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Abstract: Nanoscale metal–organic frameworks (nMOFs) have gained increasingly more attention as
attractive support materials in the immobilization and delivery of proteins for disease theranostics
in recent years owing to their various advantages, such as large specific surface areas, well-ordered
pore structures, aperture channel distributions, and ease of functionalization. Here, we present an
overview of recent progress in nMOF–protein composites for disease theranostics. First, advantages
and construction strategies of nMOF–protein composites as drug carriers are introduced. Then,
therapeutic modalities and theranostic nanosystems based on nMOF–protein composites are reviewed.
Next, we pay specific attention to their biosafety, biodistribution, and excretion in vivo. Finally, the
challenges and limitations of nMOF–protein composites for biomedical applications are discussed,
along with future perspectives in the field.
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1. Introduction

Proteins are composed of amino acid sequences with a delicate spatial structure, which
determine various biological functions. Protein biomolecules are not only important com-
ponents of cells, but are also involved in various cellular processes and body metabolism.
Specifically, many diseases are induced by the changes in intracellular or extracellular
protein molecules, signifying an enormous opportunity for protein therapeutics [1]. Ther-
apeutic proteins have attracted extensive attention in the pharmaceutical industry due
to their high specificity and applicability in a broad range of diseases such as infectious
diseases, chronic inflammatory diseases, cancers, metabolic disorders, autoimmune dis-
eases, and cardiovascular diseases [2,3]. Protein drugs possess many advantages, among
which the most significant are the high bioactivity and specificity when compared to small-
molecule drugs. Unfortunately, the structural flexibility and susceptibility to environmental
stressors related to protein instability not only lead to decreased bioactivity, but may also
potentially elicit undesired immunological responses, hindering the increasing use of thera-
peutic proteins [4,5]. Therefore, it is particularly important to ensure the stability of protein
drugs during production, during transportation, and before reaching the lesion location.
In order to overcome these limitations, researchers have been focusing on developing
nanocarriers, including liposomes, polypeptide inorganic nanoparticles, polymers, etc., to
selectively deliver proteins to lesion locations [6,7].

Porous materials such as mesoporous silica, organic microparticles, sol–gel matrices,
and hydrogels, which possess void volume and a large surface area, are competitive
candidates for protein drug encapsulation and, thus, have attracted much interest in
recent years [8]. Mesoporous silica has attracted much attention due to its large surface
area and pore volume. Notwithstanding, the challenges of reasonable structure design,
leakage of protein from the mesoporous channel, and surface charges that promote protein
denaturation or reduction in protein loading limit the application of mesoporous silica as
a protein carrier [9–11]. Sol–gel matrices are intrinsically porous and can prevent protein
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leakage because of entrapment. However, protein immobilization takes place during sol–
gel synthesis, which may cause protein molecule denaturation. Moreover, the entry of
macromolecular proteins into pores is limited by size mismatch [12,13]. Existing organic
microparticles for protein encapsulation are mainly polycation materials which load protein
molecules via electrostatic interactions. The hematotoxicity and cytotoxicity of cationic
materials limit their application in protein delivery [14,15]. Therefore, it is still very urgent
to find new protein drug carriers.

MOFs have drawn much attention due to their unique properties (Figure 1) among
nanocarriers. MOFs are a kind of material composed of metal-containing nodes connected
via organic ligands, obtaining three-dimensional frameworks with high porosity in the
form of, for instance, cavities, channels, and pores [16,17]. MOFs have become highly
promising materials in a range of fields including catalysis, environment, energy, and
life sciences due to their outstanding features [18]. In the past decades, the research on
MOFs has grown exponentially; a great number of MOFs with various structures have been
reported and have gained a great deal of attention in drug delivery [19–21]. The potential
variation of metal ions and organic ligands and possible postsynthesis modifications endow
MOFs with diversified structures and allow researchers to synthesize multifunctional MOFs
with a determined shape and size for a particular application [22,23]. Specifically, due to
their low biotoxicity and good biocompatibility, as well as their potential to be efficiently
internalized by cells, some MOFs have been developed as protein drug delivery vehicles for
the theranostics of various diseases, such as cancers and diabetes [24]. These advantages of
MOFs make them promising candidates for protein delivery applications in theranostics of
different diseases. This paper reviews the vital advances in MOF–protein composites; a
large amount of research concerning MOF-based materials as protein drug delivery systems
for the treatment of different diseases has been summarized in this comprehensive review.
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2. Construction of nMOF–Protein Composites

