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Abstract: Conventional acoustic systems exhibit a difficulty in sensing weak acoustic fault signals in
complex mechanical vibration environments. Therefore, it is necessary to develop an acoustic sensing
mode and a corresponding functional device with pressure amplification. This paper proposes a
three-dimensional device, coupling gradient acoustic metamaterials (GAM) with phononic crystals
(GAM–PC). The strong wave compression effect coupled with the phononic crystal equivalent
medium mechanism is utilized to achieve the enhancement of weak acoustic signal perception at the
target frequency. The superior amplification capability of the GAM–PC structure for the amplitude of
loud signals is verified by numerical simulations and experiments. Moreover, the GAM–PC structure
has a narrower bandwidth per slit, making it more frequency selective. Furthermore, the structure can
separate different frequency components. This work is expected to be applied to signal monitoring in
environments with strong noise.

Keywords: gradient structure; phononic crystals; acoustic metamaterials; acoustic enhancement sensing

1. Introduction

Pressure amplification acoustic systems are widely used for sensing weak acoustic
fault signals in complex mechanical vibration environments, such as mechanical structure
health monitoring [1,2], sound source localization [3], and acoustic holographic imaging [4].
Conventional sound source detection is typically achieved by using microphone arrays, but
the effectiveness of this approach is fundamentally limited by the physical characteristics
of the microphone sensor diaphragm [5,6]. Moreover, both microphone array-based tech-
niques and single-microphone systems may fail to detect sound signals that are drowned
out by strong background signals. Amidst strong background noise, pre-amplification of
weak sound sources and filtering processing are effective methods to enhance the signal-
to-noise ratio for sensing under complex conditions. Therefore, there is an urgent need to
develop sensing modes and functional devices with pressure amplification to overcome
the limitations of current acoustic sensing technologies.

Over the last two decades, acoustic metamaterials have enabled the development of func-
tional devices, including acoustic cloaks of invisibility [7,8], super-resolution imaging [9,10],
acoustic metasurfaces [11–13], metamaterial resonators [14,15], insulators and absorbers [16–19],
nonreciprocal acoustics [20,21], and topological metamaterials [22,23], owing to their unique
ability to modulate acoustic wave propagation. Acoustic metamaterials have been expected
to advance acoustic sensing and detection technology through applicable devices which
are compatible with existing electroacoustic conversion sensors [24–26]. Therefore, the
development of metamaterial devices is particularly critical.

In recent years, there has been a surge of interest in a new type of acoustic metamate-
rial structure known as gradient refractive index (GRIN) due to its potential for enhancing
acoustic sensing capabilities and controlling the capture of acoustic rainbows [27]. In
contrast to periodic metamaterials, metamaterials or media with GRIN show flexible con-
trol of acoustic waves [28]. The findings indicate that gradient acoustic metamaterials
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(GAM) can achieve acoustic rainbow trapping (ART) [29], which refers to trapping broad-
band acoustic energy at multiple locations and selectively focusing it according to its
frequency, implying that GAM can be customized for capturing weak signals. Furthermore,
several metamaterial-based devices have been developed to enable acoustic wave compres-
sion and acoustic field amplification, which can improve the detection of weak acoustic
signals [30–32] and facilitate the development of acoustic sensors which are suitable for
many applications. In 2014, Chen performed a systematic theoretical analysis of gradi-
ent acoustic metamaterial structures (GAM), which achieve significant ART effects and
enhance acoustic sensing through acoustic compression and pressure amplification [28].
In 2019, Huang et al. proposed an improved gradient structure (AMM) with gradient
profile, thickness, and gap width, achieving a remarkable acoustic gain of more than
an order of magnitude [33]. In 2022, Chen proposed a gradient metamaterial coupled
with space-coiling structure (GAM–SCS) to achieve pressure amplification and acoustic
localization [34]. Despite the growing research in enhanced signal sensing, current GAM
approaches for obtaining acoustic enhancement are mainly based on 2D cells, which may
not facilitate practical engineering applications. Ideally, these cells necessitate infinite or
exceedingly large dimensions in the third direction.

