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Abstract: A binary, three-dimensional (3D), foldable, Metal–Organic Framework (MOF) of for-
mula {[trans-Ni(H2O)2(µ-4,4′-bpy)2](ClO4)2}n (1), with CdSO4 (65 8), cds, topology, based on four-
connected (4-c) square-planar single Ni2+ ion nodes and two-connected (2-c) linear rigid 4,4′-
bipyridine (4,4′-bpy) ligands, was synthesized and structurally characterized via single crystal
X-ray crystallography. The 41◦ dihedral angle between two distinct coordination environments
within the 3D network of 1 produced the self-dual topology of Ni2+ nodes. Two rectangular 1D
channels ran parallel to the crystallographic a-axis and b-axis, respectively, creating a 44.2% volume
porosity, probed by gas (N2, CO2, and H2) sorption studies. The PXRD, FT-IR, Raman, EDS, and
SEM methods were employed for the study of 1. A thermogravimetric analysis (TGA) showed that
coordinated water molecules were readily removed upon heating, whereas the 3D lattice remained
intact up to 370 ◦C.

Keywords: 3D MOF; cds; four-nodal; single metal atom node; bipyridine linker; foldable network

1. Introduction

Metal–Organic Frameworks (MOFs), also called porous coordination polymers (PCPs),
have been extensively explored in the past three decades because of their various topological
possibilities and potential applications, including chemical storage, chemical separation,
sensing, catalysis, luminescence, and magnetism, etc. [1–3].

In the early days of MOF chemistry development, the discovery of new coordination
polymers mainly relied on single metal ion nodes and ditopic N-donor ligands (e.g.,
diamines and bipyridines) because of their structural rigidity and ready accessibility [4].
At present, elaborately designed organic ligands and secondary building units (SBUs) are
used in order to prepare complex structures possessing specific functions, despite the often
high costs of starting materials [5]. However, because large-scale applications of MOFs will
only be possible if they are economically feasible, interest in synthetic procedures using
inexpensive, easily accessible starting materials (ligands and metal salts) is sustained [5].
A second desirable property of MOFs is their robustness to external conditions, such as
temperature and pressure [2,3].

A literature survey shows that a few dozen polymeric structures based on N-donor
ligands and single transition metal ion nodes have been documented, exemplifying a
few of the many possible topologies [6]. For instance (Scheme 1), the 2D sql (square
lattice) and kgm [7] (Kagomé: a lattice constructed of equilateral triangles, forming large
hexagonal voids) binary networks are well documented when only single, homoleptic,
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square planar transition metal centers (Fe2+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+) and 4,4′-
bipyridyl (4,4′-bpy) ligands are used in the synthesis [8–12]. In contrast, 3D dia (diamond)
or pcu (primitive cubic) networks are formed with single metal tetrahedral (4-c) nodes, e.g.,
-{[Cu(µ-4,4′-bpy)1.5]NO3·1.25H2O}n [13], or octahedral (6-c) nodes supported by mixed
ligands, e.g., {[Zn(µ-4,4′-bpy)2(µ-SiF6)]·xDMF}n [14], respectively. Most of the time, 3D
networks are formed through the aggregation of 2D lattices via supramolecular interactions
(π· · ·π stacking and H-bonding, etc.). Meanwhile, more than twenty 3D CdSO4 (65 8,
cds) networks incorporating mixed ligands have been reported in the past twenty years
(for example, references [15–22] and Chart S1; Web of Science accessed November 2023).
Surprisingly, an analogous cds network constructed with 4,4′-bpy ligands and square
planar 4-c single metal modes had been hitherto missing.
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Scheme 1. Networks with four-connected single atom nodes and liner rigid linkers. The symmetry
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Herein, we report such a robust, porous, 3D MOF structure of cds topology, constructed
with planar, four-connected Ni2+ nodes and linear ditopic 4,4′-bipyridine (4,4′-bpy) linkers.
Recently, F. M. Amombo Noa et al. introduced the concept of “foldable networks” [23], and
recognized cds as one of eight MOF topologies that can possess this property, which allows
the network to “breath” upon the sorption/desorption of guest species.

