents. Both the anhydrous and hydrated forms
are affected by polymorphism.

5.1. Polymorhphism of Anhydrous GBP—Structures QIMKIGXX

Anhydrous GBP exists in three different forms—α, γ, and β, sometimes also described
as II, III, and IV (Table 2). The lack of form I in this group is a result of the convention that
was established in the first work presenting the crystal structure of GBP [28]. According to
it, anhydrous GBP is form II, while the monohydrate is form I.

Chronologically, the first described one (2001) was the α polymorph present in the
structures QIMKIG, QIMKIG01, and QIMKIG06. Subsequently, β-gabapentin was first
obtained by Pesachovich et al. (2001) [52], while γ-gabapentin was discovered by Satya-
narayana et al. (2004) [53]. However, the crystal structures of both the β and γ polymorphs
were first solved by Reece and Levendis (2008) [31].

The α and β polymorphs crystallize in the same space group, P21/c with Z = 4,
whereas the space group of γ is C2/c and Z = 8. In all forms, there is only one molecule
of GBP in the asymmetric unit. The crystal structures are stabilized by dense networks
of hydrogen bonds formed between the NH3

+ and COO− groups of nearby molecules
that exist in all three polymorphs of GBP (Figure 3). In addition, β-gabapentin possesses
an additional intramolecular hydrogen bond formed between the same groups. The GBP
crystallizes as a zwitterion in all the known anhydrous forms.
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Figure 3. Crystal structures of three known polymorphs of GBP.

The three GBP polymorphs were compared for their densities (1.257, 1.247, and
1.216 g cm−3, respectively) and packing efficiencies (71.3, 70.5, and 68.7%, respectively),
which revealed that α-gabapentin had the most efficiently packed molecules and was
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therefore claimed the most thermodynamically stable form of anhydrous GBP. This the-
sis was additionally confirmed using DSC, which revealed that the order of stability is
α > β > γ [31]. While the recrystallization of GBP in methanol always resulted in a pure α

polymorph, it should be noted that when water was used for that purpose, monohydrate
form I was the only one obtained (Figure 4) [32].
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Figure 4. Slurry experiments.

Dehydration experiments of monohydrate form I showed that, depending on the
experimental conditions, it results in either pure or mixed anhydrous phase mixtures
(Figure 5).
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Figure 5. Dehydration experiments.

Stability tests conducted under various humidity settings showed that form α main-
tained at 50% relative humidity (RH) remained stable, whereas form β and the combination
of forms β and γ quantitatively changed into form α. Forms α, β, and the mixtures of
forms β and γ all changed into monohydrate form I at 100% RH, which confirmed that the
presence of water makes the monohydrate form I the most stable [32] (Figure 6).
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Figure 6. Stability tests at 50% and 100% RH.

Grinding and kneading of forms β and γ, as well as their mixture, revealed complete
conversion to form α after approximately 10 min of kneading (Figure 7). Form α does
not change when it is ground, nor does it change after being recrystallized from a vari-
ety of solvents, including acetonitrile, chloroform, DMSO, methanol, hexane, and ethyl
acetate. [32]. However, the crystallization outcomes of fast cooling crystallization were
found to be dependent on supersaturation degree [54] (Figure 8).
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Figure 8. Polymorphic outcomes at different supersaturations (Ss) and solvents. I, II and III are
the symbols of polymorphs of GBP. Adapted with permission from [54]. Copyright 2024 American
Chemical Society.

5.2. Polymorhphism of GBP Monohydrate—Structures QIMKOMXX

In addition to anhydrous forms, GBP can also exist as various hydrates. So far, two poly-
morphs of GBP monohydrate have been described including polymorph I (QIMKOM,
QIMKOM01, QIMKOM03) and polymorph II (QIMKOM02, QIMKOM04). In addition,
GBP also occurs in the heptahydrate form as YUZTET (Table 3).