The properties of subwavelength phonon crystal (PC) arrays provide ideas for solving
this problem. PC arrays can be constructed with the characteristics of high refractive index
media [35–37]. Therefore, in this work, a device made from axisymmetric three-dimensional
gradient metamaterials which incorporate phononic crystals (GAM–PC) is proposed, which
has a gradient profile, a gradient plate thickness, and a gradient gap width along the axis
of the wave propagation direction. The enhanced acoustic amplification capability of the
proposed GAM–PC device was verified by numerical simulations and experiments without
losing the bandwidth of the captured acoustic signal per gap. In addition, it had superior
multi-band acoustic filtering capability, making it well suited for signal monitoring in noisy
and complex environments.

The structure of this paper is as follows. In Section 2, the GAM–PC structure is
designed and the properties of the model are deduced by numerical calculations. In
Section 3, finite element simulations of the model are performed to verify the acoustically
enhanced properties of the designed GAM–PC structure, and the operating frequency
bandwidth characteristics of the GAM–PC structure are also investigated. In Section 4,
the performance of the GAM–PC structure is experimentally tested to verify its ability
to acoustically enhance and separate different frequency components. In Section 5, the
research results of the entire study are summarized.

2. Materials and Methods
2.1. Model Structural Design

GAMs are composed of spatially varying unit cells or media. Their effectiveness in
amplifying sound signals is attributed to the combination of gradient refractive indices and
the strong wave compression effect [28]. Incident acoustic waves of different wavelengths
are captured at different locations for enhancement. Nevertheless, in certain cases, the
limited maximum effective index may hinder the perception of weak acoustic fault signals.
To enhance the detection capability limit of the maximum detectable pressure in acoustic
sensing systems, a three-dimensional GAM–PC structured device, as shown in Figure 1a,
was designed by gradually converting the abrupt signal into a propagating wave, inspired
by Li et al. [24]. Figure 1b presents a side view of the GAM–PC. The structure, as depicted
in the lateral cross-sectional view of Figure 1c, was comprised of an array of 22 cylindrical
plates. Taking the position of the lower left corner of the first plate as the coordinate
origin, the first cylindrical plate was constructed with r = 4 mm. The plate thickness
was c = 2 mm, and the gap between the plates was set to a = 8 mm. The radii of the
2nd to 22nd cylindrical plates were uniformly incremented in steps of t = 4 mm until the
radius of the 22nd cylindrical plate was R = 88 mm. The 22 plates formed were rotated
360 degrees to form a three-dimensional GAM structure. A phononic crystal structure
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was embedded for coupling between the gaps of the 22 cylindrical plates of the GAM.
Within the air gaps of the structure, a rectangular solid of length b = 6 mm and width
e = 2 mm was immersed centrally within the rectangular air region of length a = 8 mm
and width r = 4 mm, to construct a phononic crystal unit with the center as the axis of
symmetry. The number of phononic crystal units was incremented by one between each
pair of neighboring gaps. For the same gap, the distance between the phononic crystal units
was d = 2 mm. Three-dimensional conical-structured GAM–PC were obtained by rotation.
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Figure 1. (a) Three-dimensional view of GAM–PC; (b) Side view of GAM–PC; (c) The lateral cross-
sectional view of GAM–PC; (d) Enlarged view of GAM–PC unit.