MOF–biomolecule composites have been widely applied in bio-related fields, such
as biocatalysis, imaging, biosensing, drug delivery, and gene-based therapeutics, because
they possess the versatile functionalities of biomolecules, such as nucleic acids, peptides,
and proteins [25,26]. Notably, the combination of proteins with MOFs preserves and even
enhances the bioactivity of proteins, which has promising prospects in biosensing, catalysis,
and protein therapeutics. Proteins’ large size and sensitive structure make it a challenge to
combine them with MOFs or even encapsulate them into MOFs, which is different from
small biomolecules. Special strategies are needed to prepare the MOF–protein compos-
ites [27]. Due to the presence of numerous functional groups on the surface of the protein
molecules, it is relatively easy to combine them with MOFs via covalent bonds or weak in-
teractions, for instance, π–π interactions, hydrogen bonding, and hydrophobic/hydrophilic
interactions [28,29]. These synthesis strategies can be divided into four categories: sur-
face attachment, pore entrapment, covalent linkage, and coprecipitation (Figure 2) [30,31].
Attaching proteins to the surface of MOFs (surface attachment and covalent linkage) is a
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straightforward and general method to combine MOFs with proteins, owing to having
no special requirements for the composition and internal structure. This method allows
MOFs to be presynthesized, which allows synthetic conditions to be outside those of the
denaturation ranges of the target protein. Furthermore, the method can preserve the origi-
nal structure and function of the protein to the greatest extent via immobilizing protein
molecules onto the surface of MOFs by weak interactions (i.e., surface attachment) or
covalent bonds (i.e., covalent linkage) [32,33].
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Pore entrapment is a vital strategy and has the following advantages in protein delivery
by using MOFs with mesoporous cavities [34]: (1) Protein molecules can be physically
adsorbed into the cavity instead of adhering to the MOF surface, which helps to reduce
protein drug leakage and improve stability in vivo. Physical adsorption of the protein
into the pore cavity provides an additional protective layer because substances that cause
protein denaturation have to be able to diffuse through the pore channels to access the
protein. (2) A high protein loading because of the enhanced pore volume and void space
when compared with microporous MOFs. (3) The pore size of the frameworks can provide
size selectivity for specific substrates, which is difficult to achieve with surface immobilized
proteins (i.e., enzymes).

Proteins also can be covalently anchored on the surface of MOFs, which is typi-
cally achieved by the free amino groups on the proteins or MOF surface forming pep-
tide bonds with carboxylate groups on the MOFs or enzyme surface, respectively [35].
The linkage is commonly conducted by carboxylate activating catalytic agents, such as
N,N′-dicyclohexylcarbodiimide (DCC) or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
(EDC). In order to meet the requirements of in vivo application, by-products must be
removed after the reaction. Amidation and subsequent treatment may lead to partial
inactivation of proteins. Moreover, chemical derivatives that cannot be removed may cause
serious adverse reactions. These are the shortcomings of surface chemical bonding when
compared to other methods.

Coprecipitation is an important method for protein coating using MOFs. In this
strategy, the most commonly used protein coating MOF material is a zeolitic imidazolate
framework (ZIF) [36–38]. Proteins can be coated in situ during the synthetic process via
producing defects in the ZIF crystals. The strategy allows for the inclusion of a guest
protein molecule, whose size is larger than the pore openings of the MOFs, which acts as a
protective coating. As such, the MOFs can prevent the leakage of protein molecules from
the pores and also protect the proteins from being degraded by digestive enzymes.

