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Abstract: Metallic transition-metal dichalcogenides are emerging as promising electrode materials
for applications such as 2D electronic devices owing to their good electrical conductivity. In this
study, a high-performance humidity sensor based on NbTe2 electrode material and an indium-
doped SnO2 thin film sensing layer was fabricated using a pulsed laser deposition system. The
morphology, structural, elemental compositions, and electrical properties of the as-deposited samples
were characterized. Additionally, the humidity sensing response of the fabricated sensor with In-
doped SnO2 (8:92 wt%) sensing film was evaluated in a wide range of relative humidity at room
temperature. The results demonstrated that the humidity sensor based on In-doped SnO2 exhibited
a high sensitivity of 103.1 Ω/%RH, fast response and recovery times, a low hysteresis value, good
linearity, and repeatability. In addition, the sensor had good long-term stability, with a variation
in impedance of less than 3%. The results indicated that the humidity sensor could be suitable for
practical humidity sensing applications.

Keywords: humidity sensor; In-doped SnO2; pulsed laser deposition; inter-digitated transducer;
NbTe2 electrode

1. Introduction

Since the discovery of graphene [1], the family of two-dimensional (2D) atomically thin
materials has recently attracted considerable research interest, offering exciting potential in
the fields of nanoelectronics, optoelectronics, and photovoltaics [2–6]. Among 2D materials,
transition metal dichalcogenides (TMDs), formulated as MX2 (M = transition metal (e.g.,
Mo, W, etc.) and X = chalcogen (S, Se, and Te)), have gained a lot of attention due to their
unique structures, such as good flexibility, and novel physical or chemical properties [7–10].
Depending on the variation in the band structure, TMDs can be semiconducting TMDs or
metallic TMDs (MTMDs) [11]. According to [12–16], MTMDs exhibited various fascinating
physical phenomena, such as ferromagnetism, charge density waves, and superconduc-
tivity. In particular, conductive MTMD materials have been used in multiple fields of
applications, such as energy storage and electronic devices [17,18]. For example, vanadium
dichalcogenides were used as electrode materials to manufacture sensors, supercapacitors,
and lithium-ion batteries [19–21]. MTMDs generally have high electrical conductivity
comparable to that of conventional metals, making them excellent electrode materials for
the fabrication of electronic devices. In this context, the metal tellurides of the VB group
(VTe2, NbTe2, and TaTe2) offer significant potential in applications requiring good electrical
conductivity and structural advantages such as flexibility and conformal electrodes for
wearable sensors.
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Exploring the aforementioned physical properties and versatile applications requires
the controlled synthesis of MTMD materials with different thicknesses, large-area films/
nanosheets, and high-crystalline structures. To date, numerous techniques have been
applied to synthesize 2D materials. For instance, liquid-based and mechanical exfoli-
ations have been widely used to synthesize a few layers of 2D materials due to their
simplicity [22,23]. However, these techniques have some drawbacks, such as the multiple
steps involved in synthesis, contamination, and the difficulty of precisely controlling the
thickness and size of nanosheets [24,25]. Alternatively, chemical vapor deposition (CVD)
has been proven to be one of the most effective techniques for synthesizing a wide range
of highly scalable TMD nanosheets [1,26–29]. It is well known that the CVD process is
typically performed at high temperatures, which instantly crystallizes the film. Normally,
photolithography is used to pattern the crystallized film or fabricate electronic devices.

