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Abstract: Histidine triad nucleotide-binding protein 1 (HINT1) is the oldest and most widely dis-
tributed branch of the histidine triad superfamily of proteins. The HINT1 protein plays an important
role in various biological processes and has been found in many species. Here we report the first
nearly complete structure of the human HINT1 protein at 1.43 Å resolution obtained from a crystal
of the P212121 orthorhombic space group. The final structure has an Rcryst = 22.4% (Rfree = 27.7%)
and contains a fragment of the N-terminal part that was not determined in the previously deposited
structures. In addition, selective binding of the L-malate ion was detected, which had not been
observed previously.
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1. Introduction

Histidine triad nucleotide-binding protein 1 (HINT1) belongs to a branch of the his-
tidine triad protein superfamily (HIT), which consists mainly of mono- and dinucleotide
hydrolases and nucleotide transferases. They have a characteristic active site motif HXHX-
HXX, where X is a hydrophobic residue [1]. HINT1 and other HINT proteins are the most
highly conserved members of the HIT superfamily, and their homologs are found in many
organismal kingdoms, including metazoans [2–4], plants [5], fungi [6], and bacteria [7,8].
HINT1 is expressed in numerous tissues and is present in cell nuclei and cytoplasm, but its
function is only partially elucidated. It is involved in transcriptional regulation [9–15] and
cell cycle control [16]. In mammals, HINT1 modulates apoptosis in cancer cells and is a
potential tumor suppressor [12,14,17–23]. Recent studies have shown that HINT1 plays an
important role as a platform protein in the formation of the G protein-coupled receptors
(GPCRs) MOR (µ-opioid receptor) and CNR1 (cannabinoid receptor type 1) [24,25].

The first crystal structure of HINT1 was published in 1996 [26], and the protein was
first described as an inhibitor of protein kinase C [27] and later as PKCI (protein kinase C-
interacting) [28]. The name “HINT” resulted from structural analysis [29]. Currently, many
HINT1 structures are deposited in the PDB, including human [26,30–32], rabbit [29,33,34],
and bacterial homologs [8–10]. The deposited structures show HINT either in the apo
state [26] or as complexes with selected ligands—either substrate analogs or products of
their hydrolysis [8,30,33]. The best resolution of data for HINT1 to date was 0.95 Å for a
human homolog (PDB code 6j64) [35].

In vitro studies indicate that human HINT1 binds multiple nucleotides, e.g., adenosine-
5’-monophosphate (AMP), adenosine-5’-diphosphate (ADP), and the diadenosine polyphos-
phates 5’,5”-diadenosine triphosphate (Ap3A) and 5’,5”-diadenosine tetraphosphate
(Ap4A) [30]. Rabbit HINT1 (rHINT1) also binds certain purine nucleosides and nu-
cleotides [29]. HINT proteins exert phosphoramidase activity toward adenosine 5’-O-
phosphoramidate (AMP-NH2) [2]. Lysyl adenylate (produced by lysyl-tRNA synthetase
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(LysRS)) is also considered a substrate for HINT1 hydrolase [36,37]. HINT1-assisted hy-
drolysis of P–N bonds in nucleoside 5’-O-phosphoramidates [38] and desulfuration of
nucleoside 5’-O-phosphorothioates [35,39] have been documented.

To date, all mammalian HINT1 structures deposited in the Protein Data Bank lack the
first eleven N-terminal amino acids, and electron density maps show only the remaining
115 residues. The length of this truncated structure is similar to that of E. coli HINT1, which
is shorter than the mammalian protein (119 amino acids). In the present manuscript, we
show and discuss data demonstrating a nearly complete structure of the N-terminal part
of the protein chain, refined to 1.43 Å. This improvement may be related to the modified
arrangement of the HINT1 molecules in an asymmetric unit (compared to the previously
reported crystal structures obtained in the same space group) when modified crystallization
conditions were used.