2. Materials and Methods
2.1. Materials

Solvents, ligand, and nickel salt were purchased from commercial sources: Ni(ClO4)2·6H2O
(99.5%) and Et2O (≥99%) from Thermo Scientific (Waltham, MA, USA); 4,4′-bipyridine
(98%) and MeOH (≥99%) from Sigma-Aldrich (St. Louis, MO, USA). Solvents were used
without further purification. Elemental analyses (C, H, N) were performed by Galbraith
Laboratories, Inc., Knoxville, TN, USA.

2.2. Physical Methods

FT-IR spectra were recorded on an Agilent 5600 FT-IR Spectrophotometer (ATR mode)
in the 4000–200 cm−1 region. Raman spectra were recorded with a JASCO NRS-4100 Laser
Raman Spectrometer (JASCO, Oklahoma City, OK, USA) with a green or red laser in the
4000–150 cm−1 region. Gas sorption isotherms were obtained using a Micromeritics 3Flex
adsorption instrument (Micromeritics, Norcross, GA, USA). Energy dispersive spectra
(EDS) and scanning electron microscopy (SEM) tests were performed on a JEOL JSM
5900LV high and low vacuum SEM (JEOL, Tokyo, Japan). The TGA was recorded with a
2950 TG Analyzer with a N2 stream flow at the ramp of 5 ◦C/min. Powder X-ray diffraction
(PXRD) patterns were recorded on a Rigaku BD700535–01 (Rigaku, Tokyo, Japan), Cu-Kα
radiation, λ = 1.541874 Å.

Single-crystal X-ray diffraction (SCXRD) data were collected on a Bruker D8 QUEST
CMOS (Bruker, Madison, WI, USA) system equipped with a TRIUMPH curved-crystal
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monochromator and Mo-Kα radiation (λ = 0.71073 Å) from a fine-focus X-ray tube at
ambient and low temperatures using the APEX3 suite. Frames were integrated with the
Bruker SAINT software (APEX3, Bruker, Madison WI, USA) package using a narrow-frame
algorithm. Absorption effects were corrected using the multi-scan method (SADABS) [24].
Structures were solved with intrinsic phasing methods with ShelXT [25] and refined with
ShelXL using full-matrix least-squares minimization using Olex2 [26]. All non-hydrogen
atoms were refined anisotropically. Hydrogen atoms’ positions were calculated and fixed
via HFIX, with their thermal ellipsoids riding on those of their carbon atoms. Because
refinement of the diffraction data collected at ambient temperature could not locate the
disordered ClO4

− anions, a low-temperature data set was collected for structure determina-
tion. During refinement using the low-temperature diffraction data set, ClO4

− counterions
were located; however, even at 172 K, interstitial solvents, like MeOH and H2O, could
not be refined. Thus, the Mask command [26] (equivalent to SQUEEZE in Platon) em-
bedded in Olex2 was applied at the last stages of the structure refinement. The Crystal
Maker and Olex2 software (1.5-alpha, OlexSys Ltd., Durham, UK) packages were used to
simplify the network and draw the molecular diagram. ToposPro was used conduct the
topological analysis [27]. CCDC 2310766 contains the supplementary crystallographic data
and can be obtained free of charge from the Cambridge Crystallographic Data Center via
www.ccdc.cam.ac.uk/data_request/cif.

