
Citation: Redkov, A. Impact of

Schwoebel Barriers on the Step-Flow

Growth of a Multicomponent Crystal.

Crystals 2024, 14, 25. https://doi.org/

10.3390/cryst14010025

Academic Editors: Alexey Voloshin

and Rainer Niewa

Received: 19 October 2023

Revised: 25 November 2023

Accepted: 23 December 2023

Published: 26 December 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Impact of Schwoebel Barriers on the Step-Flow Growth of a
Multicomponent Crystal
Alexey Redkov

Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences,
199178 St. Petersburg, Russia; avredkov@gmail.com

Abstract: The step-flow and spiral growth of a multicomponent crystal are considered from vapors,
taking into account the different possible Schwoebel barriers for each component within the Burton-
Cabrera-Frank model. Analytic expressions for the final growth rates of such a multicomponent
crystal are determined while considering the kinetic properties of all the individual components and
growth conditions. Possible instabilities inherent in the presence of several components are studied,
and a stability criterion for the multicomponent case is proposed. It is shown that, in certain cases,
nucleation of nanoislands of pure components behind the moving steps can initiate, significantly
distorting the growth process. The criterion for the occurrence of such an unstable regime is found.

Keywords: crystal growth; spiral; step-flow; multicomponent; Schwoebel barrier; Burton-Cabrera-
Frank model; theory

1. Introduction

In contemporary technological landscapes, the pivotal role of crystals and thin films
is undeniable, with their influence extending across microelectronics, optics, and various
technological domains. One of the primary challenges in the development of industrial
technologies for synthesizing crystals with desired crystalline quality, doping levels, and
other properties is the diversity of growth mechanisms that occur during crystal growth.
These mechanisms can significantly impact the growth process, crystal properties, and
morphology. As a result, gaining a comprehensive understanding of all the mechanisms
and kinetics involved in crystal growth, along with their theoretical elucidation, becomes
imperative when introducing new materials into the industry. This need has driven
significant developments in the theoretical background since the classic work of Burton,
Cabrera, and Frank (BCF) [1]. Their groundbreaking paper bridged the gap between
experimental results and the theoretical understanding of atomic-scale processes and
surface kinetics, focusing on an industrially important crystal growth regime: step-flow
and spiral growth. Numerous surface phenomena have been described both analytically
and numerically. These include various types of instabilities, such as step-bunching [2]
and step-meandering [3,4], instabilities resulting from electromigration [5,6], the impact
of step-step interactions [7], effects of stress [8,9], impurities [10,11], vacancies [12,13], and
void formation, as well as the effects of diffusion anisotropy [14] and different terrace
types [15]. Many other aspects and effects have also been summarized in various reviews
and books [16–21]. Different mechanisms of atom incorporation have been thoroughly
analyzed [22]. It is important to note that this discussion does not cover other crystal growth
modes, such as nucleation or dendritic growth, which have been detailed elsewhere [23,24].

It is worth noting that most of the analytical results obtained thus far are related
to single-component crystals, often employing a simple model of a cubic Kossel crystal
introduced by Kossel [25] and Stranski in the 1920s. While this model provides a good
qualitative and quantitative understanding of surface processes and crystal growth, it
often falls short when describing the growth of multicomponent crystals due to its failure
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to account for kinetic properties like diffusion coefficients and surface lifetimes of each
component. Over the past few decades, there has been a strong trend toward the use
of increasingly complex crystals composed of multiple components, offering superior
characteristics compared to their single-component counterparts. Examples range from
two-component wide bandgap semiconductors like GaN [26], SiC [27], and AlN [28], which
have begun to replace Si in power and HF devices [29], to metal-organic frameworks
(MOFs) [30] used for efficient gas storage, capture [31], and catalysis. Complex crystals
have also been developed for solar-blind optical devices [32], perovskites for solar cells [33],
cocrystals [34], and many other applications.

To accurately describe the growth of these multicomponent crystals, an extension
of existing theoretical models is necessary. These extended models should be capable of
properly accounting for the unique properties of each component, their fluxes, and other
multicomponent-related characteristics. Furthermore, the presence of multiple components
may introduce new types of surface instabilities [35].

Some theoretical approaches and effects have been redeveloped for multicomponent
crystal growth [36–39]. In [40], the classical Burton-Cabrera-Frank theory was extended to
the case of multicomponent crystals growing via chemical reactions. In [41], researchers
studied the effect of advacancies present on the surface on multicomponent crystal growth.
The effect of fast atomic steps on the growth surface was explored in [42], revealing the
importance of considering this aspect, as different components exhibit varying surface
mobility. As a result, some components incorporate into the steps through convective
mechanisms, while others do so diffusively. Under certain conditions, as demonstrated
in [35], a ‘dew’ of pure components can fall onto the terraces during the multicomponent
crystal growth process, significantly distorting the growth. However, this regime can still
be utilized for various bottom-up approaches to nanostructure formation.

