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Abstract: Surface-modified nanoplate-shaped thermoelectric materials can achieve good thermo-
electric performance. Herein, single-crystalline Bi2Te3 nanoplates with regular hexagonal shapes
were prepared via solvothermal techniques. Surface modification was performed to deposit different
metals onto the nanoplates using electroless deposition. Nanoparticle-shaped tin (Sn) and layer-
shaped palladium (Pd) formed on the Bi2Te3 nanoplates via electroless deposition. For the sequential
deposition of Sn and Pd, the surface morphology was mostly the same as that of the Sn-Bi2Te3

nanoplates. To assess the thermoelectric properties of the nanoplates as closely as possible, they were
compressed into thin bulk shapes at 300 K. The Sn-Bi2Te3 and Sn/Pd-Bi2Te3 nanoplates exhibited the
lowest lattice thermal conductivity of 1.1 W/(m·K), indicating that nanoparticle-shaped Sn facilitated
the scattering of phonons. By contrast, the Pd-Bi2Te3 nanoplates exhibited the highest electrical
conductivity. Thus, the highest power factor (15 µW/(m·K2)) and dimensionless ZT (32 × 10−3) were
obtained for the Pd-Bi2Te3 nanoplates. These thermoelectric properties were not as high as those of
the sintered Bi2Te3 samples; however, this study revealed the effect of different metal depositions
on Bi2Te3 nanoplates for improving thermoelectric performance. These findings offer venues for
improving thermoelectric performance by sintering nanoplates deposited with appropriate metals.

Keywords: solvothermal technique; electroless deposition; thermoelectrics; nanoplate

1. Introduction

With the development of wireless sensor networks for the Internet of Things (IoT),
securing a power supply for sensors has become a major issue [1]. Therefore, energy
harvesting has received considerable attention [2]. These methods convert environmental
energy, including light [3,4], vibration [5,6], heat [7,8], and electromagnetic waves [9,10],
into electrical energy. Among the different types of environmental energy, thermal energy
is the most accessible, owing to its ubiquity; electrical energy can be obtained from it
using a thermoelectric generation system. The performance of thermoelectric generation
depends directly on the properties of the thermoelectric materials. The main thermoelectric
properties are the power factor, PF, and the dimensionless figure of merit, ZT, which are
expressed as PF = σS2 and ZT = σS2T/κ, respectively, where σ, S, T, and κ are the electrical
conductivity, Seebeck coefficient, absolute temperature, and thermal conductivity, respectively.

Theoretical and experimental studies of thermoelectricity began in earnest in the 1950s [11],
and various structures of thermoelectric generators have since been proposed [12–16]. Various
thermoelectric materials have been considered, including inorganic and organic mate-
rials [17–23]. However, despite these efforts, the best-performing materials at temper-
atures of approximately 300 K have been bismuth-telluride-based alloys developed in
the 1950s [24–30]. These alloys have hexagonal unit cells, and the lattice constant along
the c-axis is almost seven times greater than that along the a- or b-axis, contributing to
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the significant anisotropic thermoelectric properties of the material. These alloys exhibit
properties of an indirect-transition-type semiconductor with a band gap ranging from
0.1 to 0.2 eV. The typical single-crystalline Bi2Te3 bulk exhibited a ZT of approximately
0.8 [31]. Therefore, when thermoelectric generators are used to power wireless sensors,
bismuth-telluride-based alloys are the most practical. However, their material performance
is not sufficient to power wireless sensors, requiring further performance improvements.
One approach to improving material performance is nanostructuring, which can lower
thermal conductivity owing to phonon scattering and high Seebeck coefficient, which are
due to lower dimensionality [32]. To this end, various nanostructured bismuth-telluride-
based alloys have been developed, including superlattices [33,34], nanocrystals [35–38],
nanoparticles [39–41], and nanoplates [42–44]. In superlattices, Venkatasubramanian et al.
fabricated the p-type Bi2Te3/Sb2Te3 superlattices using metal–organic chemical vapor de-
position and achieved a ZT of 2.4 at 300 K [33]. In nanocrystals, Poudel et al. fabricated
bismuth antimony telluride bulk alloys made by hot-pressing nanoparticles and achieved a
ZT of 1.4 at 373 K [35]. Wu et al. fabricated nanoporous (00l)-oriented Bi2Te3 nanoplates
using a facile process combining chemical and physical methods, including annealing and a
reaction-engineered solution method, and the estimated ZT was larger than 1.2 at 300 K [44].
In particular, nanoplates have excellent geometries that can be both nanostructured and
low-dimensional. Because nanoplates are extremely thin (tens of nanometers) compared
with their diameter, they can be considered two-dimensional structures. Therefore, the
synthesis of bismuth-telluride-based alloy nanoplates and the evaluation of their thermo-
electric properties have been actively investigated [45–49]. Nanocomposites of nanoplates
with other materials have also been developed [50–54].

