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Abstract: Novel 9-cyano-pyrrolo[1,2-a][1,10]phenanthrolines 6a–d were obtained by an efficient
one-pot regioselective reaction between 1,10-phenanthrolinium bromides 2a–d and acrylonitrile as a
dipolarophile, in the presence of triethylamine and tetrakis-pyridino-cobalt(II) dichromate (TPCD)
as oxidizing agents. The optical properties of the compounds were investigated through UV–Vis
spectrophotometry and steady-state photoluminescence measurements, while their structures were
elucidated by single-crystal X-ray diffraction. The structural characterization revealed that the
molecular structures of the four compounds were stabilized by hydrogen bonds and π–π interactions.

Keywords: pyrrolo[1,2-a][1,10]phenanthrolines; 1,10-phenanthrolinium N-ylide; 1,3-dipolar cycloaddition;
helical chirality; X-ray diffraction

1. Introduction

Pyrrolo[1,2-a][1,10]phenanthroline 1 is an N-bridgehead aromatic heterocycle, formally
obtained by the condensation of 1,10-phenanthroline and pyrrole. The numbering of the
atoms from the pyrrolo[1,2-a][1,10]phenanthroline skeleton is presented in Figure 1.
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leading to dihydro-pyrrolo[1,2-a][1,10]phenanthrolines was reported [17]. 
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tures are represented in Figure 2. 

 
Figure 2. General structure of 9-cyano-pyrrolo[1,2-a][1,10]phenanthrolines 6a–d. The four con-
densed cycles are numbered with Roman numerals from I to IV. 
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2.1. Chemicals and Instrumentation 
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The number of methods that allow the synthesis of pyrrolo[1,2-a][1,10]phenanthroline
derivatives is still limited, and all reported methods use 1,10-phenantroline as a key precursor.

The first pyrrolo[1,2-a][1,10]phenanthroline derivatives were synthesized by Dumi-
trascu et al. in 2001 through a [3+2] cycloaddition reaction [1]. While novel methods for the
synthesis of these compounds have been described [2–9], the main approach continues to
be the 1,3-dipolar cycloaddition reaction [1,4,10–17].

The 1,10-phenanthroline derivatives and fused pyrrolo-1,10-phenanthroline type
derivatives display interesting properties, not only from a chemical point of view (synthesis,
reactivity, stereochemistry, aromaticity [18], basicity [19] and chelating capacity [20]), but
also in terms of their biological [10,21–26], electrical [27–29] and optical properties [30].
Some pyrrolo[1,2-a][1,10]phenanthroline derivatives have potential applications in ma-
terials science as organic light-emitting diodes [30–32], being promising candidates for
solid-state device technology.

Previous NMR studies revealed the non-equivalence of the diastereotopic methy-
lene and methyl hydrogens in the prochiral groups (ethyl, isopropyl) of pyrrolo[1,2-
a][1,10]phenanthroline esters [1,4,15], which was further confirmed by X-ray diffraction
experiments [5,33,34]. Furthermore, NMR data and single-crystal X-ray diffraction unveiled
the existence of helical chirality in the pyrrolo[1,2-a][1,10]phenanthroline skeleton, similar
to that of helicene-type compounds [1,5,35].

The reaction between phenanthrolinium N-ylides and dipolarophilic alkenes is less
studied [4,14]. Recently, the reaction of 1,10-phenanthrolinium N-ylides with acrylonitrile
leading to dihydro-pyrrolo[1,2-a][1,10]phenanthrolines was reported [17].

Herein, we describe the synthesis and single-crystal X-ray diffraction of new 9-cyano-
pyrrolo[1,2-a][1,10]phenanthrolines 6a–d, obtained by the 1,3-dipolar cycloaddition of
1,10-phenanthrolinium N-ylides and acrylonitrile, in the presence of triethylamine and
tetrakis-pyridino-cobalt(II) dichromate (TPCD) as oxidant reagent. Their general structures
are represented in Figure 2.
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Figure 2. General structure of 9-cyano-pyrrolo[1,2-a][1,10]phenanthrolines 6a–d. The four condensed
cycles are numbered with Roman numerals from I to IV.

