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Abstract: A one-pot reaction of an equimolar mixture of 4-methoxyaniline, phenyl isothiocyanate, and
2-bromoacetylbenzofuran in absolute ethanol in the absence of any catalysts afforded 4-(benzofuran-
2-yl)-3-(4-methoxyphenyl)-N-phenylthiazol-2(3H)-imine with an 83% yield. Under similar condi-
tions, 4-flouroaniline provided a mixture of the expected 4-(benzofuran-2-yl)-3-(4-fluorophenyl)-N-
phenylthiazol-2(3H)-imine and unexpected 4-(benzofuran-2-yl)-N-(4-fluorophenyl)-3-phenylthiazol-
2(3H)-imine at an overall 73% yield. The structures of the synthesized heterocycles were confirmed
using NMR spectroscopy. The products were recrystallized from dimethylformamide to afford
samples suitable for structural determination via single-crystal diffraction. The molecules of the
products share a common backbone and have similar conformations. They also display some com-
mon intermolecular interactions, including C–H···X (X = N, O, π) and π···π contacts. The molecules
differ due to the methoxy and fluoro substituents on their phenyl rings, resulting in variations in the
extended network in the crystals. Electron density maps and Hirshfeld surfaces have been used to
rationalize the intermolecular contacts.

Keywords: X-ray crystal structure; synthesis; 4-(benzofuran-2-yl)-3-(4-methoxyphenyl)-N-phenyl thiazol-
2(3H)-imine; 4-(benzofuran-2-yl)-3-(4-fluorophenyl)-N-phenylthiazol-2(3H)-imine; 4-(benzofuran-2-yl)-
N-(4-fluorophenyl)-3-phenylthiazol-2(3H)-imine

1. Introduction

Heterocyclic compounds are used in many medical applications due to their various
biological activities [1–3]. Among other reasons, heterocycles are attractive because of their
amiability to molecular structure modification. In addition, their lipophilicity, solubility,
polarity, and capacity for hydrogen bond formation can be manipulated to suit various
applications. Consequently, heterocycles play a significant role in drug design and com-
prise most (85%) biologically active compounds [4]. The requirement for heterocycles for
medicinal applications has increased the demand for the design and synthesis of new com-
pounds. A range of heterocycles have exhibited antibacterial, antitumor, antifungal, and
anti-inflammatory properties [5]. Nitrogen-based heterocycles are particularly compelling
because of their potential in salient applications [6–10]. Notably, these compounds are
found in natural products with unique pharmacological properties [11–13].

Heterocycles containing the thiazol-2-imine moiety are of interest for medicinal and
agricultural uses [14–16]. The thiazole ring system is an essential core scaffold in many
natural products; for example, it serves as a crucial component of penicillin and some of
its derivatives. These compounds exhibit anticancer, antifungal, anti-inflammatory, kinase
inhibition, plant growth regulation, insecticidal, and acaricidal properties [17–26].
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Benzofurans are widely distributed in nature [27] and have been accredited with biody-
namic and therapeutic qualities [28,29]. These compounds exhibit antibacterial, antitumor,
antioxidant, antiparasitic, and anti-inflammatory properties [30–32]. The possible uses for
these compounds have led to increased attention toward synthesizing heterocycles contain-
ing benzofuran [33–35]. The design, synthesis, and structural determination of heterocycles
containing thiazole and benzofuran moieties (Figure 1) have been a focus of continued
interest, and the characterization of related heterocycles has been reported [36–38].
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Figure 1. Important heterocycles containing thiazole and benzofuran moieties.

As part of our ongoing research into the design of heterocyclic molecules and the
utilization of simple synthetic procedures, three new 4-(benzofuran-2-yl)-N-phenylthiazol-
2(3H)-imines, namely, 5a, 5b, and 6, that incorporate thiazole and benzofuran units have
been obtained. Part of the work involved crystal structure characterization, enabling a
detailed study of the intermolecular contacts in the solid state [39]. Molecules 5a, 5b, and 6
have a common backbone, and their crystal structures enable the exploration of the effect
of different substituents on molecular packing in the solid state.