James A. Ibers, for the first time, obtained the monohydrate form I by dissolving GBP
in water and then adding 2-propanol. The resulting solution was stored in a freezer. Four
days later, crystals of GBP were extracted from a precipitate [28]. In another work [30],
GBP monohydrate I crystals were harvested by the slow evaporation of a saturated
ethanol–water solution at room temperature. The raw material used was gabapentin
anhydrate form α. During single crystal examinations, multiple solvent amounts were used
to ensure that either anhydrate form α or monohydrate exists steadily within the whole
solvent composition range and that no other phase transformation occurs. The authors
showed that anhydrate α was the more stable form at lower water percentages, and rising
temperatures expanded the stability region. In contrast, monohydrate I was more stable
at higher water percentages, but as the temperature rose, the stable area shrunk. Both
solvent composition and temperature had a significant impact on the relative stability of
GBP anhydrate α and monohydrate I. In the mentioned work, the authors used solvents
of various alcohol/water ratios to obtain the intersections of the GBP anhydrate α and
monohydrate I solubility curves, indicating the transition points. When the mole fraction
of methanol in solvents increased from 10% to 30%, the transition temperature between the
anhydrous and hydrate forms shifted from 308.56 K to 291.52 K. The transition temperature
for an ethanol–water mixture containing 10% ethanol was approximately 314.44 K. When
the ethanol level grew to 40%, the transition reduced to 293.80 K [30].

Pure monohydrate form II can be obtained, i.e., by grinding GBP with water and
ethanol [34]; however, in some studies, monohydrate forms I and II have been obtained
simultaneously. The distinctions between these two forms are minor and result from the
development of primary aggregates into viable nuclei, which then propagate into single
crystals [33].
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In 2010, Fabbiani et al. [35], motivated by the rich structural variation in GBP observed
at ambient pressure, performed high-pressure recrystallization of this compound. They
found that GBP can exist in the form of a heptahydrate under increased pressure, starting
from 0.8 GPa. To achieve this, a saturated aqueous gabapentin solution was inserted into
the DAC under ambient pressure. The cell was sealed and gradually pressurized; at around
0.8 GPa, polycrystalline material precipitated. The temperature was then cycled around
313 K to dissolve all but one of the crystallites, and after cooling slowly to 293 K, a single
crystal grew from the solution. The pressure at the end was 0.87 GPa. In a later recrystalliza-
tion experiment, the authors were able to produce another single crystal (crystal B) in a very
different manner from that previously achieved, as proved by comparing the orientation
matrices determined on the same diffractometer. It was discovered that at the first growing
stage, the crystal was relatively mobile, i.e., sensitive to DAC rotation, and could easily
be displaced from the gasket edge through gentle warming. Although the rotation of the
DAC allowed the crystal to move, this movement was uncontrollable; thus, the ultimate
orientation of crystal B was attained by serendipity. The final pressure inside the DAC
with crystal B was 0.9 GPa. Crystal B was grown under closely matched conditions to
those for crystal A. The molecular conformation of GBP in the heptahydrate form was
remarkably similar to that in the anhydrous β-form. The authors concluded that since GBP
monohydrate did not crystallize during the high-pressure crystallization trials, the order of
stability of anhydrous forms under high-pressure conditions may have changed.

6. Conformational Analysis of GBP in Solution

The conformational analysis of GBP has been the aim of several experimental and
computational studies [55]. Bryans et al. demonstrated, utilizing low-temperature 1H
NMR techniques, that at −80 ◦C, two sets of exocyclic methylene signals were observed
at a ratio of 1:2. These signals corresponded to the two conformers of GBP, with the
aminomethyl moiety located either axial (AX, less abundant) or equatorial (EQ, more
abundant), respectively, as shown in Figure 9. The same authors analyzed GBP by 1H NMR
in deuteromethanol at room temperature, where only a single set of signals was observed,
owing to the rapid ring flipping at this temperature. Ananda et al. [29], by recording
1H NMR spectra at −86 ◦C in deuterated methanol, determined the population ratio for
the AX/EQ as 0.27:0.73 and the free energy difference, ∆G, between those two forms as
0.38 kcal mol−1.
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equatorial (EQ) position.

In a recent study [45], Liu et al. explored the conformational space of GBP in a more
detailed way, using quantum mechanical calculations and molecular dynamics simulations.
To achieve this aim, they extracted conformations II, III, and IV from their corresponding
unit cells (of forms α-II, β-IV, and γ-III, respectively). According to the computational
results, the order of stability of conformers (IV > III > II) was totally opposite to their corre-
sponding polymorphs (II > III > IV). However, this was in accordance with the previously
described NMR results, as conformer IV could be classified as EQ, while conformers III
and II could be classified as AX. In addition, the authors identified the conformer present
in the global minimum and named it conformer VI (Figure 10).
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7. Conformational Analysis of GBP in a Solid State

Table 4 presents the chosen structural parameters of the GBP molecules extracted from
their crystal structures.