2. Materials and Methods
2.1. Chemicals and Instrumentation

Melting points were determined on a Boëtius hot plate apparatus and are uncorrected.
NMR spectra were recorded on a Varian Gemini 300 BB instrument, operating at 300 MHz
for 1H and 75 MHz for 13C. Supplementary evidence was given by HETCOR and COSY
experiments. All chemical shifts (δ values) are given in parts per million (ppm); all homo-
and heterocoupling patterns (nJ values) are given in hertz (Hz). No TMS was added,
and chemical shifts were measured against the solvent peak. The electronic absorption
spectra were measured using a UV–Vis spectrometer, the Carry 100 Bio (JASCO, Tokyo,
Japan). The UV–Vis absorption and emission spectra of the investigated compounds were
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recorded in dilute solution (2 × 10−5 mol/L), using acetonitrile of HPLC purity (ACN,
Scharlau, Barcelona, Spain). All experiments were performed at 25 ◦C. All measurements
were performed in single-beam mode in the 200–800 nm range, using a 1 cm pathlength
quartz cuvette. The baseline corrections were performed with air and the spectrum of
the blank sample (accounting for the contribution of the cuvette and the solvent) was
subtracted from each spectrum. The molar extinction coefficients were determined from the
absorption spectra of the solutions of each compound with known concentrations using the
Lambert–Beer law. The steady-state photoluminescence spectra were measured using an
FP-6500 spectrofluorometer (JASCO, Japan) with a xenon arc lamp as an excitation source.
All spectra were corrected for background and the excitation spectra were additionally
corrected for lamp power. Unless stated otherwise, the excitation and emission slits for
all steady-state photoluminescence experiments were 5 nm. The IR spectra were recorded
using an FT-IR Bruker Vertex 70 equipped with a reflectance device (ATR) with a diamond
crystal and a device with PM IRRAS and VCD extensions, equipped with a cell with a CaF2
window. IR spectra were processed with the OPUS 5.5 (Bruker) software. The elemental
analysis was carried out on a Perkin Elmer CHN 240 B apparatus. The compounds’
nomenclature was taken from the Cambridge Soft package’s structure-to-name algorithm
included with Chem Bio Draw Ultra 11.0.

The X-ray diffraction measurements for 6b and 6c were carried out with a Rigaku
Oxford Diffraction XCALIBUR E CCD diffractometer (Rigaku, Tokyo, Japan) equipped
with graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å), and those for 6a and 6d
were carried out with a Rigaku XtaLAB Synergy-D diffractometer operating with a Cu-Kα
(λ = 1.54184 Å) micro-focus sealed X-ray tube. The structures were solved by Intrinsic
Phasing using the Olex2 software version 1.5 [36] with the SHELXT structure solution
program [37] and refined using full-matrix least-squares on F2 with SHELXL-2015 [38]
using an anisotropic model for non-hydrogen atoms. A summary of the crystallographic
data and the structure refinement is given in Table 1. Deposition numbers for 6a (2296260),
6b (2296259), 6c (2296258) and 6d (2296261) contain the supplementary crystallographic
data for this paper. These data are provided free of charge by the joint Cambridge Crystal-
lographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service
www.ccdc.cam.ac.uk/structures (accessed on 10 December 2023).

Table 1. Crystallographic data and structure refinement for compounds 6a–d.

Compound 6a 6d 6c 6b

Chemical formula C23H13N3O C24H12N4O C24H15N3O2 C29H23N3O
M (g mol−1) 347.36 372.38 377.39 429.50
Temperature (K) 100 100 293 293
Wavelength (Å) 1.54184 1.54184 0.71073 0.71073
Crystal system Monoclinic Monoclinic Monoclinic Monoclinic
Space group P21/c C2/c I2/a P21/c
a (Å) 12.1607(3) 19.2428(2) 12.6943(9) 12.9773(6)
b (Å) 11.3417(3) 7.89850(9) 11.1317(5) 9.9248(3)
c (Å) 12.4199(3) 23.3102(2) 26.3923(15) 17.4660(7)
α (◦) 90 90 90 90
β (◦) 102.809(2) 90.7499(10) 98.355(6) 101.806(4)
γ (◦) 90 90 90 90
V (Å3) 1670.36(7) 3542.60(7) 3689.9(4) 2201.98(15)
Z 4 8 8 4
Dc (g cm−3) 1.381 1.396 1.359 1.296
µ(mm−1) 0.694 0.714 0.089 0.080
F(000) 720 1536 1568 904
2Θ range for data
collection (◦) 7.456 to 153.988 7.586 to 153.9 4.89 to 50.7 4.746 to 50.698