2.2. Theoretical Analysis

Based on the characteristics of GAM–PC, a numerical model was developed to analyze
their performance theoretically. Chen [28] et al. used the equivalent medium theory to
derive the mechanism for enhancing acoustic pressure in gradient structures. The effective
mass density ρ and bulk modulus K can be expressed as

ρ =
ρresρe f f

(1 − Fr)ρres + Frρe f f
(1)

K =
KresKe f f

(1 − Fr)Kres + FrKe f f
(2)

where Fr is the filling rate of the parallel plate. In Section 2, the constructed models of GAM–PC
were fabricated using photosensitive resin, which had a density of ρres = 1130 kg/m3 and
a bulk modulus of Kres = 2.65 GPa. The air had a density of ρair = 1.2 kg/m3 and a bulk
modulus of Kair = 1.42 × 105 Pa. As revealed by analyzing the cross-sectional angle along
the central axis position, the conical structure formed by the PC arrangement offered a
larger propagation path for sound compared to uniform air when the sound waves entered
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between the two plates, effectively reducing the sound propagation speed [38]. Based on
the geometry of the phononic crystal unit and parameter settings (Table 1), the calculated
crystal band structure is shown in Figure 2, where the lowest band is located below the
sound cone (blue part). The coefficient of reduction of the equivalent speed of sound
between the two plates ce f f (filling the PC structure) with respect to cair (the speed of sound
in air) can be expressed in terms of the effective refractive index. The dispersion in the
lowest frequency band is linear over a wide bandwidth from 0 to 13 kHz (indicated by the
dashed line). The slope k of this linear fit is

k = cair/ne f f (3)

where ne f f is the effective refractive index of the PC. It is noteworthy that the effective
refractive index of the PC medium constructed between the two plates in this band range is
higher than that of uniform air (ne f f = 1.97 > 1). This is crucial for the GAM–PC to further
enhance the refractive index of GAM. The function of GAM–PC width can be expressed as

z(x) = 2tx/(c + a) + r (4)

where x denotes the direction as shown in Figure 1d, and a, c, and r are all geometric
parameters in Figure 1d.

Table 1. Values of geometric parameters of the GAM–PC.

Parameters H R r a c t b d e

Values (mm) 212 88 4 8 2 4 6 2 2
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In acoustic metamaterials, the effective refractive index can be used to quantify the
increase in the wavenumber of guided waves caused by the medium. For GAM–PC, the
transverse wave vector can be expressed as

kx = 2π f
√

ρ

K
(5)
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For the GAM–PC structure, combining Equation (5) with Equation (3), the effective
refractive index of the metamaterial can be determined as follows:

nGAM−PC(x, f ) =

√
ne f f +

Ke f f · ρe f f

ρ · K

(
tan
[

2π f · z(x)
2

·
√

ρ

K

])2

(6)

where Ke f f represents the equivalent bulk modulus of PC, and ρe f f represents the equiva-
lent density of PC. Simultaneously,

Ke f f · ρe f f

ρ · K
≈ (1 − Fr)

2 (7)

Fr exhibits a linear increase with the x-axis direction of the GAM–PC, aligning with
the characteristics of GAM without the incorporation of PC structures. However,√

ρ

K
≈
√

ρe f f

Ke f f
= ce f f < cair (8)

resulting in a reduced magnitude of refractive index variation per gap for the GAM–PC
compared to GAM. As a result, nGAM−PC exhibits a higher and more smoothly varying
refractive index compared to that of conventional GAM. As the refractive index of the
material is enhanced, the amplitude of the acoustic wave also increases. Based on the
aforementioned equation, the relationship between the sound pressure amplitude and the
input frequency along the x-axis is as follows:

PGAM−PC(x, f ) =

√
2π · ρe f f f · 4

√
1 − n−2

GAM−PC

cos
[
arctan

(
ρ · ρ−1

e f f

√
n2

GAM−PC − 1
)] (9)

Owing to the incorporation of the PC structure in the gap between the two plates in
GAM–PC, as compared to conventional GAM, there is an increase in both nGAM−PC and
the PC equivalent density ρe f f .