2. Materials and Methods
2.1. Cloning, Expression, and Purification of hHINT1

Human HINT1 protein was expressed and purified in an E. coli BL21 strain using a
pSGA02-hHINT1 plasmid as previously described for rabbit HINT1 [40]. Purification was
performed in one step by AMP-agarose (Sigma) affinity chromatography. The homogeneous
protein preparation was dialyzed against a buffer containing 20 mM Tris-HCl (pH 7.5) and
150 mM NaCl, concentrated to a protein concentration of 10 mg mL−1, frozen in liquid
nitrogen, and stored at −80 ◦C.

2.2. Crystallization of hHINT1

Human HINT1 was crystallized by a standard hanging drop variant of the vapor
diffusion method using a protein solution with a concentration of 6 mg mL−1. Suitable
crystals were obtained during crystallization experiments under Jena Biosciences JBScreen
PACT ++ conditions. Aliquots of a 1.5 µL protein solution were mixed with a 1.5 µL
precipitation solution and the crystallization droplets were suspended over a 500 µL
precipitation solution. After 72 h of storage at 281 K under PACT ++ 2 D4 conditions (25%
w/v PEG 1500 and 0.1 M MMT buffer pH 7.0), several suitable crystals (plate-shaped with
typical dimensions 0.6 × 0.35 × 0.05 mm, Figure 1) were obtained.
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2.3. Data Collection, Structure Determination, and Refinement

The crystals studied did not require cryoprotection, but were deposited on a very
thin film of crystallization buffer. The excess liquid was removed by gently touching the
mounting loop on the plate surface, and the crystal was then cooled directly in an N2
stream. Diffraction data were acquired with synchrotron radiation using a Dectris Pilatus
6M detector at the BL14.1 beamline of the BESSY II synchrotron (Berlin, Germany) [41]. The
data were processed, integrated, and scaled using an XDS package [42]. Data acquisition
and processing statistics are listed in Table 1.

Table 1. Crystallographic parameters, data collection and refinement statistics for the HINT1 structure
described here. Values in parentheses correspond to the highest resolution shell.

PDB Entry 6g9z

Space group P212121
Wavelength (Å) 0.96690

Unit-cell parameters
a (Å) 46.08
b (Å) 63.38
c (Å) 76.84

Total no. of reflections 154,268
Unique reflections 40,954

Resolution (Å) 39.52–1.43 (1.51–1.43)
Completeness (%) 96.1 (92.7)

CC(1/2) (%) 99.4 (83.3)
Rmerge

a (%) 13.7 (70.3)
Redundancy 3.77
Mosaicity (◦) 0.21

Wilson B factor (Å2) 15.0
Mean I/σ(I) 8.78 (1.96)

Refinement statistics
No. reflections used in refinement 38,759

No. reflections used to Rfree 2041
Rcryst (Rfree) b 0.224/0.277

No. non-H atoms
Protein 1998
Solvent 401
Ligands 9 (malate ion)

R.m.s.d. from ideal values
Bond lengths (Å) 0.016
Bond angles (◦) 1.812

Ramachandran plot c

Favored (%) 98.4
Allowed (%) 1.2
Outliers (%) 0.4

Mean B values d

Protein (Å2) 8.53
Malate ion (Å2) 14.26

Water (Å2) 25.53
a Rmerge = ∑h ∑i |Ii(h)− 〈I(h)〉|/∑h ∑i Ii(h), where Ii(h) is the intensity of an individual measurement of the
reflection and 〈I(h)〉 is the mean intensity of the reflection. b Rcryst = ∑h||Fo | − |Fc||/∑h|Fo | for all reflections,
where FO and FC are observed and calculated structure factors, respectively. Rfree is calculated analogously for
the test reflections, randomly selected, and excluded from the refinement. c Calculated using MOLPROBITY. d

Calculated using BAVERAGE.