Index ranges −15 ≤ h ≤ 10, −13 ≤ k ≤ 12,
−15 ≤ l ≤ 15

−23 ≤ h ≤ 23, −8 ≤ k ≤ 9,
−28 ≤ l ≤ 25

−15 ≤ h ≤ 14, −12 ≤ k ≤ 13,
−29 ≤ l ≤ 31

−15 ≤ h ≤ 15, −11 ≤ k ≤ 10,
−21 ≤ l ≤ 21

Reflections collected 10,892 13,114 11,224 13,519

Independent reflections 3218 [Rint = 0.0352,
Rsigma = 0.0376]

3424 [Rint = 0.0179,
Rsigma = 0.0151]

3381 [Rint = 0.0350,
Rsigma = 0.0499]

4029 [Rint = 0.0381,
Rsigma = 0.0516]

Data/restraints/parameters 3218/0/244 3424/0/263 3381/0/264 4029/0/299
GOF 1.039 1.032 1.024 1.049
Final R1, wR2 [I > 2σ(I)] 0.0378, 0.0970 0.0330, 0.0900 0.0512, 0.0948 0.0514, 0.0932
R1, wR2 (all data) 0.0463, 0.1034 0.0350, 0.0918 0.0899, 0.1077 0.0861, 0.1063
∆ρmin/∆ρmax (e Å−3) 0.20, −0.21 0.23, −0.19 0.13, −0.15 0.17, −0.14

www.ccdc.cam.ac.uk/structures
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All commercially available products were used without further purification, unless oth-
erwise specified. All chemicals for the syntheses were purchased from commercial sources.

2.2. Synthesis and Characterization

General procedure for the one-pot synthesis of 9-cyano-pyrrolo[1,2-a][1,10]phenanthrolines 6a–d.
A solution of 1,10-phenanthrolinium bromide derivative 1a–d (5 mmol), acrylonitrile

(15 mmol), triethylamine (6 mmol) and TPCD (5 mmol) in DMF (30 mL) was stirred at
80–90 ◦C for 6 h. It was then cooled down to room temperature and a 5% (v/v) aqueous HCl
solution (100 mL) was added. The precipitate was filtered and purified by crystallization
from nitromethane. The 9-cyano-pyrrolo[1,2-a][1,10]phenanthrolines 6a–d were obtained
with 50–60% yields.

11-Benzoylpyrrolo[1,2-a][1,10]phenanthroline-9-carbonitrile (6a)
Yellow crystals, platelets, obtained from nitromethane, m.p. 247–250 ◦C; yield 60%.

Elemental analysis: Found for C23H13N3O: C 79.77; H 4.04; N 12.37. Calculated: C 79.53; H
3.77; N 12.10. UV–VIS (MeCN), λ (log ε): 225 (4.72), 242 (4.62), 275 (4.49), 310 sh (4.21), 374
(3.79). FT-IR (cm−1): 3111 m, 3061 m, 2313 w, 2203 vs, 1703 w, 1634 vs, 1587 s, 1531 s, 1486
s, 1440 s, 1352 s, 1282 s, 1134 s, 1012 s, 975 vs, 694 vs, 669 vs. 1H-NMR (CDCl3; δ, ppm; J,
Hz): 7.35 (s, 1H, H-10); 7.38 (dd, 8.0, 4.5, H-3); 7.54–7.60 (m, 2H, H-3′, H-5′); 7.64–7.70 (m,
1H, H-4′); 7.72 (d, 1H, 9.1, H-7); 7.83 (d, 1H, 8.6, H-5); 7.88 (d, 1H, 8.6, H-6); 7.91 (d, 1H, 9.1,
H-8); 8.18–8.30 (m, 4H, H-2, H-4, H-2′, H-6′). 13C-NMR (CDCl3; δ, ppm): 85.2 (C-9); 116.0
(CN); 117.9 (C-8); 121.4 (C-10); 122.9 (C-3); 125.6, 128.0, 129.7, 133.4, 137.7, 140.7 (C-4a, C-6a,
C-8a, C-11, C-12a, C-12b); 125.7 (C-5); 126.1 (C-6); 126.6 (C-7); 128.6 (C-3′, C-5′); 130.3 (C-2′,
C-6′); 132.9 (C-4′); 136.1 (C-4); 137.1 (C-1′); 146.4 (C-2); 184.4 (CO).