3. nMOF–Protein Composites for Diseases Theranostics
3.1. nMOF–Enzymes

In human history, we have always learned from nature to solve complex problems,
such as self-healing, solar energy harvesting, aerodynamics, and catalysis. Enzymes, na-
ture’s catalysts, are one class of biomacromolecules of interest from a biomimetic standpoint.
Regulating the amount of enzymes in cells or tissues by biological methods is an important
means for the treatment of some diseases due to their efficient catalytic ability [39–43]. In
addition, we can also cure a disease by delivering enzymes to tissues or cells. However,
the strategy is limited in application owing to the fact that most enzymes in organisms
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are proteins, which are easily degraded by protease and easy to deactivate in vivo. On the
other hand, the lack of long-term storage stability also limits their application in pharmacy.
Immobilization can lead to increased enzyme handling, stability, and recoverability, which
in turn reduce costs. As mentioned above, existing protein encapsulation methods have
enormous challenges in application, and the immobilization of enzymes also has similar
problems. Therefore, it is still urgent to develop enzyme carriers which can prevent enzyme
degradation and denaturation.

MOFs offer many outstanding properties that have received a lot of attention in
enzyme immobilization and delivery. The structures of MOFs are highly tunable, such
as their surface area, and their pore size, volume, and shape can be optimized for the
encapsulation and/or immobilization of specific enzymes [44,45]. Moreover, MOFs can
be reasonably designed to be robust under harsh thermal, physiological, and chemical
conditions, which is vital for immobilization and subsequent protection of enzymes under
challenging catalytic conditions [46,47]. Lastly, different targeted ligands can be modified
on the surface of MOFs, and this is of great significance for targeted therapy.

The therapeutic effect of traditional chemodynamic therapy (CDT) agents is severely
limited by glutathione (GSH) overexpression and the weakly acidic pH in the tumor
microenvironment (TME) [48,49]. To combat this challenge, Zhao et al. [50] developed a
fusiform-like copper(II)-based tetrakis (4-carboxy phenyl) porphyrin (TCPP) nanoscale
MOF (Figure 3). In order to construct the intelligent anti-tumor nMOFs, firstly, glucose
oxidase (GOD) was linked to the surface of PCN-224(Cu) MOFs by an amide bond via
EDC catalysis. The reaction product (PCN-224(Cu)-GOD) was then coated with MnO2 after
purification. Thus, PCN-224(Cu)-GOD@MnO2 was obtained. The MnO2 layer prevented
the damage of GOD in PCN-224(Cu)-GOD@MnO2 to normal cells and also increased the
O2 content by decomposition of MnO2 in the TME. Meanwhile, the generated O2 promoted
the oxidizing reaction of Glu via the enzyme catalysis of conjugated GOD of PCN-224(Cu)-
GOD, which elevated the H2O2 concentration in the tumor cells. Moreover, the depletion
of GSH in the TME could reduce the Cu2+ in PCN-224(Cu) into Cu+, and the combination
of Cu+ and H2O2 generated ·OH due to a Fenton-like reaction. Additionally, 1O2 could
be produced by the Russell mechanism via the combination of Cu+, O2, and H2O. In vivo
fluorescence and MRI confirmed the rapid accumulation of PCN-224(Cu)-GOD@MnO2
nMOFs in tumor sites. Cell and in vivo experiments showed the good biosafety and
antitumor effect of the nMOFs via the combination of CDT and starvation, which was
consistent with the hypothesis of the researchers.
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Multidrug resistance (MDR) is a primary reason for poor chemotherapy outcomes in
both clinical and experimental trails [51]. In order to overcome MDR in chemotherapy, a
similar study was conducted by Xu et al. [52]. Their group designed a Cu2+-based metal–
organic framework (COF) and employed it as a carrier to deliver glucose oxidase (GOx)
and doxorubicin (Dox) (COF/GOx/Dox) to treat MDR lung cancers. They expected the
GOx to catalyze glucose and produce H2O2. Meanwhile, the Cu2+ of COF/GOx/Dox
can react with GSH and then be reduced into Cu+, which would result in GSH depletion.
Afterwards, the produced Cu+ and H2O2 generate ROS to damage the redox equilibrium of
cancer cells via a Fenton reaction. They attempted to integrate starvation and chemokinetic
therapy organically to overcome MDR. In the experiments, they firstly synthesized the
COF via a facile one-pot approach. GOx and Dox were then encapsulated into COF via
incubation. COF/GOx/Dox nanoparticles were obtained after centrifugal purification.
They used the optimal charge ratios to finally obtain a loading content of 13.6% to Dox and
3.38% to GOx. The TEM images of COF/GOx/Dox revealed that the nanoparticles were
spherical with a size of around 80 nm. The H2O2 generation capacity of COF/GOx/Dox
was confirmed by incubating it with different concentrations of glucose; the concentration
of H2O2 increased with the introduction of glucose in a positive dependent manner. The
gluconic acid produced from the GOx-mediated glucose catalysis reduced the pH of the
incubation solution and the results also demonstrated that the COF was an excellent carrier
of GOx. The anticancer profile of the COF/GOx/Dox was explored and the results showed
it had good anticancer properties in vitro and in vivo.

