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Abstract: The primary objective of contemporary manufacturing is to produce items that are low-cost,
environmentally friendly, and energy efficient. This study aimed to investigate compounds that
fulfil these criteria, with a focus on CdCrO3. The full potential linearized augmented plane wave
program (FP LAPW), as in Wien2K, was employed to examine the structural, electronic, thermody-
namic, and transport characteristics of the material. Structural optimization was carried out using
generalized gradient approximation (GGA), with lattice constants that were deemed satisfactory
based on previous theoretical and experimental results. Calculations of the magnetic characteristics
of CdCrO3 show that the Cr atoms are principally responsible for magnetism. The quasi-harmonic
Debye model allows for the identification of thermodynamic properties including trends, the relative
Debye temperature, thermal expansion parameter, relative volume, and heat capacity at various
pressures and temperatures. At constant volume, a heat capacity of 52 J/mol K was determined. The
thermoelectric properties were examined using the Boltzmann transport offered by the BoltzTrap
program. At room temperature, CdCrO3 had a figure of merit (ZT) value that was almost equal to
one, indicating that it may be used to make thermoelectric devices with the highest possible efficiency.

Keywords: perovskite; electronic property; thermodynamic property; figure of merit

1. Introduction

Inorganic materials known as perovskite oxides have gained considerable attention
recently due to their extraordinary properties and electrical, structural, optical, thermoelec-
tric, and elastic behavior [1–3]. These materials possess different crystalline phases and
physicochemical properties, including ferromagnetism, anti-ferromagnetism, ferroelectric-
ity, ferro-elasticity, anti-ferroelectricity, and others. Ferromagnetic perovskite materials, in
particular, have become more prominent in spintronics, a field that explores how to use
electron spin to store, process, and transmit information [4,5]. The flexible crystal structure
of perovskite oxides, which enables the development of several materials with distinctive
electrical and other properties, is one of its most alluring features. To maintain the stability
of the ABO3 compound’s structure, the standard cubic ABO3 crystal structure is commonly
utilized, where A and B represent two different cations, O represents an anion, and the
radius of B is substantially lower than that of the A-cation. An oxygen atom normally occu-
pies the unit cell’s center in an ideal cubic ABO3 structure, which also places a B atom in the
center and another atom frequently at one of the cell’s corners [6–8]. RE-TM-O3 perovskites
have recently become the subject of rare earth studies. Replacing some of the cations (B) or
the TM with magnetic elements has been observed to result in the emergence of unexpected

Crystals 2023, 13, 1185. https://doi.org/10.3390/cryst13081185 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst13081185
https://doi.org/10.3390/cryst13081185
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-9986-2377
https://doi.org/10.3390/cryst13081185
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst13081185?type=check_update&version=1


Crystals 2023, 13, 1185 2 of 14

magneto-electric and multiferroic characteristics in materials [9–11]. The interplay between
electric and magnetic orders in these materials has sparked immense interest due to their
potential for use in next-generation electronic devices, data storage, and spintronics [12,13].
These materials exhibit both ferroelectric and ferromagnetic orders that are coupled through
strain or spin interactions, resulting in the emergence of novel properties. Furthermore,
several researchers have investigated the magnetic and electrical properties of various
perovskites using ab-initio methods. For instance, the suitability of the PrCrO3 compound
for spintronics applications was confirmed based on its electronic and magnetic properties,
as concluded by M. Yaseen et al. in 2020 [14]. Rashid et al. investigated the electrical
and magnetic properties of the cubic CeCrO3 compound in the FM phase using density
functional theory, specifically the mBJ approximation [15]. Their investigation revealed that
the material had half-metallic, ferromagnetic, and total magnetic moments of 4.0 B. The
characteristics of CaCrO3, BaCrO3, and SrCrO3, in particular the length of the Cr-O bond,
have been the subject of recent study. Materials made of RCrO3 are incredibly adaptable
and have outstanding physical studies. These characteristics include, among others, the
magnetocaloric effect (MCE), exchange bias, and magnetization reversal. The peculiar
magnetic characteristics of RCrO3 are a result of its intricate magnetic structure. Despite
the scientific community’s interest in ferromagnetism in transition metal oxides and their
prospective applications, [16] there is currently no literature on the physical properties of
RCrO3 (R = Ca, Sr, Ba, Cd, etc.) for electrical or spintronic devices. Designing devices with
the best implementation requires an understanding of the physical properties of materials.
Stable phases of novel materials can be created using non-equilibrium progression condi-
tions in molecular beam epitaxy (MBE) or any other physical vapor deposition techniques.
This study aims to explore the structural, thermoelectric, and magnetic properties of the
CdCrO3 cubic perovskite using density functional theory (DFT) [17] to evaluate its potential
industrial applications. The FP-LAPW-GGA (PBE) method was used to analyze its features.
Furthermore, the lack of available data on the material indicates that this study is the first
of its kind to explore these properties, which may lead to future research in the field.