2.3. Synthesis

Complex 1: To a light green solution of Ni(ClO4)2·6H2O (0.5 mmol, 182.85 mg) in 15 mL
of MeOH, 4,4′-bipyridine (4,4′-bpy,1.0 mmol, 156.19 mg) was added, resulting in a blueish
cloudy mixture, which was stirred overnight and filtered. The blue filtrate was collected
and set for crystallization through layering with Et2O for one week, followed by the slow
evaporation of the solvent mixture, which yielded blue, block-shaped crystallographic-
quality crystals (Figure S1) after ten days; yield 30%. An elemental analysis for an air-dried
sample; calculated (for 1·0.14MeOH·0.40H2O); C, 39.90; H, 2.68; N, 9.31; found: C, 39.40;
H, 2.86; N, 9.12. FT-IR (cm−1): 3472 (br), 3150 (br), 1647 (m), 1610 (s), 1537 (s), 1492 (m),
1477 (m), 1417 (s), 1324 (w), 1223 (s), 1064 (s), 928 (s), 814 (s), 734 (m), 621 (s), 516 (m),
496 (m), 476 (w), 439 (w), 423 (w), 411 (w), 375 (w), and 310 (w). Raman (cm−1): 1596 (s),
1494 (m), 1429 (w), 1397 (w), 1278 (s), 1208 (m), 1054 (m), 1003 (s), 906 (s), 845 (w), 759 (m),
639 (m), 606 (m), 558 (w), 438 (m), 375 (m), 295 (m), and 180 (m). Caution! Perchlorate salts
can become explosive and should be used with care on a small scale.

3. Results and Discussion
3.1. Structure Description

Compound 1, with the formula of {[trans-Ni(H2O)2(µ-4,4′-bpy)2](ClO4)2}n, was crys-
tallized in the orthorhombic Ccc2 polar space group with one half of the polymer repeat
unit per asymmetric unit and the other half-unit generated by a two-fold rotation. The
crystallographic data are summarized in Table 1.

Table 1. Crystallographic data for 1.

{[trans-Ni(H2O)2(µ-4,4′-bpy)2](ClO4)2}n

Empirical formula C20H16Cl2N4NiO10
FW 606.01
Temp (K) 172
Wavelength (Å) 0.71073
Crystal system Orthorhombic
Space group Ccc2 (No. 37)
a (Å) 7.9447 (5)
b (Å) 21.236 (1)
c (Å) 22.519 (2)
V (Å3) 3799.3 (4)

www.ccdc.cam.ac.uk/data_request/cif
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Table 1. Cont.

{[trans-Ni(H2O)2(µ-4,4′-bpy)2](ClO4)2}n

Z 4
D(calcd) (g/cm−3) 1.059
abs coeff (mm−1) 0.692
Total/indnt reflcns 25,030/3255
Refl I > 2σ(I)/param 2240/103
Rint 0.0702
R1 0.0841
wR2 0.2198
R1 (all data) 0.1222
wR2 (all data) 0.2673
F(000) 1240.0
GoF 1.051
CCDC No. 2310766

Figure 1a shows each Ni2+ center adopting an octahedral six-coordinate mode and
serving as a 4-c coordinated SBU, with two H2O at trans (axial) positions and four 4,4′-bpy 2-
c linearly bridging ligands occupying the equatorial sites. Such combinations are typically
expected to result in a sql network. Here, however, because of the 41◦ dihedral angle
between the coordination planes of the consecutive Ni-centers of 1—the term self-dual has
been coined for such arrangements [15,16]—its lattice adopts the cds topology (Figure 1b,c).
The free rotation about the Ni-N σ-bonds of 1 is the crucial feature enabling the folding of
the lattice (see Section 3.3, below). The cationic framework contains ClO4

− counter anions
H-bonded to coordinated H2O molecules; O···OClO3, 2.854 (5) Å. A comparison of selected
bond lengths and angles of 1 with those of previously reported diamagnetic mononuclear
[trans-Ni(H2O)2(py)4](ClO4)2 (Table 2) shows the corresponding metric parameters to be
equal within experimental error, suggesting that 1 is also diamagnetic. Table S1 lists the
bond lengths and angles for 1.
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the 3D framework. Color code: Ni, violet; Cl, green; O, red, N, blue; C, black.
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Table 2. Selected bond lengths and angles for 1 and [trans-Ni(H2O)2(py)4](ClO4)2 [28].