11-(4-Cyclohexylbenzoyl)pyrrolo[1,2-a][1,10]phenanthroline-9-carbonitrile (6b)
Yellow crystals, platelets, obtained from nitromethane, m.p. 265–267 ◦C; yield 57%.

Elemental analysis: Found for C29H23N3O:C, 81.31; H, 5.67; N, 10.17. Calculated C, 81.09;
H, 5.40; N, 9.78. UV–VIS (MeCN), λ (log ε): 224 (4.68), 244 (4.59), 272 (4.57), 310 sh (4.23), 371
(3.78). FT-IR (cm−1):3105 s, 3035 m, 2927 vs, 2849 s, 2205 vs, 1696 vs, 1630 vs, 1596 vs, 1487 s,
1442 s, 1399 s, 1350 s, 1289 s, 1203 s, 1164 s, 1132 s, 873 s, 833 vs, 688 s. 1H-NMR (CDCl3;
δ, ppm; J,Hz): 1.25–2.00 (m, 10H, cyclohexyl); 2.62–2.70 (m, 1H, cyclohexyl), 7.35–7.41 (m,
4H, H-3, H-10, H-3′, H-5′); 7.69 (d, 1H, 9.1, H-7); 7.80–7.91 (m, 1H, 8.6, H-5, H-6, H-8);
8.12–8.20 (m, 4H, H-2, H-4, H-2′, H-6′). 13C-NMR (CDCl3; δ, ppm): 26.2, 26.9, 34.4, 44.4
(6C, cyclohexyl); 85.1 (C-9); 116.1 (CN); 117.9 (C-8); 121.5 (C-10); 122.8 (C-3); 125.5, 127.9,
129.7, 133.7, 137.8, 140.6 (C-11, C-8a, C-6a, C-4a, C-13b, C-13a); 125.6 (C-5); 126.0 (C-6); 126.6
(C-7); 127.0 (C-3′, C-5′); 130.5 (C-2′, C-6′); 134.8 (C-1′); 136.0 (C-4); 140.6 (C-4′), 146.5 (C-2);
184.4 (CO).

11-(4-Methoxybenzoyl)pyrrolo[1,2-a][1,10]phenanthroline-9-carbonitrile (6c)
Yellow crystals, platelets, obtained from nitromethane, m.p. 245–247 ◦C; yield 52%.

Elemental analysis: Found for C24H15N3O2: C, 76.69; H, 4.33; N, 11.41. Calculated: C, 76.38;
H, 4.01; N, 11.13. UV–VIS (MeCN), λ (log ε): 224 (4.71), 242sh (4.54), 275 (4.59), 310 sh (4.34),
371 (3.89). FT-IR (cm−1):3046 w, 2941 w, 2836 w, 2204 vs,1693 vs, 1632 vs, 1592 vs, 1489 s,
1396 m, 1312 s, 1248 vs, 1151 vs, 905 s, 839 vs, 689 m. 1H-NMR (CDCl3; δ, ppm; J,Hz): 3.95
(m, 3H, OMe); 7.05–7.08 (m, 2H, H-3′, H-5′); 7.34 (s, 1H, H-10); 7.38 (dd, 8.0, 4.5, H-3); 7.72
(d, 1H, 9.1, H-7); 7.83 (d, 1H, 8.6, H-5); 7.88 (d, 1H, 8.6, H-6); 7.91 (d, 1H, 9.1, H-8); 8.19–8.23
(m, 4H, H-2, H-4, H-2′, H-6′). 13C-NMR (CDCl3; δ, ppm): 55.7 (MeO); 85.1 (C-9); 113.8 (C-3′,
C-5′); 116.1 (CN); 118.0 (C-8); 121.2 (C-10); 122.9 (C-3); 125.6, 127.9, 129.8, 133.5, 137.9, 140.6
(C-4a, C-6a, C-8a, C-11, C-12a, C-12b); 125.6 (C-5); 126.0 (C-6); 126.6 (C-7); 129.9 (C-1′); 132.4
(C-2′, C-6′); 163.5 (C-4′); 136.0 (C-4); 146.4 (C-2); 184.1 (CO).