The understanding of molecular interactions in crystalline materials is fundamental to
crystal engineering. The desired goal of crystal engineering is to understand intermolecular
interaction leading to the eventual exploitation of this knowledge in designing and generat-
ing materials for specific functions [40–42]. The arrangement of molecules in the crystal
structure depends on a combination of factors which include steric effects and electrostatic
interactions. The shapes and sizes of molecules and substituents contribute significantly
to determining their packing modes because of the need to maximize efficiency in the
occupation of space [43]. The molecules under study do not possess strong hydrogen
bond donors but can be involved in other types of contacts. Strong and weak hydrogen-
bonding interactions [44], including those of the C–H···π type [45], are directional and have
a structure-directing capacity in crystal structure formation. Other electrostatic interactions,
including π···π [46] contacts, also contribute to structural direction and stabilization.

2. Materials and Methods
2.1. General

The chemicals, reagents, and solvents used in this study were purchased from Merck
(Merck Life Science UK Limited, Gillingham, UK). The melting points of the synthesized
heterocycles were determined using an electrothermal melting point apparatus (Cole-
Parmer, Illinois, IL, USA). The IR spectra were recorded on a Bruker Tensor 27 FTIR
spectrometer (Bruker, Tokyo, Japan). The NMR spectra (δ in ppm and J in Hz), recorded
at 500 MHz for the proton and 125 MHz for the carbon measurements, were obtained in
dimethyl sulfoxide (DMSO-d6) using a JEOL NMR 500 MHz spectrometer (JEOL, Tokyo,
Japan). The 19F NMR spectrum was recorded on Bruker Avance III HD 400 spectrometer
(Bruker, Tokyo, Japan). A CHNS-932 Vario elemental analyzer (LECO Instruments Ltd.,
Hazel Grove, Stockport, UK) was used to measure elemental content. Compound 4 was
obtained from NRC-Fine Organic Chemicals Unit at the National Research Centre, Egypt.
It was synthesized using a previously reported procedure [47].
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2.2. Synthesis of 4-(Benzofuran-2-yl)-N-phenylthiazol-2(3H)-imines 5a and a Mixture of 5b and 6

Scheme 1 shows the synthetic routes. A mixture of 1a or 1b (5 mmol) and 2 (5 mmol,
0.68 g) in dry EtOH (15 mL) was refluxed for 15 min, followed by the addition of 4 (5 mmol,
1.2 g). The reaction mixture was refluxed for four hours and then left to stand overnight.
The resulting solid was filtered, dried, and recrystallized from DMF, yielding 5a or a
mixture of 5b and 6.
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Scheme 1. Synthetic routes for the preparation of thiazol-2(3H)-imines 5a and b and 6. Equal amounts
(5 mmol) of 1, 2, and 4 were used in boiling dry EtOH. The crystallization (DMF) of crude products
resulted in 5a (83%) and a mixture of 5b and 6 (73%).

2.2.1. 4-(Benzofuran-2-yl)-3-(4-methoxyphenyl)-N-phenylthiazol-2(3H)-imine (5a)

Yield: 83%, mp 182–183 ◦C. IR (KBr): 3131 (CH), 1618 (C=N), and 1577 (C=C) cm–1.
1H NMR: 3.81 (s, 3H, OMe), 5.63 (s, 1H, thiazolyl), 6.87 (d, 7.7 Hz, 2H, Ar), 6.95 (s, 1H, Ar),
6.98 (t, 7.7 Hz, 1H, Ar), 7.07 (d, 8.6 Hz, 2H, Ar), 7.16 (t, 7.7 Hz, 1H, Ar), 7.27 (app t, 7.7 Hz,
3H, Ar), 7.39 (d, 8.6 Hz, 2H, Ar), and 7.48 (t, 7.7 Hz, 2H, Ar). 13C NMR: 60.0, 100.4, 104.7,
111.3, 115.3, 121.4, 122.2, 123.6, 124.0, 126.0, 128.0, 130.1, 130.3, 130.7, 131.0, 146.5, 151.8,
153.9, 159.8, and 159.9. Anal. Calcd. for C24H18N2O2S (398.46): C, 72.34; H, 4.55; N, 7.03.
Found: C, 72.58; H, 5.09; N, 7.11%.