3. Simulation Analysis of GAM–PC

To characterize the acoustic response of the metamaterial, for this paper, we con-
structed and meshed the 3D structure within the acoustics module (pressure acoustics)
of COMSOL Multiphysics v6.0. Figure 3 displays the partial meshing grid of the model.
The blue area was set as the sound wave exit port. In the air medium, the structure was
treated as a rigid body, and the boundary was set as a hard acoustic field boundary (RB).
A plane wave with a set amplitude of 1 Pa was utilized as the incident acoustic wave,
entering from the x-angle direction. A perfectly matched layer (PML) was placed on the
outside of the incident plane wave to absorb the reflected acoustic wave, as shown in the
yellow area of Figure 3. To minimize the influence on the model sound field during the
experiment, a microelectromechanical system microphone (MEMS-MIC) was positioned
at the edge of the gap to detect the acoustic signal. In this study, the point probes were
set at the 14th, 16th, 18th, and 20th air gap positions to observe the acoustic enhancement
phenomenon occurring between the air gaps. The pressure gain value (PG) serves as a
crucial indicator of the acoustic enhancement effect and is defined as PG = PM/PF [23].
Here, PM denotes the sound pressure amplitude added to the metamaterial structure,
while PF indicates the sound pressure amplitude in the free sound field. To compare and
analyze the effect of the gradient structure with and without the PC structure on acoustic
enhancement, a conventional GAM structure with the same geometric parameters and
simulation environment but without phonon crystals was constructed. Frequency domain
simulations were performed for GAM–PC and GAM.
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Simulation results yielded the center frequencies of the 14th, 16th, 18th, and 20th air
gaps of the GAM–PC structure at 1549 Hz, 1358 Hz, 1211 Hz, and 1095 Hz, respectively.
Figure 4a–d illustrates the overall sound pressure distribution at these frequencies and the
sound energy localization at specific plate gaps. For comparison, Figure 5a–d shows the
sound pressure distribution at the center frequency of the GAM without phonon crystal
structure at the same gap position. The results demonstrate that the proposed GAM–PC
structure in this study effectively localizes the acoustic energy around the structure at a spe-
cific central position of the plate. Furthermore, it can achieve the capture and enhancement
of the acoustic signal at a specific frequency. Figure 6 presents the absolute sound pressure
gain between different air gaps of the GAM–PC and GAM structures. The sound pressure
amplitudes amplified by the GAM–PC structure at the 14th, 16th, 18th, and 20th gaps were
85.9 times, 101.8 times, 116.9 times, and 119.5 times, respectively. At the corresponding
positions, the amplified sound pressure amplitudes of the GAM structure were 45.1 times,
51.2 times, 56.8 times, and 62.9 times, respectively. The comparison demonstrates that
GAM–PC performs better pressure amplification than GAM, and the concentrated acoustic
energy with high energy density is more evident than in GAM. This finding is consistent
with the theoretical derivation above, indicating that GAM–PC can effectively amplify
acoustic signals. Compared to the acoustic metamaterial (AMM) proposed by Huang et al.
in 2019 [33], which exhibited a structural amplification of 30 times, the acoustic pressure
amplification achieved in the present study is significantly improved.

From the microscopic analysis, when the acoustic wave propagates through the meta-
material structure, different gaps in the capture of acoustic signals corresponding to various
frequencies occur due to the gradient structure between the two partitions filled with PC
structure. Simultaneously, the periodic structure of phononic crystals affects the propaga-
tion of phonons, resulting in a Bragg diffraction effect [39]. Similar to Bragg diffraction in
photonic crystals, this effect limits the propagation of acoustic waves in specific directions,
thereby increasing the refractive index of the acoustic waves. As sound waves are reflected
and scattered within phononic crystals, an interference effect is generated by the sound
waves traversing different paths. In certain cases, this interference effect enhances the
amplitude of the acoustic wave, consequently increasing the energy density of the acoustic
wave. The sound waves pass through the PC structure and reach the central gap portion of
the structure. Resonance is formed in conjunction with the rigid boundary at the end of the
gap, resulting in an enhanced amplitude.