11-(4-Cyanobenzoyl)pyrrolo[1,2-a][1,10]phenanthroline-9-carbonitrile (6d)
Yellow crystals obtained from nitromethane, m.p. 287–290 ◦C; yield 50%. Elemental

analysis: Found for C24H14N4O: C, 77.35; H, 4.09; N, 15.27. Calculated: C, 76.99; H, 3.77; N,
14.96. UV–VIS (MeCN), λ (log ε): 226 (4.70), 247 (4.71), 286 (4.44), 310 sh (4.23), 388 (3.79).
FT-IR (cm−1):3083 w, 3048 w, 2929 w, 2856 w,2208 vs, 1645 vs, 1565 s, 1535 s, 1487 s, 1443 s,
1355 s, 1285 s, 1196 s, 1138 s, 1016 s, 865 vs. 1H-NMR (CDCl3; δ, ppm; J,Hz): 3.95 (m, 3H,
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OMe); 7.05–7.08 (m, 2H, H-3′, H-5′); 7.34 (s, 1H, H-10); 7.38 (dd, 8.0, 4.5, H-3); 7.72 (d, 1H,
9.1, H-7); 7.83 (d, 1H, 8.6, H-5); 7.88 (d, 1H, 8.6, H-6); 7.91 (d, 1H, 9.1, H-8); 8.19–8.23 (m, 4H,
H-2, H-4, H-2′, H-6′). 13C-NMR (CDCl3; δ, ppm): 85.6 (C-9); 115.6, 116.1 (2CN); 118.0 (C-8);
117.2 (C-4′); 121.4 (C-10); 123.1 (C-3); 125.7, 128.1, 129.4, 132.2, 137.4, 140.8 (C-4a, C-6a, C-8a,
C-11, C-12a, C-12b); 125.7 (C-5); 126.0 (C-6); 126.5 (C-7); 128.1 (C-2′, C-6′); 132.2 (C-1′); 132.5
(C-3′, C-5′); 136.4 (C-4); 146.2 (C-2); 182.3 (CO).

3. Results and Discussion
3.1. Syntheses

The 9-cyano-pyrrolo[1,2-a][1,10]phenanthrolines 6a–d were obtained from
1-(4-phenylphenacyl)-1,10-phenanthrolinium bromides 2a–d, acrylonitrile and triethy-
lamine in DMF at 80–90 ◦C, using tetrakis-pyridine cobalt (II) dichromate (Py4Co(HCrO4)2,
TPCD) as an oxidant (Scheme 1). The bromide precursors 2a–d were easily prepared by
the N-alkylation of 1,10-phenanthroline hydrate with 2′-bromo-4′-phenylacetophenones in
acetone under reflux, as previously reported [4].
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6b: Ar = 4−C6H11C6H4; 6c: Ar = 4−MeOC6H4; 6d: 4−CNC6H4. The numbering scheme of 6a–d is
presented in agreement with rules for IUPAC.

The synthesis of pyrrolo[1,2-a][1,10]phenanthroline derivatives from activated alkenes
and 1,10-phenanthrolinium N-ylides first involves the formation of tetrahydro-pyrrolo[1,2-
a][1,10]phenanthrolines, which are relatively stable in the reaction conditions.