One of the crucial properties of crystals is the Schwoebel barrier [43,44], which is
associated with a reduced probability of an atom hopping from the upper terrace to the
lower one (See Figure 1). In certain cases, it leads to the emergence of various surface
instabilities, such as step-meandering [45] and alterations in the crystal surface morphology.
This phenomenon has been extensively studied for single-component crystals both theo-
retically [46,47], experimentally [48,49], and numerically [50,51]. However, there remain
numerous unanswered questions about how it manifests itself in a multicomponent system,
where each type of atom may have its own Schwoebel barrier.
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Figure 1. Schematic representation of the process under consideration: (a,b) Step-flow growth of a
two-component crystal AB with different Schwoebel barriers EAs, EBs, and probabilities of integrating
components into a step from the upper and lower terraces, and the kinetic processes on the surface.
(c) Illustration of the dependence of the Schwoebel barrier for each component on the degree of filling
of the crystalline cell, exemplified by a 3-component crystal ABC, with the structure of lead titanate
(PbTiO3).
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This paper is part of a series of papers dedicated to various theoretical aspects of
crystal and pore growth in multicomponent systems [35,38,40–42,52–54]. Its primary
objective is to analyze the growth of a multicomponent crystal within the framework of the
classical Burton-Cabrera-Frank model while considering different Schwoebel barriers for
the components. We aim to derive analytical expressions for crystal growth under these
conditions and to investigate potential instabilities resulting from the presence of these
barriers. We also note that the BCF theory, originally proposed for crystal growth from
a pure vapor phase, has inspired several important subsequent theories for growth from
solutions or diluted vapors of various complexities. These include the theories developed
by Chernov, Gilmer-Ghez-Cabrera, and Van Der Eerden [55–57]. Unlike the original BCF
theory, these theories account for diffusional fluxes not only on the surface but also in the
bulk volume of the solution. However, due to their complexity, the impact of the Schwoebel
barrier within these multicomponent models will be addressed in separate papers.

2. Formulation of the Problem

In this study, we investigate the growth of a multicomponent non-Kossel crystal via
the classical Burton-Cabrera-Frank (BCF) mechanism from its vapor phase. Our problem
closely resembles the one explored in [40]. We examine the evolution of an infinite vicinal
crystal surface characterized by terraces and equidistant steps separated by the distance l.
Each step is sufficiently covered with kinks to be treated as a continuous sink for adatoms.
Within the framework of the BCF model for a multicomponent system [40], we assume
that a constant partial pressure of each component is maintained above the surface. This
ensures a uniform flux of atoms for each component onto the surface across the entire area.
After deposition, all the components (or building units in the case of MOFs) diffuse along
the terrace toward the steps. They may then either evaporate back into the gas phase or
incorporate into the kinks on the steps through the following reaction:

ν1 A1(g) + ν2 A2(g) + · · ·+ νN AN(g) ↔ C(s) (1)

Here Ai(g) represents the i-th component in the vapor phase, νi is its stoichiometric
coefficient, and C(s) is the solid multicomponent crystal. N denotes the number of com-
ponents. The schematic illustration of the process is presented in Figure 1. In contrast
to [40], we take into account the asymmetry of adatom incorporation into the kinks on
steps from the lower and upper terraces. This asymmetry varies for different components
due to non-identical Schwoebel barriers. It is important to note that in each incorporation
event, the exact value of the Schwoebel barrier for each component may differ depending
on the local configuration of the kink and the degree of filling of the multi-component
crystalline cell with atoms of other types. However, since the growth process involves many
incorporation events, we use averaged “efficient” values, denoted as Eis, for the Schwoebel
barriers of the i-th component. These values determine the distribution function of adatoms
of the i-th type over the terrace. Another assumption of the model is that equilibrium
surface concentrations of different components are sufficiently small, and their surface
diffusion, deposition, and evaporation are not interdependent. Therefore, in this model,
chemical interactions only occur at kinks according to reaction (1), as atoms incorporate
into the kink one after another in stoichiometric ratios.

The primary objective is to derive analytical expressions that describe the rate of step
advancement on a crystal surface, taking into account all these phenomena. Subsequently,
we will analyze additional effects and instabilities that may arise due to the presence of
multiple components.
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3. Results and Discussion
3.1. Adatom Distribution on the Surface

To determine the distribution function of adatoms for each component on the surface,
their fluxes into the steps, and ultimately, the rate of step advancement over the terrace, we
need to formulate the following system of equations:

D1
∂2n1(x)

∂x2 − n1(x)
τ1

+ J1 = 0

D2
∂2n2(x)

∂x2 − n2(x)
τ2

+ J2 = 0
. . .

DN
∂2nN(x)

∂x2 − nN(x)
τN

+ JN = 0

(2)

Here Di, ni(x), τi and Ji represent the surface diffusion coefficient, adatom surface
concentration, lifetime before evaporation, and flux from the gas phase toward the surface of
the i-th component, respectively. According to the principle of detailed balance Ji =

Pi
Pi0

ni0
τi

,
where Pi and Pi0 are the current and equilibrium pressures of the corresponding component,
and ni0 is the equilibrium surface concentration.