2.2.2. 4-(Benzofuran-2-yl)-3-(4-fluorophenyl)-N-phenylthiazol-2(3H)-imine (5b) and
4-(Benzofuran-2-yl)-N-(4-fluorophenyl)-3-phenylthiazol-2(3H)-imine (6)

Yield: 73%, mp 157–158 ◦C. IR (KBr): 3129 (CH), 1616 (C=N), and 1576 (C=C) cm–1. 1H
NMR: 5.60, 5.74 (2 s, 2H, thiazolyl), 6.87–6.99 (m, 4H, Ar), 7.08–7.17 (m, 5 H, Ar), 7.25–7.29
(m, 5H, Ar), and 7.41–7.54 (m, 14H, Ar). 13C NMR: 100.9, 101.0, 104.9, 105.1, 111.3, 116.6,
116.7, 116.9, 117.1, 121.4, 122.14, 122.3, 123.0, 123.0, 123.7, 123.7, 124.0, 126.1, 127.9, 128.0,
129.6, 129.8, 130.1, 132.0, 132.1, 134.4, 138.1, 146.2, 146.3, 148.2, 151.6, 153.9, 157.9, 159.9,
159.5, 159.8, 160.0, 161.4, and 163.3. 19F NMR: 112.1, 120.4. Anal. Calcd. for C23H15FN2OS
(386.43): C, 71.49; H, 3.91; N, 7.25. Found: C, 71.53; H, 4.08; N, 7.39%.
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2.3. X-ray Crystal Structure

Diffraction data for 5a and the mixed crystal of 5b and 6 were recorded at 296 K on an
Agilent SuperNova Dual Atlas single-crystal diffractometer with mirror-monochromated
Mo radiation. Structure solution calculations were carried out using SHELXS [48] and
refinement via SHELXL [49]. Anisotropic displacement parameters were utilized for non-
hydrogen atoms during refinement. A riding model was used for hydrogen atoms with
idealized geometry, and Uiso was set to 1.2 or 1.5 times the value of Ueq for the atom to
which the hydrogen atoms were bonded. The para positions of the benzene rings in the
molecule of 5b/6 were treated as disordered H/F with final occupancies of 0.332(4)/0.668(4)
for F1/H15b and 0.668(4)/0.332(4) for F2/H21. The crystal and structure refinement data
are shown in Table 1. The crystal structures of 5a and 5b/6 have been deposited in the CSD
under the reference numbers CCDC 2283522 and 2283523 (Supplementary Material).

Table 1. Crystal and structure refinement data of 5a and the mixed crystal of 5b and 6.

Identification Code 5a 5b/6

Empirical formula C24H18N2O2S C23H15FN2OS
Formula weight 398.46 386.43

T (K) 296(2) 293(2)
λ Å 0.71073 0.71073

Crystal system Orthorhombic Monoclinic
Space group P212121 P21/c

a (Å) 5.5731(5) 10.6289(9)
b (Å) 10.2520(9) 5.6010(3)
c (Å) 34.307(3) 30.567(2)
α (◦) 90 90
β (◦) 90 95.645(7)
γ (◦) 90 90

Volume (Å3) 1960.1(3) 1810.9(2)
Z 4 4

Density (calculated) (Mg/m3) 1.350 1.417
Absorption coefficient (mm–1) 0.188 0.205

Crystal size (mm3) 0.392 × 0.090 × 0.049 0.550 × 0.130 × 0.070
Reflections collected 16,408 15,447