The reaction mechanism (Scheme 1) consists, in the first step, of the deprotona-
tion of cycloimmonium salts 2a–d in the presence of triethylamine, yielding the unsta-
ble 1,10-phenanthrolinium N-ylides 3a–d. The aromatization of tetrahydro-pyrrolo[1,2-
a][1,10]phenanthrolines 4a–d obtained by the [3+2] dipolar cycloaddition between the unsta-
ble 1,10-phenanthrolinium N-ylides 3a–d and acrylonitrile to pyrrolo[1,2-a][1,10]phenanthr-
olines 6a–d was performed using TPCD as oxidizing agent [39].

3.2. X-ray Crystallography

The crystal structures of compounds 6a–d show similar features. Compound 6a
(Figure 3) crystalizes in a monoclinic crystal system, in the P21/c space group (Table 1). The
dihedral angle ∠(C3-C4-C5),(C23-C18-C19), between the pyrrolic ring and the benzene ring,
is 66.3◦. The phenanthroline units are stacked with π–π stacking centroid–centroid distances
around 3.67 Å (Figure 4a). The ketonic oxygen O1 forms two hydrogen bonds with the
neighboring molecule. The O1···H(-C8*) distance for the first intermolecular hydrogen
interaction is 2.309 Å (O1···C8* = 3.193 Å) and the corresponding O1···H-C8* angle is
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154.4◦, while, for the second one, it is O1···H(-C10*) = 2.681 Å (O1···C10* = 3.473 Å) and
the O1···H-C10* angle is 141.3◦ (Figure 4b) (symmetry operation * = 1−x, −1/2+y, 1/2−z).
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Compound 6b (Figure 3) crystalizes in a monoclinic crystal system, in the P21/c space
group (see Table 1). The dihedral angle ∠(C3-C4-C5),(C23-C18-C19), between the pyrrolic
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ring and the benzene ring, is 55.9◦. The phenanthroline units are stacked with π–π stacking
centroid–centroid distances around 3.94 Å (Figure 5a). The ketonic oxygen O1 forms two
hydrogen bonds with two neighboring molecules. The O1···H(-C4d) distance for the first
intermolecular hydrogen interaction is 2.411 Å (O1···C4d = 3.344 Å) and the correspond-
ing O1···H-C4d angle is 171.7◦, while, for the second one, it is O1···H(-C11e) = 2.469 Å
(O1···C11e = 3.288 Å) and the O1···H-C11e angle is 146.8◦ (Figure 5b) (symmetry opera-
tions d = 1−x, −1/2+y, 3/2−z; e = 1−x, −y,1−z).
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Compound 6c (Figure 3) crystalizes in a monoclinic crystal system, in the I2/a space
group (Table 1). The dihedral angle ∠(C3-C4-C5),(C23-C18-C19), between the pyrrolic ring
and the benzene ring, is 70.1◦. CH–π interactions are established between neighboring
phenanthroline units with CH–centroid distances around 3.00 Å and a CH–centroid angle
of 139.0◦ (Figure 6a). The ketonic oxygen O1 forms a hydrogen bond with the neighboring
molecule. The O1···H(-C8c) distance for the intermolecular hydrogen interaction is 2.464 Å
(O1···C8c = 3.340 Å) and the corresponding O1···H-C8c angle is 156.9◦. The hydrogen bond
propagates, forming a chain (Figure 6b) (symmetry operation c = 2−x, −1/2+y, 3/2−z).
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Compound 6d (Figure 3) crystalizes in a monoclinic crystal system, in the C2/c space
group (Table 1). The dihedral angle ∠(C3-C4-C5),(C23-C18-C19), between the pyrrolic ring
and the benzene ring, is 54.3◦. The phenanthroline units are stacked, with π–π stacking
centroid–centroid distances around 3.80 Å (Figure 7a). The ketonic oxygen O1 forms two
hydrogen bonds with two neighboring molecules. The O1···H(-C23a) distance for the first
intermolecular hydrogen interaction is 2.461 Å (O1···C23a = 3.140 Å) and the correspond-
ing O1···H-C23a angle is 128.3◦, while, for the second one, it is O1···H(-C7b) = 2.473 Å
(O1···C7b = 3.187 Å) and the O1···H-C7b angle is 131.9◦ (Figure 7b) (symmetry operations
a = 1−x, y, 1/2−z; b= 1−x, −y, 1−z).
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Among the compounds 6a–d, it has been observed that the torsion angles from the
phenanthroline unit ∠(N2-C17-C16-N3) vary between 6.7 and 7.8◦, while the torsion angles
between the pyrrolic ring and ketonic moiety, ∠(N2-C3-C1-O1), vary between 33.1 and
36.9◦, respectively. The angle between the first pyrrolic ring (I) and the fourth aromatic
ring (IV), ∠(C3-N2-C6),(N3-C16-C12), increases from 22.5 to 27.5◦, with the volume of the
substituents (Table 2). This dihedral angle values agree with those of similar compounds
reported in the literature and are, in general, higher compared with the similar dihydro-
pyrrolo-phenanthrolines (Table 3). Thus, helical conformations could be observed in the
crystal structures, which generate P and M axial chirality. Both enantiomers are present in
the crystal structure (Figure S1).