Recently, studies have been conducted to further improve the performance of nanoplates.
One approach is the surface modification of nanoplates with different materials [55,56].
Zheng et al. fabricated Au-Sb2Te3 nanoplates with a beneficial interface barrier and high
phonon scattering, resulting in synergistically optimal electrical and thermal properties [57].
In our previous study, tin nanoparticles were deposited on the surface of a Bi2Te3 nanoplate
using electroless deposition, which reduced the lattice thermal conductivity [58]. When
different materials were deposited on the surfaces of nanoplates, the crystal growth modes
differed depending on the lattice matching and interfacial free energy [59]. Therefore, the
morphology of the nanoplate surface varies depending on the type of material deposited
on its surface, affecting its thermoelectric performance.

In this study, we prepared Bi2Te3 nanoplates via solvothermal techniques and de-
posited different metals (tin (Sn), palladium (Pd), and Sn/Pd) on the nanoplate surface
using electroless deposition. Sn and Pd have been typically used in electroless deposition,
exhibiting different deposition modes [60]. In addition, the magnitude of diffusion in Bi2Te3
is different for Sn and Pd. Sn tends to diffuse into Bi2Te3, while Pd tends to remain on
the Bi2Te3 surface [61]. Therefore, different Bi2Te3 surface structures can be fabricated by
using Sn and Pd, and the difference can be reflected in the thermoelectric performance.
Their structural and thermoelectric properties were examined using various analytical
techniques. The surface morphology of the nanoplates depended on the deposited metal.
To measure the thermoelectric properties of the nanoplates, the nanoplate assemblies were
compressed into thin bulk shapes. The thermoelectric properties of the bulk samples varied
depending on the metal type and surface morphology of the nanoplates. Finally, we discuss
the different modes of crystal growth on the nanoplates depending on the metal type and
their effect on the thermoelectric properties.

2. Materials and Methods

The studied Bi2Te3 nanoplates were fabricated via a solvothermal technique. The
detailed fabrication procedure is described in previous studies [62–64]. In brief, Bi2Te3
nanoplates were fabricated as follows: 0.4 g of polyvinylpyrrolidone (PVP) (99.9% purity,
K30, Ms ~40,000, Fujifilm Wako Co., Osaka, Japan) was dissolved in 18 mL of C2H6O2
(99.5% purity, Fujifilm Wako Co., Osaka, Japan). Subsequently, 20 mM of Bi2O3 (99.9%
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purity, Fujifilm Wako Co., Osaka, Japan), 70 mM of TeO2 (99.9% purity, Kojundo Chemical
Lab., Sakado, Japan), and 2 mL of NaOH solution (0.5 M) (purity > 97.0%, Fujifilm Wako Co.,
Osaka, Japan) were added. The resultant solution was placed in an autoclave and heated to
200 ◦C for 4 h under continuous stirring. The precipitated products were collected using
centrifugation and washed several times with distilled water and ethanol. The collected
products were dried under vacuum at 60 ◦C for 24 h. The total weight of dried Bi2Te3
nanoplates was 0.71 g. The production efficiency, which is defined as the total weight of
the dried Bi2Te3 nanoplates in the precursor solution divided by the weight of Bi and Te in
the initial Bi2O3 and TeO2 powders, was 54%.