2. Computational Method

We performed a study on CdCrO3 to assess its structural, magnetic, elastic, and elec-
tronic properties using the DFT framework and the FP-LAPW [18] tool from WIEN2k [19].
In our simulations, we took the spin-orbit effect into account using semi-relativistic tech-
niques. The magnetoelectronic properties were determined through DFT calculations,
taking exchange and correlations into account. To achieve convergence in the basis set,
we used a plane wave cut-off value of RMT × Kmax = 7 [20,21]. To improve the wave
functions inside the muffin-tin spheres, we expanded the radial eigenfunctions by spherical
harmonics up to lmax = 10. Additionally, we raised the potential Fourier charge density
of the interstitial region to Gmax = 14. We applied the tetrahedron technique in the irre-
ducible Brillouin zone with a k-grid of 10 × 10 × 10 and a charge convergence of 10−5 as
the convergence condition. We also investigated the thermoelectric transport features by
employing the quasi-harmonic Debye model [22] and the BoltzTraP method [23] in order to
calculate the thermodynamic parameters such as the heat capacity, thermal expansion, and
Debye temperature at high pressures and temperatures. We found that a denser k-point
grid is necessary for accurate predictions of transport parameters.

3. Results and Discussion
3.1. Structural Properties

For a description of geometric structure as mentioned earlier, we enhanced the topolo-
gies of the perovskite compounds under investigation while taking into account their cubic
structure. Their fully relaxed structure is shown in Figure 1. The component atoms Cd and
Cr are located at (0,0,0) and (1/2,1/2,1/2), respectively, whereas the halide ion O is located
at (1/2,1/2, u) (u = 0.249). The examined compounds were discovered to have a Pm-3m
space group in a cubic structure [24]. The optimal lattice parameters were determined
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using PBE-GGA functional and the Birch Murnaghan equation of state [25] against volume
(a.u) in the three phases of non-magnetic (NM), ferromagnetic (FM), and antiferromagnetic
phase (AFM), as shown in Figure 2. The computed results of the structural optimization
are shown in Table 1. The computed outcomes were found to be in accordance with earlier
reports, suggesting the reliability of our computation. Moreover, it has been remarked
that the FM phase has minimum energy, suggesting a ferromagnetic ground state for this
perovskite. Furthermore, we estimated the tolerance factor (τ) [26,27] to support the cubic
structural parameters. The tolerance factor in the range 0.96–1.04 suggests the cubic crystal
structure. The computed τ for the CdCrO3 was found to be 0.97, suggesting a cubic struc-
ture. Additionally, it was possible to determine the thermodynamic stability by taking into
account the formation energy (Ef), which was calculated as [28–30]:

Ef =
1
N

(
ECdCrO3 + ECd + ECr + 3EO

)
(1)
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Figure 1. Computed crystal structure of cubic CdCrO3.

Table 1. Calculated values of equilibrium lattice parameters a (Å), bulk modulus B (GPa), pressure
derivative of bulk modulus (B′), minimum energy (E), and Formation energy (Ef) of the cubic
perovskite CdCrO3.

Compound States a B B’ E (Ry) ∆E=E(FM)−E(AFM) Ef (eV)

NM 3.76 200.88 4.65 −13,745.405290
CdCrO3 FM 3.78 190.88 4.89 −13,745.420172 852 mRy −4.11

(This study) AFM 3.79 192.01 4.58 −13,745.419320
NM 3.74 226.45

NdCrO3 [31] FM 3.80 208.93
(other Study) AFM 3.95 189.90

Experimental 3.890

The computed formation energy was found to be negative, reflecting the thermody-
namic stability of the investigated CdCrO3. The above outcomes reflect the structural
stability of the investigated CdCrO3.
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3.2. Electronic Properties