The structure was solved by molecular replacement with MOLREP [43], using the
protein model of the hHINT1 crystal structure (PDB entry 3tw2 [32]) as a search model.
Refinement was performed using REFMAC5 [44]. After calculating an initial electron
density map, the structure was completed by alternating manual building cycles (in the
program COOT [45]), including rebuilding the main and side chains, adding alternative
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conformations of selected residues, loop fragments, ligand, and solvent molecules. All
refinement steps were monitored using Rcryst and Rfree values. The stereochemical quality
of the resulting model was evaluated using the program MOLPROBITY [46] and the
validation tools implemented in COOT. The values of the mean temperature factors for the
main and side chains of the protein, the ligands, and the water molecules were calculated
using the BAVERAGE program from the CCP4 suite. Interface analysis was performed
using an EBI PISA server [47]. The refinement statistics of the described structures are
listed in Table 1. All figures were generated using PyMOL v.1.7 [48].

2.4. Mass Spectrometry Analysis

Positive ion MALDI-TOF mass spectra were acquired using a Voyager-Elite (PerSep-
tive Biosystems Inc., Framingham, MA, USA) instrument equipped with a nitrogen laser
(337 nm) and operating in linear mode at 20 kV accelerating voltage and delayed extraction.
A mixture of 10 mg mL−1 solution of trans-3,5-dimethoxy-4-hydroxycinnamic acid with
50% acetonitrile in water was used as the matrix. A 1 µL aliquot of the 10 pmol µL−1

protein solution in deionized water was mixed with 1 µL of the matrix on a MALDI plate
and air dried. A mass spectrum from at least 100 laser shots was accumulated and analyzed
using a Data Explorer ver. 4 (Applied Biosystems, Foster City, CA, USA).

3. Results and Discussion
3.1. Overall Structure of a New Crystal Form of hHINT1 in Space Group P212121

The crystal structure of hHINT1 (an extended model refined to 1.43 Å and referred to
here as form II, in contrast to previously published form I [26,30,49]) contains two protein
molecules as well as 401 water molecules in the asymmetric unit, giving an R-factor of
0.224 (Rfree = 0.277). In addition, an L-malate ion (2-hydroxybutanedioic acid residue), a
component of the crystallization buffer, was identified in the nucleotide-binding cleft of
one of the chains. Almost all protein residues were in favored/allowed Ramachandran
conformations, except Val10 of chain B. A pair of molecules around the non-crystallographic
twofold symmetry axis parallel to the x-axis of the crystal formed a homodimer (Figure 2).
Subunit dimerization was identical to that observed previously and occurs over a broad
interfacial region providing multiple polar interactions and salt bridges between chains A
and B on the accessible 1902.6 Å2 surface area. Each subunit exhibited the typical HINT1
fold and consisted of five β-strands and two α-helices. In contrast to previously published
mammalian HINT1 structures, including those refined to atomic resolution, the detailed
electron density analysis in maps 2 FO − FC and FO − FC allowed for an extension of the
existing model so that the final HINT1 model of the form II included residues 6–126 of the
A chain and 9–126 of the B chain. The data obtained allowed for modeling of alternative
side-chain rotamers for nine residues of the A chain and ten residues of the B chain, with
possible double or multiple conformations.

3.2. Two Crystal Forms—The Same Space Group

The form II of HINT1 was crystallized in an orthorhombic P212121 space group and
showed significant differences compared to form I (PDB entry 5klz) [49]. The b and c unit
cell parameters of the II form were smaller by 17% and 4%, respectively (form II: a = 46.08 Å,
b = 63.38 Å, c = 76.84 Å; form I: a = 45.83 Å, b = 75.92 Å, c = 80.79 Å). A comparison of the
calculated Matthews coefficients for form I (2.49 Å3 Da−1; 50.66% solvent content) and
form II (2.03 Å3 Da−1; 39.51% solvent content) revealed that the crystals of form II were
much more densely packed, with a loss of solvent content of more than 10% (Figure 3).
The denser crystal packing dramatically increased the number of crystal contacts, from
only three detected hydrogen bonds between symmetry-related molecules in form I to
thirteen hydrogen bonds and eight salt bridges in form II. The size of the interface with
symmetry-related protein chains increased from 940.3 Å2 (form I) to 1673.1 Å2 (form II) [47].
The observed degree of packing for form II was comparable to that previously observed
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in crystals of the C2 monoclinic space group (VM = 2.08 Å3 Da−1) [32]. Comparisons with
other crystal forms listed in the Protein Data Bank are shown in Table 2.
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3.3. Structure of the N-Terminus