Table 2. Representative angles for compounds 6a–d.

Compound |∠(N2-C17-C16-N3)|*/◦ |∠(N2-C3-C1-O1)|*/◦ |∠(C3-N2-C6),(N3-C16-C12)|*/◦

6a 7.0 35.6 22.5
6d 7.2 35.0 23.2
6c 7.8 36.9 23.2
6b 6.7 33.1 27.5

* The numbers are presented as absolute values. The sign of the angles is either positive or negative for the two
isomers (M and P).
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Table 3. Representative torsion and dihedral angles from similar compounds reported in the literature.

CSD Refcode * DEWNID GUMLEH GUMLIL ITOXAR QAQCIV POQHIO

A
ng

le
s |∠(N2-C17-C16-N3)| 5.4 1.7 3.4 2.0 5.5 6.2

|∠(N2-C3-C1-O1)| 42.3 21.2 17.9 36.7 43.7 52.4

|∠ (C3-N2-C6),(N3-C16-C12)| 22.8 9.1 2.5 21.9 18.8 21.3

Su
bs

ti
tu

en
t

C4 -COOiPr -PhCH3 -PhCl -Ph -COOEt -COOEt

C5 -COOiPr -NO2 -NO2 -(CN)2 -H -COOEt

C21 -Ph -H -Cl -H -Ph -H

References [34] [12] [12] [7] [33] [40]

* The first four examples are similar dihydro-pyrrolo-phenanthrolines, while the other two are pyrrolo-
phenanthrolines. For a general structure formula, see Figure 8.
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Figure 8. EThe common structure core and the numbering scheme shared by the compounds
compared in Table 3. Hydrogen atoms are omitted. Substituents can be present on atoms C4, C5
and C21.

3.3. Photophysical Investigations (UV–Vis and Steady-State Photoluminescence Spectra)

The molar extinction coefficients as a function of the wavelength for compounds 6a–d
are shown in Figure 9.
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Figure 9. Molar extinction coefficient as a function of wavelength for the compounds 6a−d in
acetonitrile. The spectra were derived from the corrected UV–Vis spectra based on the Lambert–Beer
law. The five peaks in each spectrum are labeled a−e. No absorption bands were seen at wavelengths
higher than 500 nm. Each of the spectra shows five absorption bands in the measured region. The
position of these bands is shown in Table 4.
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Table 4. Electronic absorption band positions for compounds 6a–d in acetonitrile. All values are
given in nm.

Compound 6a 6b 6c 6d

Band a 225 223 224 225

Band b 242 244 242 246

Band c 276 271 275 285

Band d 304 306 304 310

Band e 372 372 372 384

There are no significant differences in the band positions for compounds 6a–c, but
bands c and e of compound 6d show a 10 nm redshift. This could be attributed to the
cyano substituent on the benzene ring, having an electron-withdrawing effect from both
a resonance and an inductive perspective. Moreover, bands a and b are not redshifted
because they correspond to the phenanthroline skeleton [39–42], which is at a considerable
distance from the cyano substituent. The same bands were observed in other fused pyrrolo-
1,10-phenanthroline type derivatives, where bands c, d and e were referred to as β, p and α,
respectively [17].