Secondly, as depicted in Figure 6a, the maximum pressure ratio frequency of the
GAM–PC (1549 Hz) was lower than that of the GAM (2114 Hz) at the same position
(14th gap), enabling the GAM–PC to operate at a lower frequency. Thirdly, the resonance
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bandwidth of GAM–PC (black line) was narrower than that of GAM due to the strong
coupling effect. For narrow-band signal amplification, the narrow resonant bandwidth is
preferable to the wide resonant bandwidth. The resonant bandwidth is tuned by the wave
propagation distance in the phonon crystal structure. Increasing the wave propagation
distance in the spatial structure results in a narrower resonant bandwidth, while a wider
bandwidth is achieved with a shorter propagation distance.
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Additionally, the proposed GAM–PC device can operate over a wide bandwidth,
which can be easily adjusted by changing the measurement position. Therefore, the res-
onant frequencies in each air gap of the GAM–PC were calculated. Firstly, the center
frequencies of each air gap (from the 7th to the last air gap) of the GAM–PC structure
(FTheory in Hz) and the GAM structure (f Theory in Hz) were calculated by Equation (9)
and are listed in Table 2. Subsequently, the corresponding simulated values of FFEM (Hz)
and f FEM (Hz) for the GAM–PC structure and the GAM structure were also obtained by
simulation. The simulated operating frequencies of the GAM–PC ranged from 2948 Hz to
1048 Hz (approximately 1900 Hz bandwidth) across channels 7 to 21. The GAM operated
from 3484 Hz to 1470 Hz (about 2000 Hz bandwidth) across channel 7 to channel 21. In
comparison, the operating bandwidth of GAM–PC was narrower, but GAM–PC could op-
erate at a lower frequency at the same scale. It was observed that the calculated theoretical
values and the center frequency obtained by simulation were basically the same. However,
these values cannot be applied in practical applications due to the necessity of considering
thermal viscous losses and impedance in real environments.

Table 2. Center frequencies of each air gap obtained from calculations and simulations for GAM–PC
structure and GAM structure.

Air Gaps 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21th

FTheory (Hz) 2946 2635 2378 2128 1943 1790 1662 1548 1443 1358 1282 1211 1151 1096 1048
fTheory (Hz) 3481 3363 3127 2860 2634 2431 2258 2113 1984 1871 1782 1677 1598 1515 1470
FFEM (Hz) 2948 2636 2378 2130 1944 1790 1662 1549 1444 1358 1282 1211 1150 1095 1048
f FEM (Hz) 3484 3364 3128 2860 2634 2432 2260 2114 1984 1870 1780 1676 1598 1516 1470



Crystals 2023, 13, 1191 9 of 13

4. Experimental Analysis of GAM–PC

An experiment was conducted in this study to evaluate the perceptual performance
of the proposed GAM–PC in response to the actual special signals. Figure 7 illustrates
the experimental setup and scenario. The experiments were conducted in an anechoic
chamber, where acoustic waves from the loudspeaker were connected to the metamaterial
device from free space. With the tip position of the GAM–PC structure as the reference, the
loudspeaker was positioned at a distance of D = 0.7 m from the reference position. The
output acoustic signal was a software-generated harmonic signal. Microphones were used
to simultaneously collect the output signals from the reference microphones external to the
GAM–PC and from multiple sensing microphones internal to the GAM–PC. The acoustic
measurement device utilized in this study was a MEMS-MIC (model: S15OT421-005,
sensitivity: −42 dB, amplification gain of 66), which was placed at the central edge of the
gap to detect the acoustic signal.
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4.1. Acoustic Enhancement