Table 4. Chosen structural parameters of the GBP molecules extracted from their crystal structures.
Structures are presented in the alphabetical order of their refcodes. To facilitate the analysis of the
data, a 3-color scale was applied to compare the bond lengths. In this scale, the 50th percentile
(midpoint) was calculated, and the cell that holds this value was colored yellow. The cells that hold
the minimum value were colored green, and the cells that hold the maximum values were colored red.

Refcode Ionization
Bond Lengths [Å] Puckering Parameters CH2NH2

PositionC-N C-O* C-O** Θ [◦] Q [Å]

ANISAS ZI 1.4868 1.2576 1.2577 176.540 0.558 AX
ANISAS * ZI 1.5035 1.2643 1.2625 4.859 0.552 AX
ANISEW ZI 1.4500 1.2560 1.2445 140.528 0.670 AX

ANISEW * ZI 1.4927 1.2288 1.2326 177.246 0.554 EQ
ANISEW ** ZI 1.5001 1.2445 1.2746 177.950 0.551 EQ
ANISEW *** ZI 1.2746 1.2635 1.2308 12.361 0.580 AX

AVAVAV cation 1.4948 1.3141 1.2200 178.679 0.558 EQ
AVILOH cation 1.4959 1.3167 1.2226 178.345 0.552 EQ
AVILUN ZI 1.4867 1.2383 1.2867 177.094 0.554 EQ

AWUWIY cation 1.4822 1.3164 1.2012 178.293 0.548 EQ
AWUWIY01 cation 1.4875 1.3274 1.2105 178.258 0.554 EQ
AWUWIY02 cation 1.4986 1.3182 1.1957 179.201 0.533 EQ

DESNOI ZI 1.4946 1.2627 1.2552 176.808 0.559 EQ
DOBBIG ZI 1.4884 1.2799 1.2427 174.637 0.566 EQ
DOBBIG2 ZI 1.4796 1.2823 1.2229 2.219 0.550 AX
DOBBOM ZI 1.4706 1.2889 1.2349 177.149 0.543 EQ

DOBBOM2 ZI 1.4706 1.2889 1.2349 177.100 0.543 EQ
EFIVIB ZI 1.4846 1.2818 1.2456 173.788 0.550 EQ

ELUNOP ZI 1.4979 1.2519 1.2380 176.896 0.569 EQ
FOXNOW ZI 1.4958 1.2659 1.2575 174.871 0.558 EQ
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Table 4. Cont.

Refcode Ionization
Bond Lengths [Å] Puckering Parameters CH2NH2

PositionC-N C-O* C-O** Θ [◦] Q [Å]

FOXNUC cation 1.4916 1.2803 1.2451 175.027 0.560 EQ
FOXNUC * cation 1.4916 1.2803 1.2451 174.99 0.561 EQ
FOXPAK cation 1.4953 1.3290 1.2103 175.327 0.560 EQ

FOXPAK * cation 1.4942 1.3279 1.2099 5.628 0.559 AX
FOXPEO cation 1.4886 1.3013 1.2189 2.754 0.557 AX
FOXPOY cation 1.4863 1.3289 1.2116 178.246 0.557 EQ
IKATIY cation 1.4837 1.3131 1.2131 2.010 0.559 AX
JALXAY ZI 1.4809 1.2603 1.2481 178.968 0.550 EQ

JALXAY * ZI 1.4737 1.2500 1.2623 178.26 0.537 EQ
JALXAY ** ZI 1.4924 1.2705 1.2372 1.58 0.535 AX
JALXAY *** ZI 1.4954 1.2691 1.2325 2.302 0.544 AX

JALXEC ZI 1.4966 1.2804 1.2522 176.202 0.550 EQ
JALXEC * ZI 1.4952 1.2851 1.2460 176.013 0.545 EQ
LORQIT cation 1.4968 1.3147 1.2171 176.816 0.550 EQ
NUPXAY cation 1.4761 1.3099 1.2135 2.498 0.554 AX
QIMKIG ZI 1.4999 1.2716 1.2522 5.054 0.551 AX