Independent reflections 4878 4636
R(int) 0.0497 0.0539

Parameters 263 264
Goodness-of-fit on F2 1.055 1.059

R1 [I > 2σ(I)] 0.050 0.0584
wR2 [I > 2σ(I)] 0.0988 0.1076

R1 0.0843 0.1354
wR2 0.1143 0.1410

Largest diff. peak and hole (e.Å−3) 0.195 and −0.214 0.206 and −0.255

2.4. Electrostatic Potentials and Hirshfeld Surface Calculations

The two components of the mixed crystal of 5b and 6 were treated as independent
ordered structures for the calculations. The input files for electrostatic potential calculation
were prepared using Avogadro [50]. The electron density calculation was performed using
the RHF/631G(dp) basis set in Gamess [51] and analyzed using Macmolplot [52]. The
Hirshfeld surface was generated using CrystalExplorer17 [53].

3. Results and Discussion

A method that is frequently used for synthesizing thiazole ring systems is the reaction
of haloketones with thioamides [54–56]. Other methods include the reaction of N,N-
diformylaminomethyl aryl ketones with phosphorus pentasulfide in a basic medium [57]
and the reaction of oximes and anhydrides with potassium thiocyanate and a copper
catalyst [58]. Amines and aldehydes can also be used through a reaction with sulfur and
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oxygen [59], while active methylene isocyanides and carbodithioates are synthesized with
sodium hydride [60].

3.1. Synthesis of 5 and 6

Thiazol-2-imines are commonly synthesized through a one-pot three-component
reaction of aromatic α-bromoketones, primary amines, and phenyl isothiocyanate in ethanol
(EtOH) in the presence of a catalytic amount of triethylamine [17,61]. In this study, two
commercially available and easily accessible anilines, namely, 4-methoxyaniline (1a) and 4-
flouroaniline (1b), were used. The procedure used resulted in high yields after optimization
of the reaction conditions (including the solvent, time, and temperature). The progress of the
reaction was observed using thin-layer chromatography. A one-pot reaction of equimolar
amounts of 1a (R = OMe), phenyl isothiocyanate (2), and then 2-bromoacetylbenzofuran (4)
in dry ethanol (EtOH) afforded 4-(benzofuran-2-yl)-3-(4-methoxyphenyl)-N-phenylthiazol-
2(3H)-imine (5a) at an 83% yield (Scheme 1). It should be noted that no catalysts were
used. The reaction of 1b (R = F), 2, and 4, under reaction conditions similar to those used
for the production of 5a, afforded the expected 4-(benzofuran-2-yl)-3-(4-fluorophenyl)-N-
phenylthiazol-2(3H)-imine (5b) and the unexpected 4-(benzofuran-2-yl)-N-(4-fluorophenyl)-
3-phenylthiazol-2(3H)-imine (6; Scheme 1) at a 73% overall yield as a 1:2 mixture. Several
attempts were made to separate the two compounds through crystallization using different
solvents, but these efforts were unsuccessful.

3.2. IR and NMR Spectroscopy of 5 and 6

The chemical structures for 5a and the mixture of 5b and 6 were verified using IR, 1H,
and 13C NMR spectroscopy (For further details, refer to the Supplementary Materials for
the corresponding spectra.) In the IR spectra of 5a (Figure S1) and the mixture containing
5b and 6 (Figure S2), distinct absorption bands were observed at the 1616–1618 cm−1 and
1576–1577 cm−1 regions. These bands can be attributed to the stretching vibrations of the
C=N and C=C groups, respectively. A distinct singlet signal was observed in the 1H NMR
spectrum of 5a (Figures S3 and S4), indicating the presence of the thiazolyl proton at 5.63.
In addition, the 1H NMR spectrum of compound 5a displayed a singlet signal at 3.80 ppm
corresponding to the three protons from the OMe group. The 1H NMR spectrum of the
mixture containing 5b and 6 (Figure S5) showed the thiazolyl proton at 5.75 and 5.60 ppm,
respectively. Upon analyzing the 13C NMR spectrum of 5a (Figures S6–S8), it was confirmed
that all carbons were detected at the anticipated locations following their chemical shifts.
The 13C NMR spectrum of the mixture containing 5b and 6 (Figure S9) was complex and
showed signals for both compounds. It was difficult to precisely determine the coupling
constants between the carbon and fluorine atoms. The 19F NMR spectrum of the mixture
displayed two signals at 112.1 and 120.4, which corresponded to 5b and 6, respectively.
Furthermore, there was indication of the existence of two additional minor isomers.