3.2. nMOF–Antibody

nMOFs have provided an effective platform for macromolecule loading, drug en-
capsulation, photodynamic therapy, and other biomedical applications. nMOFs are ex-
cellent radiosensitizers for radiotherapy–radiodynamic therapy (RT-RDT) [53,54]. In or-
der to augment nMOF-mediated RT-RDT, Ni et al. [55] developed a kind of nMOF to
co-deliver anti-CD47 antibodies (αCD47) and TLR-7 agonists (imiquimod, IMD) to mod-
ulate macrophages and orchestrate cancer immunotherapy (Figure 4). They synthesized
IMD@Hf-DBP/αCD47 (DBP = 5,15-di(pbenzoato)porphyrin) via sequential Hf-DBP sur-
face modification, IMD loading, and αCD47 adsorption. The addition of αCD47 to a PBS
suspension of IMD@HfDBP with vortexing afforded IMD@Hf-DBP/αCD47 with 7.5 wt%
αCD47 loading. Further studies indicated that IMD@Hf-DBP/αCD47 activates innate
immunity to orchestrate adaptive immunity and effectively modulates the immunosuppres-
sive tumor microenvironment when synergized with an anti-PD-L1 immune checkpoint
inhibitor, leading to complete eradication of both primary and distant tumors in a bilateral
colorectal tumor model. Herein, nMOFs provide a splendid platform to co-deliver multiple
immunoadjuvants for macrophage therapy to induce systematic immune responses and
excellent antitumor effects.

Cherkasov et al. [56] engineered antibody-directed nMOFs which were capable of
specific targeting and killing of cancer cells in vitro. They firstly synthesized Fe3O4 nanopar-
ticles with a general method. Then, the growth of the MIL-100 shell on the surface of the
previously obtained Fe3O4 nanoparticles was initiated. Next, the nMOF (Fe3O4@MIL-
100(Fe)) was capped with carboxymethyl-dextran and doxorubicin was loaded via incuba-
tion with Fe3O4@MIL-100. Anti-HER2/neu antibodies were conjugated with the nMOF via
an amide reaction. They studied the specificity of immobilized antibodies for cell targeting
via performing imaging flow cytometry on HER2/neu-positive BT-474 and SK-BR-3 cells,
using CHO HER2/neu-negative cells as a negative control. The results demonstrated the
trastuzumab-guided selective targeting and killing of HER2/neu-positive breast cancer
cells in vitro. This approach expands the scope of nMOF applications and shows promise
for the development of potent theranostic nanoagents.
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3.3. nMOF–Insulin