Since we treat the steps as impermeable to adatoms [58], we can apply the following
boundary conditions right at the steps for each adatom distribution function ni(x):

−Di
dni(x)

dx

∣∣∣
x= l

2

= ki+(ni(x)− ni0)

Di
dni(x)

dx

∣∣∣
x=− l

2

= ki−(ni(x)− ni0)
(3)

where ki+ and ki− represent the coefficients of incorporation of atoms into the step from
the upper and lower terraces, respectively. Following the notation of Pimpinelli et al. [46],
we can rewrite the system of equations using the function ui(x) = ni(x)− ni∞. In this case,
the equation for each component will transform into:

∇2ui(x)− ui(x)
λ2

i
= 0 (4)

Here λi represents the diffusion length of the adatom of the i-th component, calculated
as λ2

i = Diτi. Additionaly, ni∞ is defined as ni∞ = Jiτi, representing the concentration of
adatoms on the flat surface far away from the steps. These definitions slightly modify the
boundary conditions (3) at the steps, which limit the terrace from both sides.{

−Di∇ ui(x)|x= l
2
= ki+(ui(x) + ni∞ − ni0)

Di ∇ ui(x)|x=− l
2
= ki−(ui(x) + ni∞ − ni0)

(5)

The solution of the system yields expressions for the adatom concentrations of all
components, ui(x) (see Appendix A). Figure 2 illustrates the distribution of adatoms over
the surface, normalized by the equilibrium concentration ni0 at different ratios of system
parameters for qualitative insight.

3.2. Rate of Advancement of a Group of Equidistant Steps and Crystal Growth Rate

The net flux of the i-th component toward the step Jsi is the sum of the fluxes from the
upper and lower terraces:

Jsi = Di
dui(x)

dx

∣∣∣∣
x=− l

2

− Di
dui(x)

dx

∣∣∣∣
x= l

2

= λi
(ni∞ − ni0)

τi

2
[
cosh

(
l

λi

)
− 1

]
+ (di−+di+)

λi
sinh

(
l

λi

)
[

1 + di−di+
λ2

i

]
sinh

(
l

λi

)
+ (di−+di+)

λi
cosh

(
l

λi

) (6)
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In Equation (6) we introduce the characteristic lengths di− = Di
ki−

, and di+ = Di
ki+

.
However, it is important to consider that the fluxes of the components are interconnected
by the stoichiometric ratio, as per reaction (1), Jsi

νi
= const = Js. To account for this, we can

utilize a chain of transformations, as used in [40] (see Appendix A), which provides us
with the expression for net “flux” of crystalline cells Js into the step. With this information,
we can immediately determine the rate of advancement of the group of equidistant steps
(ϑgr) [40]:

ϑgr =
Dosξos

n0
(7)
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Figure 2. The dependence of the i-th component’s adatom distribution function ni(x), normalized
by the equilibrium concentration ni0, on the coordinate at various ratios of system parameters
providing qualitative insight. (a–c)—symmetric case ( ki− = ki+); (a–f)—asymmetric case ( ki− < ki+);
(a,d) varying λi; (b,e)—varying Ji; (c)—varying ki− and ki+; (f) varying ki−/ki+ ratio. The graphs
are generated using the following base values: λi = 3 µm, Ji = 200 at/µm2 ∗ ms−1, τi = 1 µs,
ni0 = 100 at/µm2, l = 20 µm, ki− = 104µm*s−1, ki+ = 104 µm ∗ s−1. The varied parameters that
vary are displayed on the respective graphs.
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Here, we introduce Dos as the generalized diffusion coefficient, which accounts for
the asymmetry of incorporation and the kinetic properties of all components, including
Schwoebel barriers, diffusion coefficients, and lengths. ξos represents the generalized
supersaturation. These values are defined as:

Dos =

∑N
i=1

τiν
2
i

λini0

[
1 + di−di+

λ2
i

]
sinh

(
l

λi

)
+ (di−+di+)

λi
cosh

(
l

λi

)
2
[
cosh

(
l

λi

)
− 1

]
+ (di−+di+)

λi
sinh

(
l

λi

)


−1

ξos = ∑N
i=1 νi(

ni∞
ni0

− 1) (8)

Additionally, 1/n0 represents the area occupied by a single crystalline cell C(s) within
the step.

Now, knowing the rate of advancement of a group of equidistant steps in such a
system, we can easily calculate the spiral growth rate, R as follows [40]:

R =
n0Ωϑgr

19ρc
=

ΩDosξos

19ρc
(9)

Here Ω represents the volume of the crystalline cell, and the interstep distance is
l = 19ρc, with ρc being the critical radius of 2D multicomponent nuclei on the surface [59]
( ρc = γΩ/kBTξos). The parameter γ represents the surface energy of the multicomponent
crystal. It is important to note that the coefficient Dos also depends on the interstep
distance, resulting in a rather complex dependence of the growth rate R (Equation (9)) on
supersaturation. However, it can be explicitly calculated by knowing the system parameters
and supersaturation.