However, the development of an adequate photolithography process for 2D materials
is still in its early stages [30]. This circumstance limits the widespread use of the CVD
technique in the fabrication of electrical devices based on MTMD material [31,32]. Therefore,
the controllable synthesis of MTMD materials with a reduced deposition temperature has
become a hot topic. Pulsed laser deposition (PLD) is an impressive alternative to the above
techniques due to its unique advantages, such as easily controllable deposition parameters,
high scalability, room-temperature deposition, precise stoichiometry, and control of film
thickness and size [33–35]. Grangeon et al. reported controllable growth of thin films of
niobium telluride (NbTe2) at elevated deposition temperatures using the PLD technique.
They demonstrated the effect of adjusting the deposition parameters on the formation
of the different phases of NbTe2 [36]. However, after that, reports on how to synthesize
NbTe2 using PLD were unexpectedly absent for a long time. Here, we report a controllable
synthesis of a thin film of NbTe2 using PLD at room temperature, as well as the application
of the fabricated film as an electrode in the form of an interdigitated transducer (IDT) in
the development of an impedance spectroscopy-type humidity sensor.

Monitoring the humidity level in the surrounding environment has become a major
concern in many sectors, such as manufacturing industries, health care centers, homes, the
environment, and agriculture [37]. An excellent humidity sensor must meet several criteria,
including fast response time, short recovery time, high sensitivity, good reproducibility,
and long-term stability [38,39]. Several sensing materials/films, such as carbon-based
materials, conductive polymers, and semiconducting materials, have been used to develop
humidity sensors. Among these, metal oxide semiconductors, including zinc oxide (ZnO),
iron (III) oxide (Fe2O3), tin oxide (SnO2), nickel oxide (NiO), and titanium oxide (TiO2),
have continued to be the focus of significant attention in the planning and development
of highly sensitive humidity sensors [40–44]. Specifically, SnO2 is the most promising
candidate for humidity sensors due to its fascinating chemical and physical properties,
such as chemical sensitivity to oxygen and water vapor, high chemical stability, non-toxicity,
and low cost [45]. SnO2 is an n-type semiconductor with a wider band gap. However,
the pristine SnO2 humidity sensors exhibited insufficient response, poor linearity, and
long response and recovery times [46,47]. Thus, several effective strategies have been
implemented to improve the sensing performance of SnO2-based sensors. For example,
doping of sensing materials with other metal oxides or metal ions is predominant, resulting
in increased surface areas/active sites and heterogeneous interfaces between the host and
the dopant that facilitate an effective water adsorption/desorption process [48–50].

In this study, we present the synthesis of an indium (In)-doped SnO2 sensing film using
the PLD technique and investigate its application for humidity sensing at room temperature.
The effect of the different weight percentages of In in SnO2 was investigated [51–54]. To
our knowledge, the use of In-doped SnO2 film for humidity sensing applications at room
temperature has not yet been reported. An impedance spectroscopy-based humidity
sensor was fabricated by depositing the sensing film on the interdigitated transducer. The
crystalline structure, morphology, chemical composition, and electrical characteristics of
the In-doped SnO2 and NbTe2 films were examined with X-ray diffraction (XRD), scanning
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electron microscopy (SEM), energy dispersive spectroscopy (EDS), and a four-point probe
sheet resistance measurement method. The humidity sensing performance of the fabricated
impedance spectroscopy-based sensor was evaluated over a wide range of relative humidity
(RH) with a simple test setup. The sensor based on In-doped SnO2 exhibited high sensitivity,
good linearity, fast response and recovery times, and low hysteresis. In-doped SnO2 has
good potential for health monitoring and environmental detection, given its humidity-
sensing capability.

2. Materials and Methods
2.1. Materials

In-doped SnO2 (SnO2 92/In 8 wt%) and NbTe2 ceramic targets were purchased from
Kurt J. Lesker Co., Jefferson Hills, PA, USA, and high-resistivity silicon substrates were
obtained from University Wafer Inc., South Boston, MA, USA. All chemicals were ensured
to be analytical grade, applied directly without further purification, and distilled water
was used in the experiments.