QIMKIG01 ZI 1.4995 1.2677 1.2405 4.736 0.551 AX
QIMKIG02 ZI 1.4860 1.2657 1.2409 176.491 0.560 EQ
QIMKIG03 ZI 1.4836 1.2633 1.2440 2.444 0.552 AX
QIMKIG04 ZI 1.4859 1.2619 1.2450 177.559 0.554 EQ
QIMKIG05 ZI 1.4887 1.2629 1.2504 2.451 0.556 AX
QIMKIG06 ZI 1.4993 1.2653 1.2458 4.719 0.550 AX
QIMKOM ZI 1.4923 1.2680 1.2514 3.070 0.556 AX

QIMKOM01 ZI 1.4907 1.2630 1.2486 3.168 0.555 AX
QIMKOM02 ZI 1.4865 1.2647 1.2507 3.082 0.551 AX
QIMKOM03 ZI 1.4904 1.2599 1.2450 3.304 0.549 AX
QIMKOM04 ZI 1.4862 1.2582 1.2539 3.240 0.562 AX

SESKEI ZI 1.5036 1.2752 1.2671 174.05 0.573 EQ
SESKEI * ZI 1.4887 1.2759 1.2723 177.625 0.54 EQ
SOCYUF cation 1.4927 1.3154 1.2161 1.382 0.558 AX
UQUMOJ ZI 1.4899 1.2608 1.2603 179.039 0.559 EQ

UQUMOJ * ZI 1.4899 1.2608 1.2603 179.001 0.559 EQ
UQUMOJ ** ZI 1.4849 1.2576 1.2526 2.610 0.553 AX
UQUMOJ *** ZI 1.4849 1.2576 1.2526 2.626 0.553 AX

VIXBUB ZI 1.5026 1.2668 1.2595 178.013 0.546 EQ
VIXBUB * ZI 1.5099 1.2790 1.2526 2.728 0.560 AX
VIXBUB ** ZI 1.4960 1.2690 1.2529 4.688 0.552 AX
VIXBUB *** ZI 1.5026 1.2668 1.2595 178.013 0.546 EQ
VIXBUB **** ZI 1.5099 1.2790 1.2526 2.728 0.560 AX
VIXBUB ***** ZI 1.4960 1.2690 1.2529 4.688 0.552 AX

VIXCAI ZI 1.4912 1.2597 1.2534 1.588 0.553 AX
VIXCAI * ZI 1.4912 1.2597 1.2534 1.650 0.552 AX
VIXCAI ** ZI 1.5237 1.2662 1.2459 4.233 0.561 AX
VIXCAI *** ZI 1.5237 1.2662 1.2459 4.235 0.561 AX
VIXCAI **** ZI 1.5017 1.2792 1.2381 2000 0.543 AX
VIXCAI ***** ZI 1.4733 1.2658 1.2450 3.103 0.559 AX
VIXCAI ****** ZI 1.5246 1.2680 1.2490 2.558 0.550 AX
VIXCAI ******* ZI 1.5246 1.2680 1.2490 2.625 0.550 AX
VIXCAI ******** ZI 1.4733 1.2658 1.2450 3.045 0.559 AX
VIXCAI ********* ZI 1.5017 1.2792 1.2381 1.962 0.544 AX

VIXCEM ZI 1.4942 1.2662 1.2569 177.542 0.553 EQ
VIXCEM * ZI 1.4935 1.2696 1.2318 177.542 0.553 AX
VIXCEM01 ZI 1.4939 1.2777 1.2418 3.161 0.547 EQ

VIXCEM01 * ZI 1.4942 1.2662 1.2569 2.276 0.538 AX
VIXCIQ ZI 1.4903 1.2851 1.2255 3.090 0.556 AX

VIXCIQ * ZI 1.4903 1.2851 1.2255 3.004 0.556 AX



Crystals 2024, 14, 257 26 of 30

Table 4. Cont.