3.3. Instability Analysis
3.3.1. Step System Instability

It is well known that in a single-component system, the Schwoebel barrier may cause
surface instabilities during crystal growth. In a multi-component system, however, the
tendency for unstable growth caused by the Schwoebel barrier of one component might
be suppressed by the inversed Schwoebel barrier of another component. This, in turn,
prevents step-meandering but may lead to step-bunching instability. In this section, we
analyze the range of growth conditions in which such multicomponent system growth
remains stable, and the distances between the steps remain consistent during the growth.
The evaluation will follow the approach by Pimpinelli et al. [46] and Bales and Zangwill [3].
For a linear analysis of stability, let us consider a system of equidistant steps and introduce
a small periodic fluctuation δxm into each of them according to the equation (see Figure 3):

δxm = Amexp (iqy + ωt) + CC (10)
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Here, m represents the ordinal number of a step, Am is the complex amplitude of
fluctuation of m-th step, q is the spatial wave number and ω is the rate of growth or decay
of this fluctuation. Note that CC indicates the complex conjugated value. Such a fluctuation
will perturb the equilibrium concentration near the step due to the Gibbs-Thomson effect
and the local curvature of the step. Accounting for the boundary condition (5) modified
by the local curvature, the distribution of adatoms of the i-th component um

qi(x, y) over the
surface near m-th step in this case will be described by a complex expression [46]:

um
qi(x, y) =

[
αmiSinh

(
Λqix

)
+ βmiCosh

(
Λqix

)]
exp (iqy + ωt) + CC (11)

where Λqi =

[(
1

λ2
i

)
+ q2

] 1
2
, and coefficients αmi, βmi are listed in Appendix A.

Using the known distribution functions um
qi(x, y), we can calculate the fluxes of each

component toward the step [40]. Then, we can apply a chain of transformations from
the previous section to account for the stoichiometric nature of the fluxes. After perform-
ing the necessary mathematical calculations and introducing averaged coefficients for
simplicity (See Appendix A and [46]), we will arrive at an equation that relates ω to the
system parameters:

ω(q) = Dos
m (q)(

ξos

n0
− q2Гos

m (q))/Am (12)

here Dos
m (q) represents the altered version of the averaged diffusion coefficient for the

perturbed system of steps, and Гos
m (q) is the averaged constant describing the force striving

to restore the straightness of the step due to surface tension. The values of Dos
m (q) and

Гos
m (q) are provided in Appendix A due to their complexity. As one can see, they depend

on the amplitude of step fluctuations Am. Equation (12) allows us to calculate the exact
criterion for stable growth in a multi-component case, taking into account the properties of
individual components (diffusion lengths, Schwoebel and inverse Schwoebel barriers, etc.).
We note that criterion (12) is written in a general form. To apply it, one should substitute
the values of Гos

m (q) and Dos
m (q) from Appendix A. This substitution directly relates the

individual properties of the components, the rate of growth of fluctuation ω, and its
complex amplitude Am = C*exp(imφ). Here, φ represents the phase shift between the
fluctuations in two subsequent steps [46], and C is a real constant. The fluctuations can
be in-phase (φ = 0), anti-phase (φ = π), or in any intermediate state (see Figure 3b). After
making this substitution, it becomes clear that if Re (ω(q)) > 0, then the perturbation grows
over time, indicating that the surface is unstable against perturbations with wavenumber q.
Conversely, if Re(ω) <0, any perturbation will decay with time, and the surface is stable.
It is worth noting that in the limit of a single component, Equation (12) transforms into
the corresponding equation from the classical paper by Pimpinelli [46]. Furthermore, in
the case of in-phase advancement of the steps ( φ = 0), it resembles the single-component
results of Bales and Zangwill [3]. Additionally, it is important to mention that, according
to its definitions, the maximal value of the effective diffusion coefficient Dos

m (q), which
determines the rate of growth of perturbation, is limited by the component (if it exists)
for which the product of concentration and diffusion coefficient is the lowest. The impact
of each component on the stabilizing factor Гos

m (q) is also inversely proportional to its
equilibrium concentration.

3.3.2. Nucleation of Pure Components behind the Moving Step

In some multicomponent epitaxial processes, another kind of instability has been
observed experimentally, which can significantly distort both the growth process and the
quality of the film grown. This instability involves the nucleation of liquid nanoislands
or droplets of pure components on the terraces between the steps under certain growth
conditions. Such instability, for instance, appears in the growth of gallium nitride thin films
via molecular-beam epitaxy [60] and even in more complex growth processes involving
chemical reactions [61]. In [35], the authors identified a criterion for the appearance of these
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islands and analyzed their interaction with the steps on the surface. The thermodynamic
reason underpinning this unstable regime, which allows for the nucleation of pure islands,
is that the rate of reaction (1), as well as multicomponent supersaturation, depends on
the product of the concentrations of different components. Therefore, as shown in [35,40],
there are various possible combinations of fluxes (J1, J2, . . ., JN) at which the surface
is near equilibrium in a multicomponent sense, allowing the crystal to grow in a low-
supersaturation mode following a step-flow or spiral mechanism. In this scenario, there
is no nucleation of multicomponent islands on the terraces. However, single-component
supersaturation, which determines the nucleation of pure components, depends linearly
on the flux of that specific component. Consequently, at certain combinations of fluxes
(J1, J2, . . ., JN), there might be an excess of one component, leading to its nucleation. This
process is described in detail in [35]. The criterion in [35] relates the maximal concentration
of adatoms of the i-th component on the terrace between the steps to its equilibrium single-
component concentration nicr in terms of single-component nucleation. It is important
to note that in [35], the authors did not take into account the Schwoebel barrier of the
components and its asymmetry. Therefore, the maximal concentration was right at the
center of the terrace. In some cases, when the diffusion length of adatoms of a particular
component is comparable to the distance between steps, and the coefficient of incorporation
of this component from the upper terrace is small (i.e., the Schwoebel barrier is large), the
distribution of adatoms takes on the shape shown in Figure 3. In this case, immediately
behind the moving step, there is a region of increased concentration of this component.
If the growth conditions are such that the concentration of this component in this region
exceeds the critical value nicr , then the nucleation of nanoislands may also begin.