Millions of people suffer from diabetes worldwide, and the number of diagnoses
continues to increase annually. This metabolic disease leads to chronic organ injury, and
in some cases, death. Diabetes induces excessive glucose contents in the bloodstream of
affected individuals, which is the direct reason for many complications in diabetes [57].
Under normal physiological conditions, the pancreas regulates the concentration of glucose
in blood plasma by producing insulin. At present, direct insulin injections remain the
only effectual treatment for insulin-resistant patients, although several therapies have
been designed to treat type I (T1DM) and type II (T2DM) diabetes mellitus [58]. The
oral route can imitate the dynamics of endogenous insulin, which is concentrated in the
liver via the portal vein. Additionally, insulin in the liver can facilitate the storage of
glycogen and reduce blood glucose, while subcutaneous injection of insulin fails to satisfy
these requirements [59–61]. Therefore, the development of an oral insulin preparation is
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necessary to reduce the inconvenience and pain inflicted on patients due to routine insulin
subcutaneous injections.

The instability of insulin caused by proteolytic enzymes in the gastrointestinal tract
has hindered the development an oral insulin delivery agent [62]. In the gastrointestinal
tract, the disulfide bonds in insulin are first cleaved by gastric acid, which induces its denat-
uration. Unfolded chains of the denatured insulin are then broken into short multipeptide
segments by pepsin. All these factors lead to unsuccessful transport of insulin across the
intestinal epithelium into the bloodstream. Thus, an acid-stable, highly porous material
may protect insulin from degradation and exhibit a high insulin loading capacity. Chen
et al. [63] published one of the earliest insulin encapsulation strategies via using an MOF
(Figure 5). They immobilized insulin in a crystalline mesoporous MOF, NU-1000, and a
high loading of ~40 wt% was obtained in only 30 min. They found the acid-stable MOF
capsules could effectively protect insulin from degradation in the presence of stomach acid
and the digestive enzyme, pepsin. Furthermore, the loaded insulin can be released from
NU-1000 under simulated physiological conditions.
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In order to overcome barriers such as insulin degradation in the gastrointestinal envi-
ronment and low permeation across the intestinal epithelium, Zhou et al. [64] developed a
novel biodegradable nanocomposite microsphere embedded with nMOFs. Their team first
synthesized an iron-based nMOF (MIL-100) as a carrier with an insulin loading capacity of
35%. To promote the insulin permeation across the intestinal epithelium, the insulin-loaded
MIL-100 nanoparticles were then modified with sodium dodecyl sulfate (Ins@MIL100/SDS).
Lastly, Ins@MIL100/SDS nanoparticles were embedded into a biodegradable microsphere
to construct the nanocomposite delivery system (Ins@MIL100/SDS@MS) to improve the
resistance to the gastric acid environment. They investigated the release profiles of the
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insulin-loaded nMOFs at physiologically relevant pHs via fluorescence methods. The re-
sults demonstrated that the microspheres could release insulin-loaded nMOFs in simulated
intestinal fluid and effectively protect the nMOFs from rapid degradation under acidic con-
ditions. Intestinal absorption of the insulin was further detected, and they found increased
intestinal absorption of the insulin in the oral administration of Ins@MIL100/SDS@MS to
BALB/c nude mice compared to the oral administration of free insulin or Ins@MIL100/SDS.
Apparently increased plasma insulin levels were observed for over 6 h after oral adminis-
tration of Ins@MIL100/SDS@MS to diabetic rats, resulting in a remarkably enhanced effect
in lowering blood glucose levels with a relative pharmacological availability of 7.8%. The
study shows the great application prospect of MOFs in oral protein delivery.