The process of metal deposition on the studied Bi2Te3 nanoplates is shown in Figure 1.
A similar electroless deposition process has been described in our previous study [58]. To
deposit the metals on the Bi2Te3 nanoplates, a displacement deposition method was used for
electroless deposition [65]. Three types of metals were deposited on the Bi2Te3 nanoplates:
Sn, Pd, and the lamination of Sn and Pd (Sn/Pd). For the Sn deposition, a precursor
solution comprising 60 mM of SnCl2 (purity > 97.0%, Fujifilm Wako Co., Osaka, Japan)
and 0.66 M of HCl (concentration of 35–37%, Fujifilm Wako Co., Osaka, Japan) was used.
For the Pd deposition, a precursor solution comprising 1.1 mM of PdCl2 (purity > 99.0%,
Fujifilm Wako Co., Osaka, Japan) and 0.66 M of HCl (concentration of 35–37%, Fujifilm
Wako Co., Osaka, Japan) was used. The Bi2Te3 nanoplates (0.65 g) were immersed in each
solution for 10 min. For the Sn/Pd deposition, the same conditions were used for the two
solutions, as mentioned earlier. First, Bi2Te3 nanoplates (0.65 g) were immersed in the
Sn-containing solution for 10 min. After rinsing with deionized water, the Sn-deposited
Bi2Te3 nanoplates were immersed in the Pd-containing solution for 10 min. Thereafter, the
three types of metal-deposited Bi2Te3 nanoplates were corrected using filter paper and
rinsed with deionized water. In the end, the nanoplates were dried under vacuum at 60 ◦C
for 24 h. In order to evaluate the thermoelectric properties of the prepared nanoplates by
representing their properties as close as possible to those of pristine nanoplates, but not the
melting structure, 0.38 g of nanoplates were pressed at approximately 300 K under uniaxial
pressure (0.45 GPa). The samples were 22 mm long, 5 mm wide, and 0.6 mm thick.
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Figure 1. Schematic of fabrication processes for metal deposition on Bi2Te3 nanoplates, followed by
compression into thin bulk shapes.

The surface morphologies of the prepared nanoplates were examined using field-
emission scanning electron microscopy (FE-SEM; S-4800, Hitachi, Tokyo, Japan), transmis-
sion electron microscopy (TEM; JEM-ARM200F, JEOL, Tokyo, Japan), and selected-area
electron diffraction (SAED). The atomic composition of the nanoplates was determined
using an electron probe microanalyzer (EPMA; EPMA-8050G, Shimadzu, Kyoto, Japan).
The phase purity and crystal structure of the nanoplates were characterized using X-ray
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diffraction (XRD; MiniFlex 600, Rigaku, Tokyo, Japan) with Cu-Kα radiation (λ = 1.54 Å
with 2θ ranging from 10◦ to 80◦).

Thermal conductivity κ was calculated using the equation κ = αρC, where α, ρ, and C
are thermal diffusivity, density, and specific heat, respectively. The thermal diffusivity α was
measured at 300 K using a thermophysical-property-measuring instrument (Thermowave
Analyzer, Bethel, Ishioka, Japan) based on spot-periodic heating radiation thermometry
with an accuracy of ±5% [66]. This is a non-contact method that independently measures
both in-plane and cross-plane thermal conductivity. Density was determined by measuring
the size and mass. Literature values were used for the specific heat [14,67]. The electrical
conductivity and Seebeck coefficient were measured at 300 K using the ZEM-3 method
(Advance Riko, Yokohama, Japan) in a helium atmosphere with an accuracy of ±5%. Finally,
the power factor and the dimensionless figure of merit were calculated.