3.3. Proposed Mechanisms for the Formation of 5 and 6

A proposed mechanism for the formation 5a and 5b is shown in Scheme 2. It involves
the addition of 1a,b to 2 to yield the corresponding thiourea 3a,b. Thiourea 3a,b tautomer-
izes to yield 7a,b which reacts with 2-bromoacetylbenzofuran (4) to give the corresponding
ketone 8a,b and hydrobromic acid (HBr) as a side product. The tautomerization of 8a,b
yields 9a,b, which loses H2O to afford 5a,b.
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3.4. X-ray Crystal Structures
3.4.1. Crystal Structure of 5a

The crystal structure of 5a is orthorhombic, space group P212121, and an ortep rep-
resentation of the molecule is shown in Figure 2a. The molecule comprises the following
groups: benzofuran (A5a, C1–C7, and O1), thiazole (B5a, C9–C11, N1, and S1), methoxy-
benzene (C5a, C12–C17, O2, and C24), and aminobenzene (D5a, C18–C23, and N2). Rings
A5a and B5a are almost co-planar in the molecule, with a twist angle A5a/B5a of ca. 17◦.
In contrast, twist angles B5a/C5a and B5a/D5a are greater: they are in the range of 49–78◦

(Table 2).
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Table 2. Group twist angles (◦) for the molecule in the crystal structures of 5a and the mixed crystal
of 5b and 6.

A/B B/C B/D

5a 16.98(16) 77.82(1) 49.55(12)
5b/6 17.55(12) 77.45(8) 54.51(8)
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Molecule 5a does not possess strong hydrogen bond donors, but its crystal struc-
ture displays weaker C–H···X (X = N, O) interactions (Table 3). In the crystal structure,
C13–H13···N2 interactions (Figure 3a,b) between the methoxybenzene and aminobenzene
groups of neighboring molecules form chains parallel to the direction of the a-axis. Within
the chain, the furan group is involved in π–π contact with the thiazole group of a neighbor
with a ring centroid-to-centroid distance of 3.93 Å (red dotted lines in Figure 3a,b).
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Table 3. Intermolecular contacts (Å, ◦) in the crystal structures of 5a and the mixed crystal of 5b and 6.

D···A D–H···A
5a C13–H13···N2 3.523(5) 162.8

C10–H10···O1 3.280(4) 120.0
C19–H19···O2 3.398(5) 136.3

5b/6 C13–H13···N2 3.634(3) 167.4
C10–H10···O1 3.261(3) 117.2

C7–H7···F2 3.392(4) 142.7
C19–H19···F1 3.192(6) 156.1

C2–H2···S1 3.812(3) 123.0

Each chain is linked to adjacent chains via the oxygen of the methoxybenzene group
of a molecule accepting one C19–H19···O2 contact and the aminobenzene group donating
another. The thiazole group also donates a C10–H10···O1 contact to a neighboring ben-
zofuran group (shown in green in Figure 3a,b). Edge-to-face C–H···π contacts between
the benzene rings of the benzofuran group with an H···ring centroid distance of 2.85 Å
complete the extended 3D network in the structure (shown in blue in Figure 3a,b).

3.4.2. Structure of the Mixed Crystal of 5b and 6

Structure determination of the crystals obtained after synthesis showed that the sub-
stituents in the para positions of the phenyl rings were shared by H and F atoms, and this
finding is consistent with the mixture of compounds obtained during synthesis (Scheme 1).
The compounds were 4-(benzofuran-2-yl)-3-(4-fluorophenyl)-N-phenylthiazol-2(3H)-imine
(5b) and 4-(benzofuran-2-yl)-N-(4-fluorophenyl)-3-phenylthiazol-2(3H)-imine (6), and the
ratio of 5b:6 in the crystal was 0.33:0.67. Thus, the crystal structure contains a mixture of
molecules 5b and 6 with fluoro substituents on two different benzene rings. Despite the
differences in the electronic properties of the benzene and fluorobenzene groups, solid
solutions of compounds containing these groups can be formed due to the similar sizes of
the groups, as observed in the case of benzoic acid and 4-fluorobenzoic acid [62].