2.2. Methods
2.2.1. Interdigitated Transducer Fabrication Process

A standard positive photoresist lift-off process with S1813 photoresist was used to
pattern the NbTe2 film to fabricate the interdigitated transducer (IDT) structure. The thin
film of NbTe2 was deposited onto the pattered wafer at room temperature using a KrF
excimer laser (λ = 248 nm) to ablate the NbTe2 target [55]. After the lift-off process, the
wafer was annealed in a conventional furnace to crystallize the film. Thin films of 20 nm Ti
and 330 nm Au were deposited using e-beam evaporation as contacts using another lift-off
lithography process. Figure 1 illustrates the main process for fabricating the humidity
sensor based on the metallic NbTe2 film. IDTs were used to measure the impedance changes
of In-doped SnO2 during exposure to various levels of relative humidity.

Crystals 2024, 14, x FOR PEER REVIEW 3 of 16 
 

 

transducer. The crystalline structure, morphology, chemical composition, and electrical 
characteristics of the In-doped SnO2 and NbTe2 films were examined with X-ray diffrac-
tion (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), 
and a four-point probe sheet resistance measurement method. The humidity sensing per-
formance of the fabricated impedance spectroscopy-based sensor was evaluated over a 
wide range of relative humidity (RH) with a simple test setup. The sensor based on In-
doped SnO2 exhibited high sensitivity, good linearity, fast response and recovery times, 
and low hysteresis. In-doped SnO2 has good potential for health monitoring and environ-
mental detection, given its humidity-sensing capability. 

2. Materials and Methods 
2.1. Materials 

In-doped SnO2 (SnO2 92/In 8 wt%) and NbTe2 ceramic targets were purchased from 
Kurt J. Lesker Co., Jefferson Hills, PA, USA, and high-resistivity silicon substrates were 
obtained from University Wafer Inc., South Boston, MA, USA. All chemicals were ensured 
to be analytical grade, applied directly without further purification, and distilled water 
was used in the experiments.  

2.2. Methods 
2.2.1. Interdigitated Transducer Fabrication Process 

A standard positive photoresist lift-off process with S1813 photoresist was used to 
pattern the NbTe2 film to fabricate the interdigitated transducer (IDT) structure. The thin 
film of NbTe2 was deposited onto the pattered wafer at room temperature using a KrF 
excimer laser (λ = 248 nm) to ablate the NbTe2 target [55]. After the lift-off process, the 
wafer was annealed in a conventional furnace to crystallize the film. Thin films of 20 nm 
Ti and 330 nm Au were deposited using e-beam evaporation as contacts using another lift-
off lithography process. Figure 1 illustrates the main process for fabricating the humidity 
sensor based on the metallic NbTe2 film. IDTs were used to measure the impedance 
changes of In-doped SnO2 during exposure to various levels of relative humidity. 

 
Figure 1. Schematic showing the main fabrication process for the In-doped SnO2 thin film-based 
humidity sensor with the NbTe2 electrode. 

  

Figure 1. Schematic showing the main fabrication process for the In-doped SnO2 thin film-based
humidity sensor with the NbTe2 electrode.

2.2.2. Sensing Film Fabrication

The sensing film, a 100 nm thick sensing In-doped SnO2 film, was also deposited
using a positive photoresist lithography process on top of the NbTe2 IDT structures. The
In-doped SnO2 target (SnO2 92/In 8 wt%) was used for the synthesis of In-doped SnO2
thin films [55] using a 248 nm KrF excimer laser. 600 laser pulses were used to obtain a
100 nm film. After the lift-off process, the wafer was annealed in a furnace at 330 ◦C to
crystallize the In-doped SnO2 film. The wafer was diced and then cleaned. Figure 2 shows
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the microscopic picture of the NbTe2-based fabricated impedance-type sensor with the
In-doped SnO2 sensing film. The width of the finger and the spacing between the fingers
were 160 and 80 µm, respectively.
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Figure 2. A microscopic picture of a fabricated impedimetric humidity sensor.