The study of electronic properties is an essential aspect of materials science and is
crucial for developing new materials with specific properties for various applications. The
electronic band structure of a material is a graphical representation of the allowed energy
levels for electrons in a solid [32]. This is determined by the behavior of electrons in the
valence and conduction bands and the size of the gap between these bands. The energy gap
is a fundamental aspect of the electronic band structure, and its size determines whether a
material is an insulator, semiconductor, or metal. The behavior of electrons in the valence
and conduction bands and the size of the gap between these bands are critical factors
that determine the electronic properties of a material, including its electrical conductivity,
optical properties, and magnetic behavior. In this study, the electronic properties of the
CdCrO3 compound were investigated via the most stable structure in balance states and
optimized lattice parameters. Figure 3a,b illustrates the electronic band structures for
both spin-up and spin-down polarization with GGA. The results indicate that CdCrO3
is a metallic compound using the GGA-PBE approach, which means that it has high
electrical conductivity and behaves as a conductor of electricity. Furthermore, when the
Coulomb repulsion terms (GGA+U) [33,34] are introduced, the metallic character is kept
in the majority band structure, as shown in Figure 4a,b; however, for the minority band
structure, this results in a semiconductor character, suggesting the half metallic nature of
the CdCrO3 compound. This is an important finding as it distinguishes CdCrO3 from other
perovskite compounds that are insulators or semiconductors. The absence of an energy
gap in CdCrO3 suggests that the compound has potential applications in electronic devices
that require high electrical conductivity, such as interconnects in microprocessors and other
electronic components.
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Figure 3. Spin-polarized band structures of perovskite oxide CdCrO3 using GGA–PBE: (a) spin up
and (b) spin down.

The total and partial (projected) densities of states (TDOSs and PDOSs, respectively)
determined for CdCrO3 are shown in Figure 5. The Fermi level, EF, is represented by the
vertically broken line. We determined the PDOSs of Cd, Cr, and O in CdCrO3 to better
understand how each atom contributes to the total TDOSs. The fact that the total DOSs at
the Fermi level have non-zero values utilizing the GGA method is evidence that CdCrO3
should exhibit metallic conductivity for both spin channels [35,36]. The large contribution
of the Cr ‘d’ states at the Fermi level is what causes this trend. In contrast, the Hubbard
parameter has an impact on the Cr ‘d’ states, separating them in the majority spin and
moving them towards higher energies, which results in the creation of a band gap in
the minority spin. The GGA+U approximation revealed that the CdCrO3 perovskite is
composed of half-metallic components. Additionally, the TDOSs curves of CdCrO3 show
that the valence and conduction bands of this material primarily consist of Cr’d’ orbitals
with O ‘p’. Electrical stability is significantly influenced by the DOSs at EF. The Fermi
level’s position and EF strength affect the phase stability of intermetallic complexes. Those
with lower EF values are more stable when compared to those with higher EF values.
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3.3. Magnetic Properties

Magnetism is a fundamental property of materials that has significant applications
in various fields, including electronics, energy, and medicine. To study the magnetic
properties of materials, one of the crucial considerations is the magnetic moment. The
magnetic moment reveals the components and frequency of the material’s magnetic field.
In this context, the magnetic moments of spins in the CdCrO3 compound were investigated.
CdCrO3 is a complex compound that contains multiple elements, including cadmium (Cd),
chromium (Cr), and oxygen (O). The total and partial magnetic moments with polarized
spin in the interstitial sites and the muffin-tin spheres were estimated using the GGA and
GGA+U models to investigate the magnetic properties of the compound. Table 2 displays
the conclusions of these calculations. They are metallic because the total magnetic moments
per cell unit were near to an integer Bohr magneton of 2 µB. It was interestingly found
that the Cd and O atom magnetic moments were extremely modest and had no impact on
the overall moment [37]. Nevertheless, they played a crucial role in the development of
magnetism. The environment of these atoms also had an impact on the magnitude of the
major band gap in the compound CdCrO3. This means that when examining the magnetic
properties of materials, it is important to take these atoms’ magnetic moments into account
because they are not insignificant. As can be seen in Table 2, the interstitial region was also
discovered to have a significant magnetic moment. The result of a sizable charge transfer
from Cd and Cr to O is this effect, which can be used to explain the magnetic moment in
the interstitial area. This is explained by the fact that the electro-negativity of the O anion,
which is 3.5 on Pauling’s scale, is higher than that of the Cd and Cr, whose electro-negativity
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values are both 1.69 higher than the O anion. The magnetic moment in the interstitial area
is caused by a significant charge transfer from Cd and Cr to O as a result of the difference in
electro-negativity values. Furthermore, the significant magnetic moment in the interstitial
region can have important implications on the compound’s properties [38]. For instance,
the magnetic moment can affect the electronic and optical properties of the compound,
which are essential for various applications. Furthermore, the stability and symmetry of
the compound’s structure can be affected by the magnetic moment in the interstitial area.
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Table 2. Computed magnetic properties of CdCrO3.