Note that to determine the criterion for the appearance of islands behind a moving
step, one can employ the approach proposed in [35]. Let us compare the nucleation time of
islands, denoted as τi

nucl , in the region where an increased concentration is observed, with
the time, τi

step, required for the subsequent step to advance by a distance equal to the length
of this region, denoted as li (See Figure 4). This advancement reduces the concentration
of adatoms of the i-th component in that region and essentially “restarts” the processes of
island nucleation. If the following criterion is met for at least one of the components:

τi
nucl
τi

step
< 1 (13)

then the islands will have sufficient time to nucleate, and step-flow growth will no longer
be described by Equations (7) and (9). It will transition to a different regime, as described
in [35]. The key difference from the problem addressed in [35] is that the size of the region
with increased supersaturation is now determined not only by the diffusion lengths of the
components li = l − 2λi, as in systems without ta Schwoebel barrier, but is expressed by
the formula li = l

2 − xcr, where xcr is the solution to the transcendental equation:

ni(xcr) = nicr (14)

If there are two solutions (such a situation is possible, as can be seen from Figure 2d–f),
then li = |xcr,2 − xcr,1|.

To determine the nucleation time, we can use the expression from [35]:

τi
nucl = 1/(li

2 Ii
0) (15)

Here, as in [23,35], Ii
0 = 2πρi

crSinθi
Ji

2a
η Ziexp( 2Ei

des−Ei
d

kBT )exp −∆Gcr
i

kBT is the nucleation rate

per unit area. 2πρi
crSinθi represents the perimeter of the spherical island of the i-th com-

ponent with the contact angle θi, ρi
cr = 2γiΩi

kBTξi
is the critical radius of the island, a is the

lattice parameter, η ∼ 1013s−1 is the characteristic frequency of atomic vibrations, and γi
is the surface energy of the i-th component. Zi represents the Zeldovich factor, Ei

des is the
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activation energy of desorption, Ei
d is the activation energy of diffusion. ∆Gcr

i = 16γi
3Ωi

2

3∆µ2
i

is

the work of formation of the island of critical radius. ∆µi = kBTln
(

ni
nicr

)
is the difference in

the chemical potentials of the adatom incorporated into the island, and one adsorbed on the
surface between the terraces. As in [35] we assume that the critical radius of the forming
island ρi

cr is much smaller than li, otherwise the nucleation would also be impossible.
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The time τi
step required for the multicomponent step to overcome the distance li and

essentially “restart” the nucleation process is approximately:

τi
step ∼ li

ϑgr
=

lin0

Dosξos (16)

Combining Equations (13), (15) and (16) yields the criterion for the manifestation of
such an instability:

Dosξos

n0li
3 Ii

0

< 1 (17)

In contrast to [35], this criterion now takes into account the presence of the Schwobel
barrier. There, if condition (16) is satisfied for at least one of the components, nucleation of
nanoislands directly behind the step becomes possible, resulting in a significant change
in the crystal growth regime. It is important to note that, similar to [35], the criterion is
extremely nonlinear in terms of supersaturation and distance between the steps. It should
be noted that the nucleation rate Ii

0 itself, and consequently criterion (17), are specifically
derived for the case of nucleating hemispherical liquid droplets of the pure component
(‘dew’), as observed in the aforementioned experiments. However, this model does not
account for the potential mechanical stresses that arise during the nucleation of solid islands.
These stresses, caused by differences in lattice parameters between the pure component
and the multicomponent surface, typically have a significant impact on the work of nuclei
formation. Therefore, to accurately represent scenarios of solid-on-solid nucleation for the
pure components which are solid at the growth temperature, further modification of the
model is necessary. This modification should also incorporate considerations of the shape
of a solid island and the anisotropy of surface energy.