Since the C-terminus of the HINT1 protein does not interact with other proteins,
especially transcription factors, it is suggested that the N-terminus or some of its structural
motifs may be responsible for the contacts with the binding partners of HINT1 [14]. Among
the deposited crystal structures of mammalian HINT1, only the structure described here
(PDB entry 6g9z) shows a fragment of the N-terminal part of the polypeptide chain, which
has not been shown before. In the previously published structures of HINT1, only residues
12–126 were visible. The ordered state observed here is likely an artefact of crystal packing
and is therefore probably not physiologically relevant. In solution, the N-terminal region
likely remains disordered unless there are stabilizing protein–protein interactions. To be
sure that the studied crystals contained the entire protein chain, mass spectrometry analysis
was performed, which confirmed the presence of the intact HINT1 molecule (Figure 4). The
major mass peak (m/z 13,679.8) corresponds to the entire protein chain with the initiation
Met residue removed (13,670.7 Da).
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Table 2. Examples of different crystal forms of human HINT1 protein presented in Protein Data Bank.

Space Group PDB ID Cell Dimensions
a, b, c [Å], α, β, γ [◦]

Matthews Coefficient
[Å3 Da−1]

Solvent Content
[%]

Triclinic

P1 6j5z 45.42 45.44 63.92
86.57 86.48 61.35 2.07 40.54

Monoclinic

P21 4zkl 63.71 46.42 103.43
90 97.41 90 3.03 59.45

P21 4zkv 46.21 79.00 63.88
90 90.10 90 2.27 45.92

P21 5km0 64.33 89.59 46.37
90 90.03 90 2.37 48.10

C2 3tw2 77.42 46.45 64.03
90 94.42 90 2.08 40.75

Orthorhombic

P212121 5klz 45.83 75.92 80.79
90 90 90 2.49 50.66

Tetragonal

P41 7q2u 112.89 112.89 43.63
90 90 90 2.52 51.18

P43212 6b42 39.74 39.74 141.13
90 90 90 1.98 37.76
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Figure 4. Positive-ion spectrum MALDI-TOF, obtained for the sample of hHINT1 protein crystals
used in this study.

Detailed analyses of the calculated electron density maps allowed for stepwise model-
ing of the remaining N-terminal fragments of chains A and B from residues Ala6 (Figure 5a)
and Gln9, respectively. Residues 1–5 of chain A and 1–8 of chain B are not visible on the
maps, perhaps because of the high flexibility of these regions indicated by high values of
the thermal vibration factors of the visible fragments of the N-terminal parts. The different
crystal packing of form II led to a decrease in the flexibility of the N-terminus of chain A
when interacting with the following symmetry-related molecules: the chain A of SYM1
(4_445) and the chain B of SYM2 (3_545). The interactions arise from hydrogen bonds
formed by the carbonyl oxygen of Ala8 with the NE2 atom of His42SYM1, the OE1 and NE2
atoms of Gln9 with the carbonyl oxygen atoms of Ile31SYM1 and Ile32SYM1, and the O and
N atoms of the main chain of Ala11 with the corresponding atoms of Gln34SYM2, as well
as by the salt bridge between the side chains of Arg12 and Asp87SYM1 (Figure 5b). The
N-terminus of chain B is involved in interactions with the following symmetry-related
molecules: SYM3 (4_455) and SYM4 (4_555). In this case, the number of visible interactions
is reduced to hydrogen bonds between the carbonyl oxygen of Pro13 with the OG atom
of Ser45SYM3 and the NE2 atom of Gln47SYM3, and between the NE2 atom of Gln9 with
the OD1 and OD2 atoms of Asp69SYM4. In addition, several water molecules mediate the
formation of non-direct hydrogen interactions between the N-terminal parts of chains A
and B and symmetry-related protein molecules. Unfortunately, the quality of the calcu-
lated electron density maps decreased when Ala6 in chain A and Gln9 in chain B were
reached, along with the observed perturbations due to solvent molecules, artifacts, and
noncontinuous or weak density maps that cannot be reliably interpreted.
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Figure 5. The N-terminal fragment of chain A of the hHINT1 protein. (a) The protein chain is shown
in the stick representation. The electron density map 2 FO−FC (colored light blue) at the 0.6σ level
was derived from data at 1.43 Å resolution (PDB entry 6g9z). (b) Location of the N-terminus (green)
between the symmetry-related molecules SYM1 (cyan) and SYM2 (yellow). Hydrogen bonds formed
between amino acid residues of the N-terminal part of chain A and the symmetry-related molecules
are shown as dashed black lines. Amino acid residues involved in the interactions are shown in stick
mode. The red and blue sticks indicate oxygen and nitrogen atoms, respectively.