4. Biosafety, Biodistribution, and Excretion
4.1. Biosafety

Biosafety issues hinder the biomedical application of many nanomaterials and have
attracted particular attention. Although many nanomaterials, such as graphene oxides
and gold nanoparticles, have showed superior properties in drug delivery, their potential
long-term cytotoxicity brings a lot of challenges to clinical translation [65]. MOFs are
formed from metal ions and organic ligands through simple coordination, which makes the
synthesis of MOFs easier compared to other nanomaterials. Many toxic substances derived
from the complex synthesis process, such as organic solvents and toxic reaction by-products,
are avoided in the synthesis of MOFs [66]. Therefore, MOF–protein composites have certain
advantages in clinical application. On the other hand, metal ions (e.g., Fe3+, Mn2+, and
Zn2+) are important nutrient elements and show minimal acute toxicity and long-term
toxicity. For instance, Singamaneni et al. [31] reported a facile approach using a nanoporous
material, zeolitic imidazolate framework-8 (ZIF-8), as a carrier for preserving the prototypic
protein therapeutic insulin. In order to evaluate the biocompatibility of insulin-embedded
ZIF-8, they sacrificed mice treated with ZIF-8-encapsulated insulin and PBS 5 d after insulin
administration for histological analysis. The hematoxylin and eosin (HE)-stained images of
major organs in the two groups showed similar structures. No apparent histopathological
abnormalities or lesions were observed in the heart, liver, spleen, lung, or kidney. In
addition, there was no weight loss in either group after 5 d od administration. The results
demonstrated the excellent biocompatibility of insulin-embedded ZIF-8. Considering
repeated drug administration, as is the case with insulin, the feasibility of removing
dissolved ZIF-8 residues was tested. The ZIF-8-encapsulated insulin was first released by
adding EDTA and then filtered to remove any ZIF-8 byproduct by centrifugation through a
3 kDa filter. After washing three times, HPLC mass spectrometry analyses showed that
more than 99% of 2-methylimidazole can be removed. The purification step mitigates the
toxicity concern and the results further proved ZIF-8 as a safe carrier of insulin.

Zhang’s team [52] reported a glucose-oxidase-loaded, Cu2+-based metal–organic
framework (COF/GOx/Dox) for glutathione depletion/reactive oxygen species elevation
enhanced chemotherapy in 2021. The effective anticancer performance of COF/GOx/Dox
was proven in vivo. They conducted a biosafety assay to confirm the biocompatibility of
COF/GOx/Dox. The liver function of the mice was evaluated via testing alanine amino-
transferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels
after treatment. The liver function of the mice was also assessed via testing creatinine
(CREA), uric acid (UA), and blood urea nitrogen (BUN). No significant differences were
found between control and COF/GOx/Dox groups, which suggested the high biocom-
patibility of the formulation. HE staining of major organs also revealed similar results.
Although most of the data reported by previous researchers confirm the biocompatibility
of MOF–protein composites, it is still difficult to conclude the biosafety of MOF–protein
composites without strict toxicology research performed in a standard GLP lab.
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4.2. Biodistribution