Refcode Ionization
Bond Lengths [Å] Puckering Parameters CH2NH2

PositionC-N C-O* C-O** Θ [◦] Q [Å]

VIXCIQ *** ZI 1.5012 1.2739 1.2510 175.306 0.537 EQ
VIXCIQ **** ZI 1.5012 1.2739 1.2510 175.329 0.537 EQ

VIXCUC ZI 1.5151 1.2854 1.2538 3.097 0.551 AX
VIXCUC * ZI 1.5151 1.2854 1.2538 3.097 0.551 AX
VIXCUC ** ZI 1.5136 1.2721 1.2512 3.708 0.556 AX
VIXCUC *** ZI 1.5035 1.2723 1.2577 178.596 0.557 EQ
VIXCUC **** ZI 1.5035 1.2723 1.2577 178.596 0.557 EQ
VIXCUC ***** ZI 1.5136 1.2721 1.2512 3.708 0.556 AX

VIXDAJ ZI 1.4955 1.2703 1.2603 2.886 0.576 AX
VIXDAJ * ZI 1.4831 1.2623 1.2558 177.366 0.560 EQ
VIXDAJ ** ZI 1.5026 1.2591 1.2530 3.655 0.561 AX
VIXDAJ *** ZI 1.4955 1.2703 1.2603 2.886 0.576 AX
VIXDAJ **** ZI 1.4831 1.2623 1.2558 177.366 0.560 EQ
VIXDAJ ***** ZI 1.5026 1.2591 1.2530 3.655 0.561 AX

VIXDEN ZI 1.4969 1.2808 1.2669 1.425 0.523 AX
VIXDEN * ZI 1.5099 1.2545 1.2459 3.392 0.541 AX
VIXDEN ** ZI 1.4696 1.2780 1.2735 1.068 0.555 AX
VIXDEN *** ZI 1.5085 1.2777 1.2535 175.266 0.562 EQ
VIXDEN **** ZI 1.4907 1.2592 1.2504 2.758 0.538 AX
VIXDEN ***** ZI 1.4868 1.2551 1.2482 178.287 0.548 EQ
VIXDEN ****** ZI 1.5360 1.2633 1.2406 1.092 0.560 AX
VIXDEN ******* ZI 1.5009 1.2685 1.2618 175.248 0.555 EQ

VIXQAW ZI 1.4846 1.2798 1.2531 165.087 0.502 EQ
VIXQAW1* ZI 1.5082 1.2594 1.2455 1.119 0.546 EQ
VIXQAW ** ZI 1.4846 1.2798 1.2531 165.042 0.502 AX
VIXQAW *** ZI 1.4767 1.2714 1.2353 2.893 0.545 EQ
VIXQAW **** ZI 1.5188 1.2885 1.2484 175.464 0.560 AX
VIXQAW ***** ZI 1.5079 1.2646 1.2602 1.962 0.554 AX
VIXQAW ****** ZI 1.4767 1.2714 1.2353 2.908 0.545 AX
VIXQAW ******* ZI 1.5188 1.2885 1.2484 175.504 0.561 AX
VIXQAW ******** ZI 1.3978 1.2639 1.2477 177.357 0.575 AX

VIXQAW
********* ZI 1.5002 1.2664 1.2502 2.227 0.555 AX

VIXQAW
********** ZI 1.3978 1.2639 1.2477 177.363 0.575 EQ

VIXQAW
********** ZI 1.5002 1.2664 1.2502 2.309 0.554 AX

VIXQAW
*********** ZI 1.5573 1.2680 1.2494 2.179 0.537 EQ

VIXQAW
************ ZI 1.5573 1.2680 1.2494 2.176 0.536 AX

VIXQAW
************* ZI 1.5082 1.2594 1.2455 1.147 0.546 AX

VIXQAW
************** ZI 1.5079 1.2646 1.2602 1.993 0.554 EQ

VIXQEA ZI 1.5125 1.2583 1.2525 3.323 0.552 AX
VIXQEA * ZI 1.4637 1.2710 1.2577 3.144 0.543 AX
VIXQEA ** ZI 1.5206 1.2656 1.2646 3.821 0.553 AX
VIXQEA *** ZI 1.5206 1.2656 1.2646 3.826 0.553 AX
VIXQEA **** ZI 1.5125 1.2583 1.2525 3.323 0.552 AX
VIXQEA ***** ZI 1.5050 1.2728 1.2506 6.086 0.515 AX
VIXQEA ****** ZI 1.4637 1.2710 1.2577 3.156 0.543 AX
VIXQEA ******* ZI 1.5088 1.2544 1.2483 2.799 0.553 AX
VIXQEA ******** ZI 1.5050 1.2728 1.2506 6.084 0.516 AX
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Table 4. Cont.