2.2.3. Characterization

The crystal structure of the NbTe2 and In-doped SnO2 samples was carried out on
a PANalytical X-Pert diffractometer with a hybrid monochromator for Cu Kα1 radiation
(λ = 1.554056 Å). The diffraction patterns were collected at a scan angle (2θ) ranging from
8 to 90◦ with a step size of 0.02◦. The morphology, structure, and elemental composition
of the NbTe2 and In-doped SnO2 samples were studied using a high-resolution scanning
electron microscope (HRSEM, Hitachi S-4800, Hitachi, Japan) at an acceleration voltage
of 10 kV and energy-dispersive spectroscopy (EDS, Zeiss EVO-50XVP, Jena, Germany)
instruments. The surface electrical conductivity of the prepared thin film samples was
measured using the four-point probe sheet resistance tester (Ossila).

2.2.4. Humidity Sensing

The humidity sensing of the fabricated sensor was evaluated at room temperature using
a custom-made experimental setup for the measurement of relative humidity, where the
sensor was enclosed in a test chamber to maintain consistent sensing conditions, as shown
in Figure 3. The sensor was then connected to a handheld impedance analyzer (AD5940,
Analog Devices, Wilmington, MA, USA) to measure the impedance response of the sensor at
different RH levels. For data logging, the impedance analyzer was connected directly to the
PC. Additionally, a commercially available humidity sensor (HTU21D, humidity precision:
2% RH, humidity resolution: 0.1% RH, SparkFun Electronics, Boulder, CO, USA), which
serves as a reference, was placed side by side with the fabricated sensors to measure the
relative humidity level within the test chamber. Analog data from this device was logged
onto the PC through an Arduino microcontroller. The system also included a mass flow
controller (GA50A, MKS, Andover, MA, USA) and a humidifier. Initially, nitrogen gas (N2)
was introduced into the test chamber to purge the entire test setup and establish a baseline.
The humid air or moisture was generated by the humidifier. Different levels of RH were
achieved by adjusting the flow rate of N2 through the mass flow controller and mixing it
with humid air in the mixer. Then, the impedance changes of the In-doped SnO2 film were
measured during cyclic exposure to nitrogen and moist air using the impedance analyzer.
Sensor impedance values were measured at an operating frequency of 35 kHz due to the
improved sensitivity of the device between 30 and 40 kHz [55].
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3. Results
3.1. Film Characterization

Before fabricating the NbTe2-based humidity sensor, a preliminary investigation was
performed to determine the optimal PLD deposition parameters and the annealing tem-
perature to grow thin films of both NbTe2 and In-doped SnO2. Once these parameters
were identified, a thin film of NbTe2 was deposited onto a silicon substrate, and the crystal
structure of the sample was analyzed using XRD. Figure 4 shows the XRD pattern obtained
for the as-deposited NbTe2 sample. As can be seen in the figure, the diffraction peaks of
the sample were sharp and strong in intensity, indicating complete crystallization of NbTe2.
Moreover, the XRD peaks were well-matched with those of the monoclinic crystal structure
of NbTe2. For example, the 2θ diffraction peaks of the sample at ~13.1◦, 26.4◦, 40◦, and 54.4◦

were indexed to the (0 0 1), (0 0 2), (3 1 1), and (−7 1 5) planes of NbTe2 (JCPDS No. 21-0605).
Furthermore, the absence of other diffraction peaks confirmed the sample’s phase purity.
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Figure 4. XRD pattern of the NbTe2 film deposited using PLD. XRD peaks represent the crystalline
phase of NbTe2 (the monoclinic crystal structure).