In order to obtain better therapeutic effects and reduce nMOF–protein composite aggre-
gation in non-focal sites, researchers have designed many nMOF–protein composites with
tissue selectivity, especially for cancer theranostics. On the one hand, nano MOF–protein
composites can be selectively enriched in tumors through the EPR effect. On the other
hand, targeted ligand modification on the surface endows nano MOF–protein composites
with active targeting tumor capabilities. Biodistribution is an important parameter to assess
the therapeutic index and targeted effects of nanosystems. Yang’s team [50] designed
fusiform-like copper(II)-based MOFs (PCN-224(Cu)-GOD@MnO2) for synergetic cancer
therapy and achieved remarkable antitumor efficacy in U14 tumor-bearing Kunming mice.
They examined the biodistribution of tetrakis (4-carboxyphenyl) porphyrin-labeled PCN-
224(Cu)-GOD@MnO2 nMOFs via an in vivo fluorescence imaging system using cervical
cancer cell (U14) tumor-bearing Kunming mice. Gradual accumulation of the nMOFs in
tumor areas was found, reaching a maximum after 4 h of intravenous injection. They
speculated that the enhanced permeability and retention (EPR) effect induced the accumu-
lation of nMOFs. Such a passive targeting effect has also been observed for many other
nMOF-based drug delivery systems. The effect is highly influenced by particle size and
cancer type. However, a recent report has questioned the EPR effect due to its low tumor
targeting efficiency. Additionally, the fluorescence signal continually decayed in the tumor,
and the regions of the liver and kidney emitted strong fluorescence with prolonged time,
which suggested the nanocomposites are mainly metabolized by the liver and kidneys. This
phenomenon is also common in other nano drugs, which may cause hepatorenal toxicity.
These studies point the way for later research into nMOFs clinical application and have
spurred more elegant designs to solve the nMOF-based protein delivery problem.

Chen’s team [64] reported a nanocomposite vehicle based on MOF nanoparticle-
incorporated biodegradable microspheres (Ins@MIL100/SDS@MS) for enhanced oral in-
sulin delivery. They detected the insulin distribution via a Maestro In Vivo Imaging System
and CLSM using RhoB-Ins as model insulin after oral administration of the nanocomposites.
Intestinal villi were sectioned and visualized at 4 h post-administration to investigate the
intestinal absorption of insulin. The intestinal villi of the mice orally administered with
Ins@MIL100/SDS@MS showed a higher fluorescence intensity of RhoB-Ins than those
treated with free insulin or Ins@MIL100/SDS nanoparticles, which demonstrated that
the microspheres containing Ins@MIL100/SDS NPs could effectively promote the trans-
portation of the insulin-loaded systems into the intestine and improve their subsequent
permeation across the mucus and epithelium. The biodistribution of RhoB-Ins fluorescence
varied in different organs. Strong fluorescence signals were observed in the liver and
kidneys, while those in the heart, spleen, and lungs were relatively weaker. The stronger
insulin fluorescence in the liver indicated that insulin released from Ins@MIL100/SDS@MS
may initially circulate through the portal veins to the liver, followed by entry into cardiac
tissue. Insulin leads to glucose storage as glycogen in the liver, which is vital for glucose
metabolism in type 1 diabetic patients. Thus, oral insulin delivery systems based on MOF-
NP-incorporated microspheres show great potential for lowering the levels of blood glucose
post-meal. This study suggests that we should pay more attention to the physiological
characteristics of the gastrointestinal tract when designing oral insulin preparations, which
are different from intravenous preparations. The above two studies also suggest that the
design of MOF-based protein delivery systems needs to pay more attention to the purpose
of treatment of different diseases. As the biodistribution results show above, diabetics may
benefit from the aggregation of nMOF-based insulin delivery systems in the liver, but this
is a disadvantage in nMOF-based antitumor drug delivery due to possible hepatotoxicity.

4.3. Excretion

Excretion is a vital index to evaluate the biocompatibility and biosafety of NPs. Ideally,
nMOF–protein composites can be degraded and release drug molecules at the target site,
and the degraded MOF materials can then be excreted by the liver or kidney. Theoreti-
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cally, the clearance of nMOF-based protein delivery systems can be directly studied via
measuring metal concentrations [67]. To achieve high biocompatibility and biosafety, the
nMOFs should be completely cleared from the body within a reasonable period of time.
Typically, renal excretion has an advantage over hepatic clearance due to faster elimination.
The nMOFs should have a suitable size that can pass through the glomerular filtration
membrane to improve the renal clearance rate. For example, Wang et al. [68] developed
renal excretory Fe(III)–GA networks (namely Fe-CPNDs) with a 5.3 nm diameter, which
could be rapidly excreted by the kidney in the body of tumor-bearing mice after tail vein
injection, with a blood elimination half-life (t1/2β) of 5.5 ± 1.9 h. Meanwhile, notable tumor
suppression was observed after photothermal therapy under 808 nm NIR laser irradiation.