The crystal structure of the mixed crystal of 5b and 6 is monoclinic, space group
P21/c, and an ortep representation of the asymmetric unit is shown in Figure 2b. The
molecule consists of benzofuran (A6, C1–C7, and O1), thiazole (B6, C9–C11, N1, and S1),
benzene/fluorobenzene (C6, C12–C17, and F1), and aminobenzene/aminofluorobenzene
(D6, C18–C23, and F2) groups. In the molecule, the planes of rings A6 and B6 are close, with
a twist angle A6/B6 of ca. 18◦, whereas twist angles B6/C6 and B6/D6 are in the range of
54–78◦ (Table 2).

As in the observation regarding the crystal structure of 5a, C13–H13···N2 interac-
tions (Figure 4a,b) between methoxybenzene and aminobenzene groups of neighboring
molecules form chains parallel to the b-axis in the crystal of 5b/6. The furan groups are
also involved in π···π contact with the thiazole groups of neighboring molecules within the
chain, with ring centroid-to-centroid distances of 3.99 Å.

Also, comparably with 5a, the thiazole groups donate C10–H10···O1 interactions
to neighboring benzofuran groups of adjacent chains (Table 3). Edge-to-face C–H···π
connections between the benzene rings of the benzofuran groups with H···ring centroid
distances of 2.98 Å are also observed (Figure 4a,b).

The chains are also linked through C–H···F interactions involving the aminofluoroben-
zene group. The group accepts a contact from the benzofuran group of a molecule from
an adjoining chain and donates a contact to the fluorobenzene group of another chain.
Interchain C2–H2···S1 contact also occurs.



Crystals 2023, 13, 1239 10 of 15Crystals 2023, 13, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 4. (a) Packing in the structure of the mixed crystal of compounds 5b and 6 and (b) a segment 
of the structure. Intermolecular contacts are shown as dotted lines: green = C–H···N, C–H···O, C–
H···S and C–H···F; blue = C–H···π; red = π···π. 

Figure 4. (a) Packing in the structure of the mixed crystal of compounds 5b and 6 and (b) a segment of
the structure. Intermolecular contacts are shown as dotted lines: green = C–H···N, C–H···O, C–H···S
and C–H···F; blue = C–H···π; red = π···π.



Crystals 2023, 13, 1239 11 of 15

3.4.3. Comparison of Crystal Packing

Generally, the arrangement of molecules in crystal packing depends on a combination
of factors, including steric effects and electrostatic interaction. Steric effects influence
molecular arrangement because the shapes and sizes of molecules and substituents largely
determine the most efficient way the molecules can occupy space efficiently. The molecules
of 5a, 5b, and 6 are identical, apart from the methoxy group in 5a and the fluoro groups
in 5b and 6. The similarity in the core of the molecules is reflected in the similarity in the
twist angles between groups A/B, B/C, and B/D in the molecules (Table 2).

Electrostatic interactions, such as hydrogen bonding, may be directional and can thus
steer molecules so that they pack in a specific way. It is noted here that there are no strong
hydrogen bond donors in molecules 5a, 5b, and 6. For ease of analysis and discussion, the
two molecules in the mixed crystal of 5a and 6 have been treated separately, retaining the
packing obtained from the structural refinement of the mixed crystal structure.