3. Results and Discussion
3.1. Structural Characteristics of Bi2Te3 Nanoplates Deposited with Different Metals

Figure 2 shows the structural characteristics of pristine Bi2Te3 nanoplates. The SEM
image in Figure 2a shows that the Bi2Te3 nanoplates exhibited a significantly flat surface
and a regular hexagonal shape with an approximate lateral size of 1 µm. The atomic
composition of the plates (measured using EPMA) was 37 at% Bi and 63 at% Te, differing by
3% from the stoichiometric ratio (Bi:Te = 40:60). A TEM image of a typical Bi2Te3 nanoplate
is shown in Figure 2b. The nanoplates were considerably thin (less than 50 nm) because of
the overlap between the nanoplates and the mesh behind them. The SAED pattern shown
in the inset of Figure 2b was indexed to the (00l) zone axis of rhombohedral Bi2Te3, which
indicated that this nanoplate was single-crystalline. In brief, the mechanism of crystal
growth of Bi2Te3 nanoplates is as follows [68]. After the chemical reactions, the Bi2Te3 nuclei
were formed and subsequently aggregated. Bi2Te3 nanoparticles were generated when
the radius of the aggregated nuclei exceeded their critical nucleus size. The nanoplate’s
formation was attributed to its inherent crystal structure. Due to the high surface energy
of the nuclei, the aggregated particles of Bi2Te3 were not in thermodynamic equilibrium
and were metastable. As a result, Bi2Te3 nanoplates with better crystallinity became
thermodynamically preferred. After Bi2Te3 nanoplates were formed, the Ostwald ripening
process took place. The smaller nanoparticles adsorbed around the plates were consumed
and grew gradually, leading to larger nanoplates along the top–bottom crystalline plane.
This phenomenon happened because the rhombohedral Bi2Te3 can be described as a stack
of infinite layers extending along the top–bottom crystalline plane connected by van der
Waals bonds. From a thermodynamic perspective, the free energy of a broken covalent
bond is higher than that of a dangling van der Waals bond. This suggests that Bi2Te3 crystal
growth is faster along the top–bottom crystalline plane than along the c-axis, which is
perpendicular to the top–bottom planes. This is because crystalline facets tend to develop
on the low-index plane.
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Figure 3 shows the SEM images of the Bi2Te3 nanoplates after electroless deposition of
different metals. Notably, the SEM image of the Sn-Bi2Te3 nanoplates is referred to from
our previous report [58]. As shown in Figure 3a, when Sn was deposited on the Bi2Te3
nanoplates, nanoparticles with a size of several tens of nanometers were dispersed on their
surface. The concentration of Sn, as measured using EPMA, was 1 at%, suggesting that
nanoparticle-shaped Sn was deposited on the prepared Bi2Te3 nanoplates. The surface
morphology of the Pd-deposited Bi2Te3 nanoplates was different from that of the Sn-
deposited nanoplates, as shown in Figure 3b. The nanoplate surface was covered with
a thin, speckled Pd layer with a Pd concentration of 3 at%. Therefore, the shape and
amount of deposition on the prepared Bi2Te3 nanoplates varied depending on the type of
metal. This difference was attributed to the different liquid–solid interfacial free energies
of Sn-Bi2Te3 and Pd-Bi2Te3 [59]. When the interfacial free energy was higher (as in the
case of Sn-Bi2Te3), the crystals grew into island shapes. By contrast, when the interfacial
free energy was lower (as in the case of Pd-Bi2Te3), the crystals grew in a layered shape.
As shown in Figure 3c, when Sn and Pd were sequentially deposited on the nanoplate
surface, the surface morphology was similar to that of the Sn-deposited nanoplates. The
concentration of Sn was 1 at%, which was the same as for the Sn-deposited nanoplates;
however, the concentration of Pd was less than 1 at%, which was lower than for the Pd-
deposited nanoplates. These results suggest that Pd readily adhered to the Bi2Te3 surface
but struggled to adhere to the Sn surface. The phase purity and crystal structure of the
Bi2Te3 nanoplates with the electroless deposition of different metals were examined via
XRD analysis, as shown in Figure 4. Bi2Te3 showed rhombohedral tetradymite-type crystal
structures with the space group D5

3d(R3m) and hexagonal unit cells. The lattice constant
along the c-axis was 30.3 Å, while that along the a- or b-axis was 4.35 Å. The unit cell consists
of five covalently bonded monatomic sheets arranged along the c-axis in the sequence
–Te(1)–Bi–Te(2)–Bi–Te(1)–. The superscripts (1) and (2) indicate two distinct chemical states of
the anions. The bonds between Te(1) and Bi include both covalent and ionic bonds, while
Te(2) and Bi are purely covalently bonded. There is a very weak van der Waals attraction
between adjacent Te(1) layers. Most of the peaks observed in the XRD patterns of the
nanoplates without metal deposition were indexed to the standard diffraction pattern of
Bi2Te3 (JCPDS 15-0863). The main peaks were observed in the c-axis-oriented (00l), (015),
and (1010) planes, and several smaller peaks were also observed. Although electroless
deposition was performed to deposit different metals on the nanoplate surface, the XRD
patterns did not exhibit any peaks corresponding to those attributed to the deposited
metals. This was due to the low crystallinity, i.e., extremely small crystallite size or high
defect density, of the electrodeposited metals. Similar phenomena have been reported for
the electrodeposited layers of bismuth-telluride-based alloys [58,69,70].
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Figure 4. X-ray diffraction patterns of Bi2Te3 nanoplates deposited with different metals using
electroless deposition.