3.4. Analysis of the Nucleotide Binding Site/Ligand Molecule

HINT proteins bind purine nucleosides and nucleotides, although their nucleotide-
binding motif differs in amino acid sequence from other nucleotide-binding proteins [51].
An analysis of the data for the hHINT1 form II (based on 2 FO−FC and FO−FC electron
density maps) showed that no nucleotide ligands are bound in the cleft usually described
as the active site [29,30], but we detected the presence of a single molecule of the L-malate
ion in the binding pocket of chain B (Figure 6a). This ion was used as a component of
the crystallization buffer, because the MMT buffer from the PACT++ crystallization screen
consisted of DL-malic acid, MES and Tris base in the molar ratios 1:2:2, with a final buffer
concentration of 100 mM. We observed that only the L-stereoisomer from the DL-malic
acid mixture was recognized and bound by the HINT1 protein. L-malate interacts directly
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with the protein chain via four hydrogen bonds formed with three protein side chains:
Asn99 (ND2 atom of Asn99 and O2 atom of L-malate), His112 (NE2 atom of His112 and O2
and O4A atoms of L-malate), and His114 (NE2 atom of His114 and O2 atom of L-malate).
Additional interactions are formed by water molecules with the backbone of residues
Asn99, Ser107, Val108, and His112 (Figure 6b), and with the side chain of the Asp43 residue
(not shown in Figure 6). Although the binding of this molecule is rather incidental than
intentional, this, along with the use of a different type of buffer, may have contributed to the
changes in crystal packing that led to the stabilization of the N-terminus. This information
can also be used to design and verify the binding properties of other compounds being
developed as inhibitors/substrate analogs for HINTs.
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The structure of a new crystal form of the human HINT1 protein (referred to here as 
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Figure 6. The nucleotide binding site of hHINT1 with bound L-malate anion. (a) The view of the
binding site indicating Asn99, His112, and His114 residues involved in the L-malate ion direct
binding. The hydrogen bonds between the ligand atoms and the nearby protein side chains are
shown as dashed orange lines. The OMIT FO−FC map of the L-malate molecule is contoured at
the 3.0σ level based on data with a resolution of 1.43 Å (PDB entry 6g9z). (b) Schematic diagram
of the binding site of the hHINT1/L-malate complex. Hydrogen -bonding interactions between
L-malate atoms and nearby side chains and water molecules are shown as dashed lines. C atoms
are shown in black, O atoms in red and N atoms in blue. Water molecules are shown in cyan. The
L-malate ion is labeled as “LMR”, according to the code used in PDB. This diagram was prepared
with LIGPLOT [52].

4. Conclusions

The structure of a new crystal form of the human HINT1 protein (referred to here as
form II), crystallized in space group P212121 has been determined and refined to 1.43 Å res-
olution. It is characterized by a different crystal packing than those previously published.
By changing the crystallization conditions, especially the type of buffer used, crystals
with a higher degree of packing and a larger number of crystal contacts between sym-
metrically connected molecules could be obtained. The tighter crystal packing caused
stabilization of the N-terminal fragment of the HINT1 polypeptide chain by forming new
interactions with neighboring molecules. The stabilized fragment of the N-terminus was
found using the obtained diffraction data. We also found that HINT1 selectively binds the
L-malate ion from the mixture of stereoisomers in the crystallization buffer, which was not
previously described.
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