Figure 5 shows the SEM images of the surface of the NbTe2 film deposited onto the
silicon substrate. As can be seen in Figure 5a, a thin film of NbTe2 with no known defects
was grown using PLD. The cross-sectional view (Figure 5b) reveals that the film had a
dense and integrated structure with good adhesion that can reflect the quality of the film. In
addition, the formation of nanopores was observed. The EDS spectrum of the as-deposited
NbTe2 film grown on the silicon substrate (Figure 6) contains the peaks of niobium and
tellurium. From the percentage of atomic weight, the atomic ratio of Te to Nb was calculated
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and found to be 1.94, which was very close to the theoretical value of NbTe2, suggesting that
the sample was stoichiometric NbTe2. The electrical conductivity of NbTe2 was measured
and found to be ~28.4 S/m.
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Similarly, the crystalline structure, morphology, and elemental composition of In-
doped SnO2 were studied. A thin film of In-doped SnO2 (8:92 wt%) was deposited onto
the silicon substrate and crystallized in the furnace. Figure 7 shows the XRD pattern of the
In-doped SnO2 film. The diffraction peaks of In-doped SnO2 at 2θ of 26.58◦, 33.86◦, and
51.76◦ were indexed to the (1 1 0), (0 1 1), and (1 2 1) planes of the tetragonal cassiterite
phase of SnO2 (JCPDS No: 41-1445). Moreover, it is clear that In was incorporated into the
SnO2 lattice because no other secondary phases, such as In or In2O3, were observed.

The SEM image of the as-deposited In-doped SnO2 sample presented in Figure 8
shows that a uniform and smooth surface was obtained. Also, no known defects were
observed on the surface of the film. The analysis of the EDS spectrum of the In-doped
SnO2 film presented in Figure 9 confirmed the existence of In, Sn, and O elements in the
deposited thin film. Furthermore, the elementary mappings demonstrated that all elements,
such as In, Sn, and O, were uniformly distributed on the film’s surface.



Crystals 2024, 14, 82 7 of 15Crystals 2024, 14, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 7. XRD spectroscopy of the In-doped SnO2 film deposited using PLD. XRD peaks represent 
the presence of the crystalline phase of SnO2 (the tetragonal SnO2 cassiterite). 

The SEM image of the as-deposited In-doped SnO2 sample presented in Figure 8 
shows that a uniform and smooth surface was obtained. Also, no known defects were ob-
served on the surface of the film. The analysis of the EDS spectrum of the In-doped SnO2 
film presented in Figure 9 confirmed the existence of In, Sn, and O elements in the depos-
ited thin film. Furthermore, the elementary mappings demonstrated that all elements, 
such as In, Sn, and O, were uniformly distributed on the film’s surface.  

 
Figure 8. SEM image of the surface of In-doped SnO2 thin film. 

Figure 7. XRD spectroscopy of the In-doped SnO2 film deposited using PLD. XRD peaks represent
the presence of the crystalline phase of SnO2 (the tetragonal SnO2 cassiterite).

Crystals 2024, 14, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 7. XRD spectroscopy of the In-doped SnO2 film deposited using PLD. XRD peaks represent 
the presence of the crystalline phase of SnO2 (the tetragonal SnO2 cassiterite). 

The SEM image of the as-deposited In-doped SnO2 sample presented in Figure 8 
shows that a uniform and smooth surface was obtained. Also, no known defects were ob-
served on the surface of the film. The analysis of the EDS spectrum of the In-doped SnO2 
film presented in Figure 9 confirmed the existence of In, Sn, and O elements in the depos-
ited thin film. Furthermore, the elementary mappings demonstrated that all elements, 
such as In, Sn, and O, were uniformly distributed on the film’s surface.  

 
Figure 8. SEM image of the surface of In-doped SnO2 thin film. Figure 8. SEM image of the surface of In-doped SnO2 thin film.

Figure 9. EDS spectrum of the as-deposited In-doped SnO2 film.