3.2. Thermal Conductivity of Bi2Te3 Nanoplates Deposited with Different Metals

Figure 5 shows the in-plane thermal conductivities of the bulk Bi2Te3 nanoplates with
different metal depositions. The total thermal conductivity, κtotal, was estimated based on
the measured thermal diffusivities, densities, and specific heats. The electronic thermal
conductivity, κe, described in the inset was calculated from the experimentally measured
electrical conductivities and using the Wiedemann–Franz law, given by κe = LσT. Here,
the Lorenz number, L, was 2.44 × 10−8 WΩ/K2 for the classical free-electron model. The
lattice thermal conductivity, κlattice, was obtained by subtracting the electronic thermal
conductivity. The lattice thermal conductivities of all nanoplates were mostly the same as
the total thermal conductivities, owing to their low electronic thermal conductivities, as
shown in the inset. Notably, the thermal conductivities of the pristine Bi2Te3 nanoplates
and the Sn-Bi2Te3 nanoplates are referred to from our previous report [58]. When electroless
deposition was not performed on the Bi2Te3 nanoplates, the lattice thermal conductivity
was 1.9 W/(m·K), corresponding to the lattice thermal conductivity of single-crystalline
Bi2Te3 in the a- or b-axis directions (1.3–2.3 W/(m·K)) [71]. Following the metal deposition
on the Bi2Te3 nanoplates, the lattice thermal conductivities decreased. In particular, the Sn-
Bi2Te3 and Sn/Pd-Bi2Te3 nanoplates exhibited the lowest value of 1.1 W/(m·K), followed
by the Sn/Pd-Bi2Te3 nanoplates with the value of 1.4 W/(m·K). This phenomenon indicates
that the dispersion of metal nanoparticles on the nanoplate surface caused more phonons to
scatter compared with a structure with a metal layer on the nanoplate surface, reducing the
lattice thermal conductivity. This phenomenon was consistent with a previous report [72].
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3.3. Thermoelectric Properties of Bi2Te3 Nanoplates Deposited with Different Metals

Figure 6 shows the in-plane thermoelectric properties of bulk-formed Bi2Te3 nanoplates
deposited with different metals. In Figure 6a, the most negative Seebeck coefficient of
−141 µV/K was observed in the Bi2Te3 nanoplates without metal deposition. The deposi-
tion of Sn and Pd on the Bi2Te3 nanoplates, respectively, decreased the negative Seebeck
coefficient, which was strongly related to the carrier concentration. The relationship be-
tween the Seebeck coefficient S and carrier concentration n is given by Equation (1) [73,74],
as follows:

S =
8π2k2

BT

3eh2 m∗
( π

3n

) 2
3 , (1)

where m* denotes effective mass. According to the above equation, the Seebeck coefficient
scales inversely with the carrier concentration. Therefore, the negative Seebeck coefficient
decreased because the carrier concentration corresponding to the metal concentration in-
creased, owing to the metal deposition. In particular, the Pd-Bi2Te3 nanoplates exhibited the
lowest negative Seebeck coefficient of −98 µV/K, owing to the high carrier concentration as
determined by EPMA. By contrast, the Seebeck coefficient of the Sn/Pd-Bi2Te3 nanoplates
negatively increased to −127 µV/K, corresponding to the value located between that for
the Bi2Te3 nanoplates without metal deposition and that for the plates with Sn deposition.
This was because the Sn/Pd-Bi2Te3 nanoplates had higher carrier concentrations compared
to that of the Bi2Te3 nanoplates without metal deposition and lower carrier concentrations
compared to that of Sn-Bi2Te3 and Pd-Bi2Te3 nanoplates. The mechanism for the lower
carrier concentration when Sn and Pd were deposited simultaneously compared to when
each was deposited alone is unclear. However, a possible explanation is that the carriers
generated by the deposition of Sn and Pd could be offset by the coexistence of these two
metals [75].
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In Figure 6b, the electrical conductivity of the Bi2Te3 nanoplates without metal deposi-
tion is shown to be 86 S/m. The highest electrical conductivity of 1572 S/m was observed
for the Pd-Bi2Te3 nanoplates, followed by 447 S/m for the Sn-Bi2Te3 nanoplates, owing
to the increase in the carrier concentration compared to the Bi2Te3 nanoplates without
metal deposition. By contrast, the Sn/Pd-Bi2Te3 nanoplates exhibited the lowest electrical
conductivity of 60 S/m, which was lower than that of the pristine Bi2Te3 nanoplates. This
phenomenon cannot be explained by the magnitude of the carrier concentration alone.
Electrical conductivity σ is strongly related to the carrier concentration n as well as mobility
µ, as expressed by Equation (2):

σ = neµ. (2)

Therefore, the Sn/Pd-Bi2Te3 nanoplates had a higher carrier concentration but lower
mobility than the pristine Bi2Te3 nanoplates. The low mobility of Sn/Pd-Bi2Te3 nanoplates
is due to electron scattering at the interfaces between the Sn and Pd layers.