We note that Equations (8), (12) and (17) enable both the determination of the depen-
dence of the growth rate on the growth conditions and the identification of the range of
growth conditions in which the surface is stable against the instabilities under consider-
ation. These equations involve numerous system parameters, which are challenging to
obtain or measure, especially in the case of multicomponent systems. However, theoretical
understanding and knowledge of these dependencies provides us with new practical tools
for determining the necessary properties through experiments. As was stated above, a
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multicomponent system can be in equilibrium at different sets of fluxes (J1, J2, . . ., JN).
Therefore, one can select a set in which only one specific k-th single component limits the
growth process, while the others are in excess and thus do not affect the growth. In this case,
the generalized coefficient Dos, according to its definition, becomes dependent only on the
properties of that particular k-th component. By measuring the dependence of the step-flow
growth rate of a misoriented crystal surface on supersaturation (via increasing the flux
of that k-th component), one can obtain information on its kinetic properties. Repeating
such an experiment on a series of differently miscut vicinal surfaces with known interstep
distances (l) allows for the determination of all the necessary kinetic coefficients of this
component. Subsequently, one may perform the same experiment with other components
to obtain these coefficients for each component, which can then be used to describe the
growth and stability at any intermediate case with Equations (7), (12), and (17). Another
option is to obtain the necessary coefficients from modeling, for example, through quantum
chemical calculations [62], which can now describe complex multicomponent systems,
given the rapidly growing computing capabilities.

However, it should also be kept in mind that other phenomena on the surface may
cause other types of instabilities [18]. Further research is needed to determine the con-
ditions for the most stable growth. This research may involve studying various aspects,
such as different mass transport mechanisms, particularly when a carrier gas or solute
is present, resulting in non-homogeneous flux towards the surface; exact incorporation
mechanisms with the Schwoebel barrier, dependent on the local kink configuration; the
impact of surface reconstruction on the diffusion of species; the influence of impurities in a
multicomponent case and their combinations. Exploring these factors will contribute to a
more comprehensive understanding of stable crystal growth.

4. Conclusions

The growth of a multicomponent crystal is analyzed, taking into account the indi-
vidual Schwoebel barriers of each component within the framework of the BCF model.
Analytical expressions for the step-flow and spiral growth regimes are derived. It is demon-
strated that in the multicomponent case, the presence of the Schwoebel barrier, as in the
single-component case, may lead to the manifestation of growth instabilities. However, in
some cases, when different components demonstrate different ratios of direct and inverse
Schwoebel barriers, instability does not arise. A new type of barrier-caused instability is
discussed, which leads to the nucleation of liquid nanoislands of pure components on the
terrace directly after the step. A kinetic criterion for stable growth is derived, connecting
the properties of individual components and growth conditions.
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Appendix A

1. The solution of Equation (4) with boundary conditions (5) that is the expression for
the concentration of adatoms of the i-th component over the terrace:

ui(x) = Aicosh
(

x
λi

)
+ Bisinh

(
x
λi

)
(A1)

Ai = −ki+(ni∞ − ni0)
ki−sinh

(
l

λi

)
+ Di

λi

[
cosh

(
l

λi

)
+ ki−/ki+

]
[(

Di
λi

)2
+ ki−ki+

]
sinh

(
l

λi

)
+ Di

λi
(ki− + ki+)cosh

(
l

λi

)
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Bi = ki+(ni∞ − ni0)

Di
λi

sinh
(

l
λi

)
+ ki−

[
cosh

(
l

λi

)
− 1

]
[(

Di
λi

)2
+ ki−ki+

]
sinh

(
l

λi

)
+ Di

λi
(ki− + ki+)cosh

(
l

λi

)
Once ui(x) is determined, one can, on may calculate Jsi as described in the main text.

Then, it is essential to consider the stoichiometric condition, which states that the fluxes
of each component toward the step are proportional to the corresponding stoichiometric
coefficient of the component, i.e., Jsi

νi
= const = Js. To achieve this, the following chain of

transformations [40] can be employed. First, let us express the supersaturation for each
component through the flux:

Jsi
τi

λini0

[
1 + di−di+

λ2
i

]
sinh

(
l

λi

)
+ (di−+ di+)

λi
cosh

(
l

λi

)
2
[
cosh

(
l

λi

)
− 1

]
+ (di−+di+)

λi
sinh

(
l

λi

) =
(ni∞ − ni0)

ni0
(A2)

Then, multiply each side by the stoichiometric coefficient νi and sum over all the
components:

∑ Jsiνi
τi

λini0

[
1 + di− di+

λ2
i

]
sinh

(
l

λi

)
+ (di−+di+)

λi
cosh

(
l

λi

)
2
[
cosh

(
l

λi

)
− 1

]
+ (di−+di+)

λi
sinh

(
l

λi

) = ∑νi
(ni∞ − ni0)

ni0
(A3)

Taking out the implied constant value Jsi
νi

for each component [40] from under the
summation operation, and substituting

ξos = ∑N
i=1 νi

(
ni∞
ni0

− 1
)

, Dos =

∑
τiν

2
i

λini0

[
1 + di−di+

λ2
i

]
sinh

(
l

λi

)
+ (di−+di+)

λi
cosh

(
l

λi

)
2
[
cosh

(
l

λi

)
− 1

]
+ (di−+ di+)

λi
sinh

(
l

λi

)