Crystals 2024, 14, 82 8 of 15

3.2. Humidity Sensing Performance

The humidity sensing performance of the In-doped SnO2 sensing film was investigated
in a wide range of relative humidity levels (15–90% RH) at an operating frequency of 35 kHz.
The dynamic impedance response curve versus time with increasing relative humidity is
shown in Figure 10. The impedance of the sensor returned to its baseline state as the sensor
switched between the different relative humidity levels. At a specific % RH, the impedance
of the film initially decreased due to the adsorption of water molecules; however, when
exposed to N2 gas, the desorption caused the impedance to return to its baseline state.
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Figure 11 illustrates the variation in the impedance of In-doped SnO2 as a function of the
relative humidity level at room temperature. The fitting function of impedance (Z) and the
relative humidity of the In-doped SnO2 humidity sensor was Z = (−0.13 × RH + 24.6) kΩ
with a regression coefficient R2 of 0.980. As shown in the figure, the impedance decreased
linearly with increasing relative humidity, but the sensor response increased with increasing
relative humidity. This result demonstrated the excellent linearity of the sensor response
to RH, which is essential for practical applications. Furthermore, sensitivity (S) is also an
important parameter in quantifying the performance of humidity sensors. It is defined in [46]
as the variation in impedance for relative humidity and is mathematically expressed as

S =
∆Z

∆%RH
kΩ/%RH, (1)

where ∆Z and ∆%RH represent the change in impedance and relative humidity, respectively.
The sensitivity value was 103.15 Ω/%RH in the range of 10 to 90% RH. In addition, response
time, recovery time, repeatability, and hysteresis are significant indicators to evaluate
humidity sensor performance [51,52].

To investigate the repeatability of the humidity sensor, the sensor was exposed to a
level of 45% RH for five successive cycles. Figure 12 shows the impedance variations of
the In-doped SnO2 sensor in five cycles switching between N2 gas and different relative
humidity. As shown in the figure, at a relative humidity of 45%, the change in baseline
and final impedance values was almost negligible after multiple cycles. Moreover, the
standard deviation of the impedance value to 45% RH was calculated and found to be 0.002,
indicating excellent dynamic stability and repeatability of the sensor. Response time (tres) is
defined as the time it takes for the impedance to reach 90% of its final value after exposure
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to humid air, and recovery time (trec) is defined as the time it takes for the impedance
to return 90% of its baseline value [56]. Based on the dynamic impedance-time curve in
Figure 12, the response and recovery times of the In-doped SnO2-based humidity sensor
were estimated to be 10 and 21 s, respectively.
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To study the hysteresis characteristic of the sensor, the sensor was consecutively ex-
posed to different levels of relative humidity (adsorption process) and then followed by a
downward one (desorption process). Figure 13 shows the sensor hysteresis during adsorp-
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tion and desorption. In the adsorption process, the impedance decreased as the relative
humidity increased. However, in the desorption process, the impedance increased as the
relative humidity decreased. Hysteresis was calculated by measuring the impedance differ-
ence between the adsorption and desorption measurements at a particular RH value and
then divided by the full output range [57], mathematically expressed as H = ∆Hmax/2FFS,
where ∆Hmax and FFS are the maximum hysteresis value and the full-scale output, respec-
tively. The hysteresis of the sensor was about 2.58%, further demonstrating the reversibility
of the sensor.

Finally, the long-term stability of the In-doped SnO2-based humidity sensor was
investigated by exposing it to humid air (45% RH) for one month. Figure 14 shows the
variation in the impedance of the humidity sensor to 45% RH as a function of time during
that period. The variation in impedance was less than 2%, suggesting that the long-term
stability of the sensor is suitable for use in practical applications.

Table 1 compares the humidity sensing performance of the In-doped SnO2-based
humidity sensor used in this study with other previously reported SnO2-based humidity
sensors. Compared to others, the In-doped SnO2-based humidity sensor exhibited fast re-
sponse and recovery times. In general, the In-doped SnO2-based sensor has great potential
in practical humidity sensing applications.

Table 1. Comparison of humidity sensors based on SnO2 from this and previously reported work.

Sensing Material tres (s) trec (s) Ref.