The microphone outputs obtained through the positions of gaps 14, 16, 18, and 20 are
shown in Figure 8. The experimental results show that the actual gain was mostly between
20 and 35, defined as the ratio of the microphone output at each gap to the reference
microphone output outside the GAM–PC. At certain gaps, the acoustic amplification was
significantly lower than at other locations because the acoustic spot of the adjacent gap was
split and covered both gaps. Deploying microphones in the gaps does not significantly
interfere with the sound field; thus, the experimental gain could remain high, i.e., more than
one order of magnitude. The amplification gain in high-frequency sound is more stable
and larger. For gap 14, the GAM–PC center frequency measured in the simulation was
1549 Hz, and the amplification gain was 85.9. The GAM–PC center frequency measured in
the experiment was 1490 Hz, and the amplification gain was 32.68. It can be observed that
there was a small frequency shift in the peak frequency in the experiment, mainly caused
by mechanical processing and measurement errors. There were discrepancies between the
numerical and experimental results, which can be attributed to two main reasons. The first
reason is that the resonant frequency in the gas cavity may not have matched the frequency
of the maximum pressure ratio due to the strong wave compression effect. The second is
that the coupling effect between the GAM and PC structures was weakened by viscous
loss in practical applications. As a result, the maximum pressure ratio of the GAM–PC in
the experiment was lower than that in the simulation. The viscous loss cannot be ignored
when introducing a spatial PC structure. Theoretically, better pressure amplification can
be achieved by increasing the length of the PC channel, but this also leads to an increase
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in viscous loss. Consequently, there is a trade-off effect between pressure amplification
and viscosity.

Crystals 2023, 13, x FOR PEER REVIEW 10 of 13 
 

 

reasons. The first reason is that the resonant frequency in the gas cavity may not have 
matched the frequency of the maximum pressure ratio due to the strong wave compres-
sion effect. The second is that the coupling effect between the GAM and PC structures was 
weakened by viscous loss in practical applications. As a result, the maximum pressure 
ratio of the GAM–PC in the experiment was lower than that in the simulation. The viscous 
loss cannot be ignored when introducing a spatial PC structure. Theoretically, better pres-
sure amplification can be achieved by increasing the length of the PC channel, but this 
also leads to an increase in viscous loss. Consequently, there is a trade-off effect between 
pressure amplification and viscosity. 

 
Figure 8. Measured values of pressure gain with different gaps. 

4.2. Multi-Frequency Component Separation 
To evaluate the capability of the proposed GAM–PC structure to separate multi-fre-

quency composite signals, the propagation stop position and acoustic gain of swept-fre-
quency acoustic waves were tested and analyzed to obtain the time domain response 
curves of different air gap centers selected in GAM–PC. A harmonic signal decomposition 
test was performed by inputting multi-frequency harmonic signals to the GAM–PC and 
observing the acoustic response in different gaps in the GAM–PC. This paper used loud-
speakers to simulate the harmonic signals generated by vibrations as follows: 

π π π π= × × + × × + × × + × ×0 1 2 3( ) cos(2 ) cos(2 ) cos(2 ) cos(2 )P t f t f t f t f t  (10) 

where the target frequencies were f0 = 1549 Hz, f1 = 1358 Hz, f2 = 1211 Hz, and f3 = 1095 Hz. 
Figure 9a,b shows the time and frequency domain signals collected from a single micro-
phone without the GAM–PC structure. The acoustic signals acquired through the free 
space of the structure without GAM–PC in Figure 9b demonstrate that three frequency 
components were prominent. The acoustic signals inside the 14th, 16th, 18th, and 20th air 
gaps received using MEMS-MIC are depicted in Figure 9c,e,g,i, respectively. Figure 
9d,f,h,j shows the signals collected by the four microphones at different gaps (gaps 14, 16, 
18, and 20) of the GAM–PC. As observed, only the signal of its own characteristic operat-
ing frequency was significantly enhanced for each channel, while the signals of other fre-
quencies were not amplified. This finding suggests that GAM–PC possesses a more dis-
tinct frequency selectivity for each gap during the acoustic signal amplification. Sound 
waves of different frequencies were detected by microphones in various gaps, enabling 
spatial separation of distinct frequency sound signals. This real-time and uninterrupted 
multi-frequency component separation helps to extract and analyze target frequency sig-
nals in complex noise environments. Considering the quantitative calibration of the am-
plification of different frequency components, the structure is anticipated to be applicable 
in weak sound localization technology by normalizing the amplification of different gaps. 