−1

yields the final expression for the overall flux of crystalline cells Js toward the steps, which
is used for the calculation of the step velocity (as given in Equation (5)):

Jsi
νi

= Js = ξosDos (A4)

2. The coefficients for the distribution function of adatoms of i-th component near
m-th step um

qi(x, y) are the following:

αmi = − 1
Φqiλi

{
Bqi Am+1 +

Aqi Am

ki+

[
DiΛqiSinh

(
Λqil

)
+ ki−Cosh

(
Λqil

)]}

βmi =
1

ki+
{DiαmiΛqi +

1
λi

Aqi Am}

where values Aqi, Bqi, Φqi and ψqi are introduced

Aqi = ki+Гiλiq2 − Di(ni∞ − ni0)ψqi

{(
1 +

di−
di+

)
Sinh

(
l

λi

)
+

di−
λi

Cosh
(

l
λi

)
+

λi
di+

[
Cosh

(
l

λi

)
− 1

]
+

di+
λi

}

Bqi = −ki−Гiλiq2 + Di(ni∞ − ni0)ψqi

{
λi

di−
− di−

λi
−

[
λi

di−
+

di+
λi

]
Cosh

(
l

λi

)
−

[
1 +

di+
di−

]
Sinh

(
l

λi

)}
Φqi = Di

{
Λqi

(
1 +

di+
di−

)
Cosh

(
Λqil

)
+ Sinhh

(
Λqil

)[
di− + 1/di+Λ2

qi

]}
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ψqi =

{[
d+d−

λi
+ λi

]
Sinh

l
λi

+ (d+ + d−)Cosh
(

l
λi

)}−1

3. The expressions for the averaged coefficients Dos
m (q) and Гos

m (q) (from Equation (9))
can be obtained using the same approach as in the previous section and in reference [46].
Firstly, one calculates the fluxes of the i-th component toward the perturbed step m, and
then applies the stoichiometric rule. After a thorough mathematical analysis, the following
results are obtained:

Dos
m (q) =

∑
ν2

i τiKi(q)

ni0


(di− − di+)

{
Λqi(d+ + d−)

[
λiΛqiSinh

(
Λqil

)
Sinh

(
l

λi

)
− Cosh

(
Λqil

)
Cosh

(
l

λi

)]
+ Sinh

(
Λqil

)[
Cosh

(
l

λi

)
− 1

]
λ2

i q2
}

Am+

+Λqi
[
d2

i−Am+1 − d2
i+Am−1

]
Cosh

(
l

λi

)
− Λqi

[
λi(di+ + di−)Sinh

(
l

λi

)
+

(
di+di− + λ2

i
)
Cosh

(
l

λi

)
− λ2

i

]
(Am−1 − Am+1)





−1

(A5)

Гos
m (q) = ∑

τiνiГiKi(q)Λqi
[2Cosh(Λqi l)+Λqi(d++d−)Sinh(Λqi l)]Am−Am−1−Am+1

Λqi(di++di−)Cosh(Λqi l)+
(

1+di−di+Λ2
qi

)
Sinh(Λqi l)

ni0


(di− − di+)

{
Λqi(di+ + di−)

[
λiΛqiSinh

(
Λqil

)
Sinh

(
l

λi

)
− Cosh

(
Λqil

)
Cosh

(
l

λi

)]
+ Sinh

(
Λqil

)[
Cosh

(
l

λi

)
− 1

]
λ2

i q2
}

Am+

+Λqi
[
d2

i−Am+1 − d2
i+Am−1

]
Cosh

(
l

λi

)
− Λqi

[
λi(di+ + di−)Sinh

(
l

λi

)
+

(
di+di− + λ2

i
)
Cosh

(
l

λi

)
− λ2

i

]
(Am−1 − Am+1)


(A6)

Here coefficient Ki(q) denotes the following expression:

Ki(q) =
[
Λqi(di+ + di−)Cosh

(
Λqil

)
+

(
1 + di+di−Λ2

qi

)
Sinh

(
Λqil

)]
∗
[
(di+ + di−)Cosh

(
l

λi

)
+

(
di+di−

λi
+ λi

)
Sinh

(
l

λi

)]
This result in the limit of a single-component crystal coincides with the findings of

Pimpinelli et al. [46].
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50. ZaŁuska–Kotur, M.A.; Krzyżewski, F.; Krukowski, S. Emergence of regular meandered step structure in simulated growth of