MTot Mcd MCr Mo Mint Eg (eV) TC (K)

GGA 1.99 0.045 1.67 −0.004 0.292 89.46
Up 0

Down 0
GGA+U 1.99 0.036 1.91 −0.077 0.276

Up 0
Down 0.759

3.4. Thermodynamic Properties

We calculated the thermodynamic characteristics of the CdCrO3 under investigation
using Gibbs2 [22,39]. The compound under study had its thermal characteristics estimated
for a temperature range of 0–800 K. The quasi-harmonic model was used to take pressure



Crystals 2023, 13, 1185 8 of 14

variations between 0 and 15 GPa into account. For the investigated CdCrO3 compound,
the bulk modulus is greatest at 210 GPa at 0 K, as observed in Figure 6a. According to
this, B increases when pressure is applied at a specific temperature and decreases when the
pressure is constant [40]. Additionally, the bulk modulus gradually decreases above 200 K
and remains constant between 0 and 200 K. The entropy of CdCrO3 varies with temperature,
as shown in Figure 6b. It has been noted that the curves are exponential in nature. It was
discovered to be almost 120.66 J·mol−1K−1 for the examined CdCrO3 at zero pressure and
300 K. The vibrational properties of the compounds are influenced by the heat capacity.
However, at low temperatures, it is directly proportional to T3, while at intermediate
temperatures, it depends on atomic vibration [41]. At high temperatures, the heat capacity
at constant volume approaches the Dulong–Petit limit. The plot for Cv is shown in Figure 6c
and contains two phases: the first phase, where T is below 300 K, shows a sharp increase in
Cv with temperature, and the second phase, where T is over 300 K, shows a progressive
increase in Cv with temperature. The Cv augments when it approaches the Dulong–Petit
limit at greater temperatures during its final phase. CdCrO3 computed heat capacities of
52 J/molK at constant volume, as shown in Figure 6c. The CP of CdCrO3 is depicted in
Figure 6d for different pressures. As shown in Figure 6d, the CP curves are initially sharply
enhanced. Yet, the growth rate of the curves eventually slows down. At relatively low
temperatures, only acoustic vibrations can cause vibrational excitations. It follows that
variations in temperature and pressure have an equal impact on heat capacity. Through
study of the thermal expansion coefficient α (T), the compounds’ structural stability can be
determined. The fluctuation of α (T) with temperature and pressure is depicted in Figure 6e.
Due to the use of a harmonic of the Debye model approximation [42], a strong rise is seen
for both compounds up to 200 K. Nonetheless, the thermal expansion coefficient steadily
decreases as the temperature rises, indicating that the CdCrO3 crystal has good volume
invariance. For CdCrO3, we determined the Debye temperature (θD), which is depicted
in Figure 6f. We can see that at 0 K and 40 GPa pressure, the θD of CdCrO3 is 575. With
constant pressure and temperature, as depicted in Figure 6f, it linearly decreases. It was
noted that the pressure effect increased the Debye D temperature. Extensive analysis of the
thermodynamic properties will provide insight into the experimental efforts.

3.5. Thermoelectric Properties

The ability of thermoelectric materials to convert thermal energy into useful energy
and vice versa has made them a subject of interest worldwide. In this section, we mainly
focus on the analysis of several transport coefficients of CdCrO3 in both up- and down-spin
states, such as electrical conductivity (σ/τ), Seebeck coefficient (S), and the merit factor
(ZT). To calculate the thermoelectric parameters, we utilized the BoltzTraP code [23] and an
approximation of charge carrier constant relaxation durations.