Compound Ni-O Å Ni-N Å N-Ni-N O-Ni-N O-Ni-O

1 2.097 (7) 2.101 (17)–2.133 (4) 177.592 (3), 180 89.165 (4)–90.8 (2) 179.397 (4)

[Ni(H2O)2(py)4](ClO4)2
2.093 (6),
2.090 (6) 2.096 (7)–2.115 (7) 176.6 (3),

176.7 (3) 87.7 (3)–93.3 (3) 178.6 (3)

3.2. Topological Analysis

The simplified structure depiction of 1 (Figure 1e,f) reveals 1D rectangular channels along
the crystallographic a-axis with approximate 6.8 × 8.4 Å dimensions (Figures 1d and 2a),
whose aromatic walls are defined by pyridine rings (Figure 2). The pore solvent accessible
voids represent 41.5% of the MOF volume (calculated with the Mecury software—2022, 3.0).
Another rectangular-shaped 1D channel along the b-axis, with approximate 9.0 × 3.0 Å
dimensions, is shown in Figure 2b. The total solvent accessible void volume of 1 is 1570.62 Å3,
or 41.3% of the unit cell volume (calculated by PLATON, 2023.1) [29]. The ClO4

− anions are
located at the corner of the square 1D channel running parallel to the a-axis (Figure 1d).
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3.3. Packing Diagrams and Folding

Ignoring the coordinated H2O molecules, which do not contribute to 3D connectivity,
1 is described as a construct of square planar Ni-nodes connected with bpy rods. In
this topology, the rotation of the NiO2N2 coordination plane about the perpendicular
N-Ni-N axis parallel to the crystallographic c-direction (i.e., the folding axis) allows the
bc-planes to glide parallel to the b-axis, collapsing/expanding the lattice parallel to the
a-axis (Videos S1 and S2). The folding is achievable via rotation around the trans-Ni-N
single bonds that run parallel to the c-axis. We are aware of one more reported example by
Choe et al. of an origamic material displaying folding motions: an MOF assembled with
Zn nodes and flexible porphyrin linkers as pivoting points [30].

An FT-IR spectrum of 1 (Figure 3) shows some characteristic peaks of perchlorate,
ClO4

−, including strong and broad peaks at 1064 cm−1 and 621 cm−1 attributed to the two
triply degenerate vibrations, the nondegenerate stretching vibration at 928 cm−1, and the
doubly degenerate vibration at 476 cm−1, which point to the presence of ClO4

− [28,31]. In
addition, the peaks at 906 cm−1 and 639 cm−1 in the Raman spectrum of 1 are consistent
with the ClO4

− vibrations (Figure 3) [28,31].
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The PXRD pattern of the as-synthesized sample is in agreement with the simulated
pattern, confirming the purity of the bulk crystalline samples (Figure 4a). Figure 4b shows
the SEM image of compound 1 with a Au layer coated under vacuum conditions. After
activation at 100 ◦C, the blue crystalline compound loses its interstitial and coordinated
H2O molecules (weight loss 5.3%), becoming a green-colored microcrystalline powder
(Figure S3), accompanied by the disappearance of the peaks near 3500 cm−1 in the FT-IR
spectra (Figure 3). The removal of coordinated water molecules causes a small increase
in the solvent-accessible void to 1680.92 Å3 (44.2% of unit cell volume). The presence of
chlorine is evident in the EDS (three samples examined with similar results; Figure 4c and
Table 3), confirming the formula proposed by the crystallography and elemental analysis
(dublicate). A TGA curve (Figure 4d) establishes the thermal stability of 1 up to 370 ◦C,
identifying it as an unusually robust material. Thermal stability up to approximately
150 ◦C is more typical of MOF materials assembled with single metal ion nodes and
N-donor ligands.