The electron density isosurfaces for the molecules are shown in Figure 5. The positive
regions, shown in red and clearly visible around the hydrogen atoms of the molecules, can
donate weak hydrogen bonds. The negative regions, shown in blue, can accept hydrogen
bonds. The main negative regions that are common to all the molecules are located on the
benzofuran oxygen (O1) and the aminobenzene nitrogen (N2) atoms. Additionally, the
methoxy oxygen in 5a and the fluorine atoms in 5b and 6 are negative.
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The segments that are common to molecules 5a, 5b, and 6 (i.e., all atoms except
methoxy and F) participate in similar intermolecular interactions in the structures. The
Hirshfeld surfaces, which show close contact between molecules, are presented in Figure 6.
The distribution of the close contacts (highlighted in red) is similar for all the common
parts of the molecules. As already discussed, the similar intermolecular contacts in the
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structures involve C13–H13···N2 interactions between the benzene and aminobenzene
groups of neighboring molecules, leading to the formation of chains, and the thiazole
groups donating C10–H10···O1 contacts to neighboring benzofuran groups. Additionally,
the furan groups are involved in π···π contact with the thiazole groups of neighboring
molecules, and edge-to-face contacts between the benzene rings of the benzofuran groups
also occur.
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The electron density isosurfaces are negative for the regions around the methoxy
oxygen and F atoms (the different substituents in 5a and 5b/6), and these atoms are
involved in intermolecular hydrogen-bonding contact. Thus, the methoxybenzene group
accepts a C19–H19···O2 interaction from an aminobenzene group, and C–H···F contacts are
also observed for both the F atoms of molecules 5b and 6 in the mixed crystal. Molecules
5a and 5b have methoxy and fluoro substituents, respectively, on the same benzene ring
(C5a and C6, respectively) and accept hydrogen bonds. However, it is observed that the
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methyl on the methoxy group sterically hinders the oxygen atom and limits the direction
of hydrogen bonding.

4. Conclusions

The successful synthesis of 4-(benzofuran-2-yl)-3-(4-methoxyphenyl)-N-phenylthiazol-
2(3H)-imine in good yields was induced through one-pot reactions of an equimolar mixture
of 4-methoxyaniline, phenyl isothiocyanate, and 2-bromoacetylbenzofuran in the absence
of any catalysts. Under similar reaction conditions, the use of 4-fluroaniline led to the forma-
tion of a mixture of the expected 4-(benzofuran-2-yl)-3-(4-fluorophenyl)-N-phenylthiazol-
2(3H)-imine and the unexpected 4-(benzofuran-2-yl)-N-(4-fluorophenyl)-3-phenylthiazol-
2(3H)-imine. The structures of the newly synthesized heterocycles were determined using
nuclear magnetic resonance spectroscopy and X-ray diffraction.

The crystal structures of 5a and the mixed crystal of 5b and 6 have been established.
The identical segments of the molecules participate in similar intermolecular contacts of
the C–H···N type between benzene and aminobenzene groups of neighboring molecules
that result in the formation of chains, and thiazole groups donate C–H···O contacts to
neighboring benzofuran groups. Furan groups are involved in π···π contact with the
thiazole groups of neighboring molecules, and edge-to-face contacts occur between benzene
rings of adjacent benzofuran groups. The different substituents, methoxy and fluorine, also
accept C–H hydrogen-bonding contacts.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cryst13081239/s1, Figure S1: IR spectrum of 5a; Figure S2: IR spectrum for
the mixture containing 5b and 6; Figure S3: 1H NMR spectrum of 5a; Figure S4: 1H NMR spectrum
(expansion) of 5a; Figure S5: 1H NMR spectrum for the mixture containing 5b and 6; Figure S6: 13C
NMR spectrum of 5a; Figure S7: 13C NMR spectrum (expansion) of 5a; Figure S8: 13C NMR spectrum
(expansion) of 5a; Figure S9: 13C NMR spectrum for the mixture containing 5b and 6; Figure S10: 19F
NMR spectrum for the mixture containing 5b and 6; Figure S11: 19F NMR spectrum for the mixture
containing 5b and 6; Supplementary Files: SF1: CIF for 5a, SF2: CIF for the mixed crystal of 5b and 6;
SF3: CheckCIF report for 5a; SF4: CheckCIF report for the mixed crystal of 5b and 6.
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