The power factor of the Bi2Te3 nanoplates with different metal depositions is shown in
Figure 6c. The power factor showed a trend similar to that of electrical conductivity because
the inter-sample variation of the electrical conductivity was greater than the inter-sample
variation of the Seebeck coefficient. The power factors of the Sn-Bi2Te3 and Pd-Bi2Te3
nanoplates were 6.4 and 15.2 µW/(m·K2), respectively, which are higher than that of the
pristine Bi2Te3 nanoplates at 1.7 µW/(m·K2). Therefore, the power factor was improved
by single-metal deposition on the nanoplatelets, and the power factor depended on the
type of metals. However, the Sn/Pd-Bi2Te3 nanoplates exhibited the lowest power fac-
tor of 1.0 µW/(m·K2), which was approximately 60% lower than that of pristine Bi2Te3
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nanoplates, owing to the lowest electrical conductivity. Therefore, in this study, the simul-
taneous metal deposition did not enhance the power factor of the nanoplates.

The dimensionless ZT of the Bi2Te3 nanoplates with different metal depositions is
shown in Figure 6d. The Pd-Bi2Te3 nanoplates exhibited the highest ZT of 32 × 10−3. This
is because they had extremely high electrical conductivity among the four samples even
though they did not have the lowest thermal conductivity or the highest negative Seebeck
coefficient. The second highest ZT of 18 × 10−3 was exhibited by the Sn-Bi2Te3 nanoplates.
Due to the lowest thermal conductivity of the Sn-Bi2Te3 nanoplates, the difference in ZT
between the Pb-Bi2Te3 and Sn-Bi2Te3 nanoplates decreased compared to the difference in
power factor between them. The ZT of the Sn/Pd-Bi2Te3 nanoplates was 2.7 × 10−3, which
was the same value as the pristine Bi2Te3 nanoplates owing to the low thermal conductivity
of the Sn/Pd-Bi2Te3 nanoplates. Therefore, all cases of the metal deposition on the Bi2Te3
nanoplates did not decrease the ZT. However, the highest ZT in this study was lower
than that for the sintered Bi2Te3 bulk samples (ZT = 0.8 at 300 K) [76]. This was because
the samples in this study underwent no sintering (e.g., spark plasma sintering) to assess
the thermoelectric properties of the nanoplates by representing their properties as close
as possible to those of the pristine nanoplates without melting. This study reveals the
effects of different metal depositions on Bi2Te3 nanoplates, with implications regarding
their thermoelectric performance. In addition, we consider there is room to improve
thermoelectric performance by optimizing the type of metal and the amount of metal
deposited. In the future, thermoelectric performance will be further improved by sintering
nanoplates deposited with appropriate metals.

4. Conclusions

The studied Bi2Te3 nanoplates were deposited with Sn, Pd, and Sn/Pd, to modify
their surface morphologies and improve their thermoelectric properties. The studied Bi2Te3
nanoplates were prepared using solvothermal techniques and metal deposition was per-
formed using electroless deposition. Sn nanoparticles at a concentration of approximately
1 at% were deposited on the prepared Bi2Te3 nanoplates. For Pd deposition, a Pd layer with
a concentration of approximately 3 at% was deposited on the Bi2Te3 nanoplates. When Sn
and Pd were sequentially deposited on the nanoplate surface, the surface morphology was
similar to that of the Sn-deposited nanoplates where the Sn and Pd concentrations were
1 at% and less than 1 at%, respectively. In order to assess the thermoelectric properties of
the nanoplates by representing their properties as close as possible to those of the inherent
nanoplate but not the melting structures, the nanoplate assemblies were compressed into
thin bulk shapes at 300 K. The lattice thermal conductivity was affected by the surface
morphology of the nanoplates. The Sn-Bi2Te3 and Sn/Pd-Bi2Te3 nanoplates exhibited the
lowest value of 1.1 W/(m·K), indicating that the dispersion of metal nanoparticles on the
nanoplate surface caused more phonon scattering. However, the Pd-Bi2Te3 nanoplates
exhibited the highest power factor and dimensionless ZT owing to their significantly high
electrical conductivities.
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