GaN (0001) surface. J. Cryst. Growth 2012, 343, 138–144. [CrossRef]

https://doi.org/10.1016/j.jmps.2021.104582
https://doi.org/10.1016/S0370-1573(99)00046-0
https://doi.org/10.1016/j.pcrysgrow.2016.04.002
https://doi.org/10.1016/0960-8974(96)00008-3
https://doi.org/10.1021/cg070427i
https://doi.org/10.1088/0034-4885/68/4/R03
https://doi.org/10.1149/2.0292001JSS
https://doi.org/10.3390/cryst12020245
https://doi.org/10.1038/srep17405
https://doi.org/10.1039/C7TC02221B
https://doi.org/10.1021/acs.chemrev.9b00223
https://doi.org/10.1016/j.jece.2020.104386
https://doi.org/10.3390/cryst9080390
https://doi.org/10.1016/j.jphotochemrev.2017.11.002
https://doi.org/10.1021/acs.cgd.8b00933
https://doi.org/10.1021/acs.cgd.1c00349
https://doi.org/10.1021/acs.cgd.7b00058
https://doi.org/10.1098/rspa.2005.1495
https://doi.org/10.3389/fchem.2023.1189729
https://www.ncbi.nlm.nih.gov/pubmed/37252372
https://doi.org/10.1016/j.jmps.2009.11.007
https://doi.org/10.1021/acs.cgd.9b01721
https://doi.org/10.1039/D1FD00083G
https://doi.org/10.21883/PJTF.2023.13.55735.19570
https://doi.org/10.1063/1.1707904
https://doi.org/10.1063/1.1657442
https://doi.org/10.1103/PhysRevLett.86.5538
https://www.ncbi.nlm.nih.gov/pubmed/11415295
https://doi.org/10.1088/0953-8984/6/14/005
https://doi.org/10.1140/epjb/e2010-00036-3
https://doi.org/10.1103/PhysRevB.65.075409
https://doi.org/10.1103/PhysRevB.79.075402
https://doi.org/10.1016/j.jcrysgro.2012.01.033


Crystals 2024, 14, 25 14 of 14

51. Bellmann, K.; Pohl, U.W.; Kuhn, C.; Wernicke, T.; Kneissl, M. Controlling the morphology transition between step-flow growth
and step-bunching growth. J. Cryst. Growth 2017, 478, 187–192. [CrossRef]

52. Redkov, A.V.; Kukushkin, S.A.; Osipov, A.V. Growth of faceted pores in a multi-component crystal by applying mechanical stress.
CrystEngComm 2020, 22, 5280–5288. [CrossRef]

53. Redkov, A.V.; Kukushkin, S.A.; Osipov, A.V. Spiral growth of a multicomponent crystal from vapor of its components. J. Cryst.
Growth 2020, 548, 125845. [CrossRef]

54. Kukushkin, S.A.; Osipov, A.V.; Redkov, A.V. Morphological stability criterion for a spherical crystallization front in a multicompo-
nent system with chemical reactions. Phys. Solid State 2014, 56, 2530–2536. [CrossRef]

55. Chernov, A.A. The spiral growth of crystals. Sov. Phys. Uspekhi 1961, 4, 116. [CrossRef]
56. Gilmer, G.H.; Ghez, R.; Cabrera, N. An analysis of combined surface and volume diffusion processes in crystal growth. J. Cryst.

Growth 1971, 15, 123–128. [CrossRef]
57. Van Der Eerden, J.P. The advance velocity of steps under the influence of volume and surface diffusion, by direct and indirect

incorporation of growth units. J. Cryst. Growth 1982, 56, 174–188. [CrossRef]
58. Sato, M.; Uwaha, M.; Saito, Y. Instabilities of steps induced by the drift of adatoms and effect of the step permeability. Phys. Rev. B

2000, 62, 8452. [CrossRef]
59. Kukushkin, S.A. Evolution processes in multicomponent and multiphase films. Thin Solid Film. 1992, 207, 302–312. [CrossRef]
60. Heying, B.; Smorchkova, I.; Poblenz, C.; Elsass, C.; Fini, P.; Den Baars, S.; Mishra, U.; Speck, J.S. Optimization of the surface

morphologies and electron mobilities in GaN grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 2000, 77,
2885–2887. [CrossRef]

61. Chen, Y.S.; Liao, C.H.; Kuo, C.T.; Tsiang, R.C.C.; Wang, H.C. Indium droplet formation in InGaN thin films with single and double
heterojunctions prepared by MOCVD. Nanoscale Res. Lett. 2014, 9, 334. [CrossRef]

62. Chugh, M.; Ranganathan, M. Adsorbate interactions on the GaN (0001) surface and their effect on diffusion barriers and growth
morphology. Phys. Chem. Chem. Phys. 2017, 19, 2111–2123. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jcrysgro.2017.09.007
https://doi.org/10.1039/D0CE00888E
https://doi.org/10.1016/j.jcrysgro.2020.125845
https://doi.org/10.1134/S106378341412018X
https://doi.org/10.1070/PU1961v004n01ABEH003328
https://doi.org/10.1016/0022-0248(71)90027-3
https://doi.org/10.1016/0022-0248(82)90027-6
https://doi.org/10.1103/PhysRevB.62.8452
https://doi.org/10.1016/0040-6090(92)90142-X
https://doi.org/10.1063/1.1322370
https://doi.org/10.1186/1556-276X-9-334
https://doi.org/10.1039/C6CP07254B

	Introduction 
	Formulation of the Problem 
	Results and Discussion 
	Adatom Distribution on the Surface 
	Rate of Advancement of a Group of Equidistant Steps and Crystal Growth Rate 
	Instability Analysis 
	Step System Instability 
	Nucleation of Pure Components behind the Moving Step 


	Conclusions 
	Appendix A
	References