The steady-state photoluminescence measurements revealed, in the case of all four
compounds, two emission bands: one centered at around 350 nm and the other at around
500 nm (Figure 10).
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The exact maxima for each compound are presented in Table 4. In all cases, the overall
emission is quite dim, for which reason the quantum yield was not measured. The most
intense luminescence was observed in the case of compound 6b, for which the excitation
and emission slits needed to be narrowed down to 3 nm in order to avoid the saturation of
the detector.

Table 5. Steady-state photoluminescence emission peak positions for compounds 6a–d in acetonitrile.
In each case, the excitation wavelength is given in brackets. All values are given in nm.

Compound 6a 6b 6c 6d

Band 1 339 (270) 361 (270) 356 (270) 363 (270)

Band 2 483 (370) 475 (315) 478 (370) 544 (370)

The emission spectra agree with previously published spectra of 1,10-phenanthroline
derivatives, showing a primary band around 350 nm and a secondary, less intense and
broader band at around 500 nm. It is unclear which photophysical processes cause the
two different emissions, but we postulate that the first, more intense band corresponds
to a singlet-state S1→S0 transition, either fluorescence or thermally activated delayed
fluorescence (TADF), while the broader peak corresponds to a triplet-state phosphorescence.
Previous studies described phosphorescence in 1,10-phenanthroline derivatives [43–45],
while extended conjugated systems were reported to exhibit dual emission arising either
from fluorescence and phosphorescence [46] or from phosphorescence and TADF [47].
Thus, an in-depth photophysical characterization is needed in order to fully understand
the origin of the two emission bands.

Excitation spectra (Figure S2) were carried out to ensure that both emission peaks
arose from the same species. The emission wavelength was, in each case, chosen on the
blue side of the ~350 nm peak and on the red side of the ~500 nm peak, in order to minimize
the contribution of the other peak in the spectrum (In Supplementary Materials).

4. Conclusions

Here, 9-cyano-pyrrolo[1,2-a][1,10]phenanthrolines were obtained by a one-pot pro-
cedure starting from 1,10-phenanthrolinium bromides, acrylonitrile and triethylamine, in
the presence of an oxidant reagent. The synthesis implies the generation of an N-ylide
from 1,10-phenanthrolinium, the [3+2] cycloaddition of the N-ylide to a dipolarophile,
followed by the dehydrogenation of tetrahydro-pyrrolo[1,2-a][1,10]phenanthroline. The
cycloaddition reaction’s regioselectivity was deduced by H-NMR spectroscopy and further
confirmed by X-ray diffraction. The investigated compounds present helical chirality with
higher dihedral angles between cycles I and IV than in similar cycloadducts. Both enan-
tiomers are present in the crystal structure. All compounds present similar photophysical
properties, showing five bands in the absorption spectrum and two weak emission bands.
Out of the four compounds, compound 6b exhibits the strongest emission.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst14010067/s1, Figure S1: Perspective views of the crystal struc-
tures of two neighboring enantiomers (M and P) of compounds 6a–d. Hydrogen atoms have been
omitted in the representations; Figure S2: Normalized absorption spectrum (black solid line) and
normalized excitation spectrum for band 1 (dotted red line) and band 2 (solid red line) of com-
pound 6a (λem,1 = 330 nm, λem,2 = 500 nm), 6b (λem,1 = 370 nm, λem,2 = 500 nm), 6c (λem,1 = 370 nm,
λem,2 = 500 nm), 6d (λem,1 = 360 nm, λem,2 = 500 nm) in acetonitrile. The excitation and emission
slits for compound 6b when monitoring the emission at 370 nm were narrowed down to 3 nm
each. λem,1 and λem,2 represent the wavelength at which the emission was monitored for band 1
and band 2, respectively; Figure S3: Thermal ellipsoid representation of the molecular structure of
compounds 6a–d.
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