Table 3. The EDS analysis of 1.

Element Mass [%] Atom [%]

Carbon 23.5 (12) 48.6
Nitrogen 6.9 (4) 12.7
Oxygen 18.0 (9) 28.7
Chlorine 10.0 (3) 7.2
Nickel 6.3 (2) 2.8
Total 64.7 100.00

The porosity of compound 1 was assessed via gas adsorption experiments on samples
activated at 150 ◦C under vacuum. Figure 5a suggests that there were two types of
pores with average diameters of approximately 5.3 Å and 7.3 Å, respectively, in good
agreement with the average dimensions of 6.0 Å and 7.6 Å, determined crystallographically
(vide supra).
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N2 adsorption data at 77 K for 1 show a typical type 1 profile, with a steep uptake
increase at low pressure, leveling off at a maximum uptake capacity of 110 cm3/g. The
calculated BET (Brunauer–Emmett–Teller) surface area is 450 m2/g. A similar adsorption
profile is displayed by the CO2 isothermal adsorption curve at 193 K, reaching a plateau
at approximately 70 cm3/g with a further increase to 80 cm3/g in the 0.8–1.0 atm range,
attributed to the guest–guest interactions [32]. At 77 K, 1 has a modest H2 uptake capacity of
approximately 41 cm3/g (Figure 5b). The N2, H2, and CO2 adsorption isotherms present no
evidence of breathing behavior in the 0–1 atm range, tentatively attributed to the presence of
perchlorates anions in the solvent-accessible voids of the lattice, hindering network folding.

4. Conclusions

A new binary 3D MOF with cds topology, synthesized by a solvothermal from in-
expensive starting materials. Its coordinated water molecules are readily removed via
heating, while the lattice remains remarkably intact up to 370 ◦C. However, the most
remarkable characteristic of 1 is its foldable nature, allowing the 3D structure to “breathe”
without deformation of the coordination geometry of its Ni-nodes, which remain in a
D4h-symmetric local environment, without changes to bond lengths and angles. These
types of foldable materials may allow for sorption/desorption studies driven by direc-
tional mechanical forces, acting like bellows. The porosity and gas sorption capacity of
activated 1 are modest in comparison to the current record setting materials (7839 m2/g
and 750 cm3/g) [33,34]. However, the easy removal of coordinated water molecules leaves
coordinatively unsaturated Ni2+ sites, making 1 a good platform for further post-synthetic
modification and a prospective heterogenous catalyst [35,36]. Furthermore, the replacement
of coordinated water molecules with anionic ligands (e.g., chlorides; [trans-NiCl2(py)4]
is a known compound [37]) will remove the steric obstruction to folding (by perchlorate
anions in 1), allowing a wider flexibility. In any case, both 1 and its post-synthetic modified
derivatives will be candidates for studies under pressure > 1 atm (the current limit of our
instruments), as flexible MOFs have been attracting interest for their various anticipated
exciting applications [38].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst14010040/s1, Chart S1: Publication record for MOFs with cds
topology; Figure S1: Photographs of the single crystal under white light from different directions;
Figure S2. FT-IR and Raman spectra of compound 1; Figure S3. Photographs of 1 before (left) and
after (right) activation; Figure S4. FT-IR spectra of 1 before and after activation; Figure S5. The EDS
analysis for 1 (the presence of Cu is attributed to the Cu-based tape); Table S1: Selected bond length
(Å) angle (◦) for 1 at 172 K; Table S2. The EDS analysis of 1; Video S1: Video of 1 collapsing/expanding
along the a-axis, viewed parallel to the c-axis. https://youtube.com/shorts/ecfPHPMQpO8?feature=
share; Video S2. Video of 2-D planes of 1 gliding along the b-axis, viewed parallel to the a-axis.
https://youtube.com/shorts/htCFeXBuzW4?feature=share.
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