Refcode Ionization
Bond Lengths [Å] Puckering Parameters CH2NH2

PositionC-N C-O* C-O** Θ [◦] Q [Å]

VIXQEA ********* ZI 1.5088 1.2544 1.2483 2.797 0.553 AX
YUZTET ZI 1.4922 1.2584 1.2529 176.962 0.547 EQ
Average 1.4932 1.2731 1.2464 0.553
Standard
deviation 0.0282 0.0184 0.0153 0.016

For structures with Z′ > 1, asterisks (*) are used to distinguish the nonequivalent conformations; ZI—zwitterion;
CO*—for cations, this is the length of the single bond, and for zwitterions, this is the length of the longer of two
C-O bonds; CO**—for cations, this is the length of the double bond, and for zwitterions, this is the length of
the shorter of two C-O bonds; AX—the aminomethyl moiety is located axially; EQ—the aminomethyl moiety
located equatorially.

An analysis of the values presented in Table 4 reveals a wide range of C-N bond
lengths of GBP in the crystal structures that contain this API, from 1.2746 to 1.5573 Å. While
a lower value is typical for C=N bonds, such as those in imines, the 1.5573 Å value looks
suspicious as the longest C-N bonds rarely exceed 1.53 Å.

In most cases, the ionization state of GBP can be easily determined based on the
differences between the CO* and CO** lengths, which are similar in zwitterions and diverse
in cations. The sole exception here is the FOXNUC structure, which was already described
in detail and presented in Figure 2. In most of the analyzed conformations, GBP exists
as zwitterion (89%), and in the rest, it forms a cation. So far, the crystal structure of a
compound in which GBP exists as an anion has not been determined.

In most cases (60%), GBP exists in the AX conformation, including the thermodynami-
cally most stable polymorph α (II). However, it has been shown in both experimental and
computational studies, as described above, that EQ is the more stable conformation in
solution. As in the crystals with Z′ > 1, both AX and EQ conformers can be found within the
same unit, which shows that the intermolecular forces play a major role in the stabilization
of the chosen system rather than the intramolecular energy of a particular conformer.

An analysis of the puckering parameters revealed that in most cases, θ was either
0 ± 5◦ or 180 ± 5◦, which indicates the chair, C, conformation of the substituted cyclohexane
ring as either 4C1 or 1C4, respectively. The average total puckering amplitude, Q, was
found to be 0.553 ± 0.016 Å, which lies only slightly under the Q value of glucopyranose
(0.560 Å) and an ideal cyclohexane chair (0.630 Å). The most distinct values of the puckering
parameters were calculated for two different conformations in ANISEW, namely, ANISEW
and ANISEW**, with θ and Q values of 140.528◦, 0.670 Å and 12.361◦, 0.580 Å, respectively.
Such values of θ indicate a great distortion from C, especially for ANISEW (Figure 11).
Taking into account that in ANISEW*** and ANISEW*, respectively, the shortest C-N
(1.2746 Å) and C-O* (1.2326 Å) bond lengths were observed, this may indicate that this
structure should be revisited.
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8. Conclusions

Gabapentin is an important API, with a complex mechanism of action and broad
therapeutical applications. Due to its pharmacokinetic properties, leading to the necessity
of frequent drug administration, multiple crystal structures containing GBP have been
successfully obtained and analyzed. Moreover, GBP is a versatile building block in crystal
engineering. Being a Lewis base, GBP has been used multiple times as a ligand to create
various complexes. Also, due to the presence of H bond donors and acceptors in GBP
molecules, multiple schemes of the H bonding network can be observed in GBP-related
structures. GBP exhibits polymorphism both in its anhydrous and monohydrate forms,
with the α (II) anhydrate and monohydrate I forms being the thermodynamically most
stable ones. However, results of recent high-pressure crystallization studies and quantum
chemical calculations indicate that the entire landscape of GBP has not been revealed yet.

This review can serve as a starting point for new structural studies of GBP and related
compounds. First, it is advisable to perform polymorphic screening under higher pressure,
as this can be the source of new forms that have not been discovered yet. In addition, the
quantum mechanics calculation studies that have already started can be further continued
to reveal other possible polymorphs of GBP and the conditions required to obtain them.
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