Co-doped SnO2/rGO 522 100 [58]
rGO/SnO2 6–102 6–9 [59]
rGO-SnO2 10 60 [60]
ZnO/SnO2 411 98 [61]

Sb-doped SnO2 40 64 [62]
Ni-doped SnO2 15 4 [49]

MoS2/SnO2 17 6 [47]
WS2/SnO2 100 100 [57]

In-doped SnO2 10 21 This work
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3.3. Humidity Sensing Mechanism

The humidity sensing mechanism of the sensor was associated with the adsorption
of water molecules on the surface of the In-doped SnO2 film, which caused a change in
the electrical properties of the sensing film. Figure 15 shows the schematic diagram of the
adsorption process of water molecules on the surface of In-doped SnO2, which resulted
in the formation of chemisorbed and physisorbed layers. Briefly, at low RH levels, upon
exposure to humid air, water molecules decomposed into protons (H+) and hydroxide
ions (OH−) as a result of self-ionization and surface collision with the film surface [63,64].
Subsequently, OH− interacted with cations on the surface of In-doped SnO2 and formed
a chemisorption layer. This phenomenon caused a decrease in the potential barrier and
the disappearance of the depletion layer by reducing the electron affinity of the cations
and removing the electrons captured in a dry environment [62–64]. In turn, the bulk
conductivity and the dielectric constant increased. Therefore, the sensor was quite sensitive,
even at low RH levels. However, at low humidity, only a small amount of water was
absorbed, leading to the appearance of a discontinuous water layer on the film surface [65].
It makes the conduction of protons to neighboring OH− ions challenging. Therefore,
electron conduction was more dominant than ion conduction.
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In mid-RH, as the humidity increased, the adsorption of water molecules also in-
creased. The adsorption of more water molecules led to the formation of a physisorbed
layer on the surface of the film through hydrogen bonds [47]. Water molecules dissociated
and produced hydronium ions (H3O+) under a strong electrostatic field in the chemisorp-
tion layer [66]. Subsequently, H3O+ was converted back to H2O, and more protons were
released as a result of the applied electric fields, acting as a source of protons. Due to the
formation of additional layers, protons (H+) can move to adjacent water molecules [67].
As a result, ionic conduction becomes effective, and the impedance decreases further. In
addition, as more and more water molecules were absorbed, subsequent physisorbed layers
gradually formed. At high RH, as the humidity increases further, a large volume of water
molecules could be absorbed, creating a continuous water layer. This layer accelerated the
free movement of protons toward adjacent water molecules. This leads to the formation of
a constant dipole and electrolyte layer between the electrodes. As a result, the dielectric
constant and bulk conductivity increased further [68]. The porous structure of In-doped
SnO2 can also play a substantial role in facilitating the absorption of water molecules and,
in turn, improving the sensor’s performance.

4. Conclusions

In summary, we demonstrated the controllable synthesis of large-area and thickness-
tunable NbTe2 nanosheets by optimizing the deposition parameters during the PLD process.
The X-ray diffraction pattern exhibited the pure NbTe2 phase. The stoichiometric com-
position of the NbTe2 film was confirmed using EDS. The PLD process was also used
for the direct synthesis of the In-doped SnO2 sensing film on the substrate. The X-ray
diffraction pattern showed the crystal structure of In-doped SnO2. Besides, the SEM image
revealed the presence of nanopores on the surface of the film. An impedimetric humidity
sensor based on In-doped SnO2 (8:92 wt%) was developed, and its sensing response was
investigated in a wide range of relative humidity (15–90% RH) at room temperature. The
In-doped SnO2 humidity sensor showed a superb linear response, low hysteresis, long-term
stability, a remarkable sensitivity of 103.15 Ω/%RH, and a short response and recovery
times of 10 and 21 s, respectively. In addition, the sensor had good repeatability. Finally, the
humidity sensing mechanism of In-doped SnO2 was discussed in detail. Overall, the results
highlighted that In-doped SnO2 has a good prospect as a sensing material for practical
humidity sensing applications. Additionally, NbTe2 is a promising electrode material that
can serve as a building block for the construction of electronic devices.
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