Figure 7 displays the chemical potential dependence of the Seebeck coefficient (S),
electrical conductivity (σ/τ), electronic thermal conductivity (κ/τ), and power factor (PF/τ)
at different temperatures of 300 K, 600 K, and 900 K for CdCrO3. It was observed that
the S values were negative at the Fermi level (µf = 0), suggesting that the majority charge
carriers are electrons for both spin channels (Figure 7a,b) and thus confirming the n-type
conductivity of this CdCrO3 perovskites [43,44]. Moreover, it was also observed that
the Seebeck coefficient value decreased with the increasing temperature. Furthermore,
Figure 7c,d depicts the variation in electrical conductivity (σ/τ) of CdCrO3 with chemical
potential. There is a difference in the electrical conductivity calculated for the spin-up state
and that obtained for the spin-down state of CdCrO3. For the spin-up state, we found
that σ/τ behaves as a metal, while for the spin-down state, it looks like a semiconductor.
The same trend was observed in the case of the electronic thermal conductivity (κe/τ)
(see Figure 7e,f) as κe is related to the electrical conductivity (σ) through the Wiedemann–
Franz [45,46] relation κe = LσT, where L is the Lorenz number. Figure 7g,h represents the
variation in the power factor (PF) with the chemical potential for CdCrO3. It was noted
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that CdCrO3 has a maximum value of PF for n-type in the majority spin whereas it has a
maximum for p-type in the minority spin.
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Figure 7. The Seebeck coefficient (S) (a) Spin-Up, (b) Spin-Down, electrical conductivity (σ/τ),
(c) Spin-Up, (d) Spin-Down, electronic thermal conductivity (κe/τ) (e) Spin-Up, (f) Spin-Down,
power factor (S2σ) versus the chemical potential (µ) at different temperatures for CdCrO3 (g) Spin-Up,
and (h) Spin-Down.

It is well know that the figure of merit [47] is given by:

ZT =
S2σ

κ
T (2)

where κ = κe + κl is the total thermal conductivity [48]. Therefore, one has to estimate the
lattice thermal conductivity (κl) using the following formula:

κl = A·
Mθ3

Dδ

γ2Tn2/3 (3)
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where M represents the average atomic mass of all constituent atoms, A is a constant
calculated as A = 2.43·10−8

1− 0.514
γ + 0.228

γ2
, n is the number of atoms in the primitive cell, δ is the

average atomic volume, T is the absolute temperature, γ is the Grüneisen parameter, and
θD is the Debye temperature [49]. The estimated κl for the CdCrO3 compound is depicted
in Figure 8a. From this figure, it can be well observed that the κl decreases with the
temperature increase. Now, considering the total S, σ, and κ and using a constant relaxation
time τ ≈ 10−14 s, the total ZT of the CdCrO3 material is evaluated, as shown in Figure 8b.
At 300 K, the maximum ZT is marked to be 0.4 and 0.8 for p-type and n-type doping,
respectively, suggesting the optimum thermoelectric response of the studied compound at
room temperature. These ZT maximum values correspond to the carrier concentrations of
about 4.22 × 1019 cm−3 and 2.31 × 1022 cm−3 for p-type and n-type doping, respectively.
Moreover, by increasing the temperature, these ZTmax values gradually decrease.
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4. Conclusions

In this study, the structural, elastic, vibrational, and thermodynamic characteristics
of CdCrO3 perovskite were examined using the FP-LAPW and quasi-harmonic Debye
models. Using the generalised gradient approximation of Perdew–Burke and Ernzerh of
exchange correlation (GGA-PBE), we were able to optimise the lattice parameters. The
computed structural characteristics, such as the equilibrium lattice constant, bulk modulus,
and pressure derivative, are consistent with previous studies. According to the overall
density of states and the electronic energy band structure, both materials are half-metallic
and have Cd-4d Cr ‘d’ electronic orbitals as their dominant conductivity. Through the
quasi-harmonic Debye model, we also identified thermodynamic properties, such as the
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relative Debye temperature, thermal expansion parameter, relative volume, heat capacity at
different temperatures and pressures, and trends. In the study, 52 J/molK of heat capacity
was discovered at constant volume. At high temperatures, the CdCrO3 compound shows
good volume invariance, according to the coefficient of thermal expansion. This study
is a part of a larger theoretical undertaking that also includes our investigation into the
characteristics of this compound and could inspire further studies in this area.
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