However, although such ultra-small-sized nanoparticles (<6 nm) benefit from rapid
renal excretion, a weakened EPR effect for tumor accumulation was reported [69]. In order
to balance the therapeutic requirements and the biosafety concerns for clearance, Chen
et al. [70] designed a multifunctional MOF-based nanoplatform (FeAP-NPs) synthesized
by using ACN, Fe3+, and PLG-g-mPEG, which had a particle size of 65 nm for selective
enrichment in MCF-7-bearing nude mice. In order to reduce accumulation of the nanoplat-
form in the liver because of high reticuloendothelial system (RES) retention, deferoxamine
mesylate (DFO, a strong chelator of iron) was used to dynamically disassemble FeAP-NPs
in vivo. The results showed the Fe content was markedly increased in the kidney, while
it was significantly decreased in the liver upon injection of DFO, which switched the NP
elimination pathway from hepatic excretion to renal excretion. The study provides a gen-
eral solution to enhance the in vivo clearance of nMOF-based protein delivery systems to
combat their potential toxicity. In addition to mechanical barriers, electrical barriers of
glomerular filtration membranes also affect the excretion of nMOFs [71,72]. In general,
neutral and positively charged particles are more likely to pass through the glomerular
filtration membrane than negatively charged particles due to the intrinsic electronegativity
of the membrane. Therefore, we believe that developing charge transformation nanosys-
tems is another effective strategy to increase renal clearance to enhance the biosafety of
nMOF-based protein delivery systems in the future.

5. Conclusions and Perspectives

In recent years, nMOFs have been recognized as a class of promising nanomaterials for
the delivery of functional proteins due to their abundant porous framework architectures,
allowing not only high protein loading but also improving the stability of the encapsulated
proteins [70]. nMOF-based protein composites show great potential in the clinical treatment
of different diseases. We summarized some advantages of the MOFs in protein delivery
and general methods for protein encapsulation. The applications of nMOF-based protein
composites in treatment of different diseases were reviewed. The biosafety, biodistribution,
and excretion of nMOF–protein composites were also reviewed. Published works have
demonstrated that MOFs can prevent protein degradation and preserve the bioactivity of
proteins to achieve drug delivery of protein therapeutics in vivo.

Although the relevant reports showed the advantages of nMOFs for enzyme, insulin,
and antibody delivery in cancer and diabetes therapies, we should realize that this area
of research is still in its preliminary stages, and some challenges and deficiencies in their
application remain to be solved. For instance, proteins loaded via surface attachment may
suffer significant leaching under physiological conditions due to the weak noncovalent
interactions between proteins and MOFs, and this method may not protect proteins from
degradation due to direct exposure to the environment [72,73]. Thus, surface attachment
encapsulation via MOFs is not suitable for the delivery of oral protein drugs such as insulin,
which is easily degraded by digestive enzymes in the digestive tract. In addition, targeted
ligands are usually modified on the surface of MOF carriers to achieve targeted therapy,
which inevitably increases the complexity of the synthesis of nMOF–protein composites.
This increases the possibility of protein molecules being destroyed, which may cause
serious side effects in clinical applications [22]. This suggests that we should simplify the
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synthesis process of nMOF–protein composites. Last but not least, in vivo studies on the
degradation mechanism, stability, and side effects of nMOF–protein composites have not
been systematically carried out, and the practical therapeutic effects need to be evaluated
comprehensively. Olesya et al. [73] found a strong correlation between the amount of
escaped cargo from ZIF-8 and the total concentration of amino acids in the environment,
which reminds us that some nMOFs may not be stable in plasma. Finally, we believe that
increasingly more applications of nMOF–protein composites for disease diagnosis will be
discovered in further studies.
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