Figure 8. Measured values of pressure gain with different gaps.

4.2. Multi-Frequency Component Separation

To evaluate the capability of the proposed GAM–PC structure to separate multi-
frequency composite signals, the propagation stop position and acoustic gain of swept-
frequency acoustic waves were tested and analyzed to obtain the time domain response
curves of different air gap centers selected in GAM–PC. A harmonic signal decomposi-
tion test was performed by inputting multi-frequency harmonic signals to the GAM–PC
and observing the acoustic response in different gaps in the GAM–PC. This paper used
loudspeakers to simulate the harmonic signals generated by vibrations as follows:

P(t) = cos(2π × f0 × t) + cos(2π × f1 × t) + cos(2π × f2 × t) + cos(2π × f3 × t) (10)

where the target frequencies were f 0 = 1549 Hz, f 1 = 1358 Hz, f 2 = 1211 Hz, and f 3 = 1095 Hz.
Figure 9a,b shows the time and frequency domain signals collected from a single micro-
phone without the GAM–PC structure. The acoustic signals acquired through the free
space of the structure without GAM–PC in Figure 9b demonstrate that three frequency
components were prominent. The acoustic signals inside the 14th, 16th, 18th, and 20th air
gaps received using MEMS-MIC are depicted in Figure 9c,e,g,i, respectively. Figure 9d,f,h,j
shows the signals collected by the four microphones at different gaps (gaps 14, 16, 18,
and 20) of the GAM–PC. As observed, only the signal of its own characteristic operating
frequency was significantly enhanced for each channel, while the signals of other frequen-
cies were not amplified. This finding suggests that GAM–PC possesses a more distinct
frequency selectivity for each gap during the acoustic signal amplification. Sound waves
of different frequencies were detected by microphones in various gaps, enabling spatial
separation of distinct frequency sound signals. This real-time and uninterrupted multi-
frequency component separation helps to extract and analyze target frequency signals in
complex noise environments. Considering the quantitative calibration of the amplification
of different frequency components, the structure is anticipated to be applicable in weak
sound localization technology by normalizing the amplification of different gaps.
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without GAM–PC structure; (b) output signal frequency response without GAM–PC structure;
(c,e,g,i) microphone output signal of the 14th, 16th, 18th, and 20th gaps of the GAM–PC struc-
ture; (d,f,h,j) output signal frequency response of the 14th, 16th, 18th, and 20th gaps of the
GAM–PC structure.

5. Conclusions

This work proposes a novel three-dimensional GAM–PC conical structure device,
which utilizes the strong wave compression effect coupled with the phonon crystal equiv-
alent medium mechanism to enhance the weak acoustic signal amplitude at the target
frequency. The characteristics of GAM–PC were evaluated and verified by numerical
simulations and practical experiments. The conclusions are summarized as follows:

(1) The proposed GAM–PC device demonstrates superior amplification of acoustic signal
amplitude, outperforming the GAM gradient model without an incorporated phonon
crystal structure;

(2) Compared with the conventional gradient model, GAM–PC can operate at a lower
frequency without any change in volume;

(3) Each slit of the GAM–PC structure has a narrower bandwidth, which makes the
structure more frequency selective;

(4) The structure has the ability to separate different frequency components, which can
be applied to signal monitoring in noisy and complex environments;

(5) The GAM–PC structure can be designed flexibly for relevant frequency bands, indi-
cating its potential for practical applications in sensing enhancement across various
research fields. The study also identifies topics for future research, such as multi-band
fusion, integration with electronics, and manufacturing simplification.
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