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Abstract: Silicon anodes with a high theoretical capacity possess great potential applications in power
batteries for electric vehicles, while their volume expansion always leads to crystal pulverization and
electrode polarization. An ideal solution to alleviate such pulverization and polarization of silicon
crystals is to simultaneously use nano-sized silicon crystals and introduce high viscosity and elasticity
polymer binders. This work has achieved the adjustable introduction of hydroxyl groups to silicon
nanocrystals under the optimal reaction temperature (e.g., 80 ◦C) and appropriate piranha solution
composition (e.g., H2SO4/H2O2 = 3:1 v/v), ultimately forming an amorphous coating layer of ~1.3 nm
on the silicon surface. The optimized silicon anode exhibits superior electrochemical performance
(with an initial Coulombic efficiency of 85.5%; 1121.4 mA h g−1 at 1 A g−1 after 200 cycles) and
improved hydrophilicity. The introduced hydroxyl groups significantly enhance the hydrophilicity of
silicon in the electrolyte and the electrochemical activity of the silicon anodes. The hydroxyl groups
achieve stronger bonding between silicon and polymer binders, ultimately improving the mechanical
strength and stability of the electrode. The introduction of hydrophily functional groups on the
surface of silicon crystals can be explored as an active strategy to solve the above issues. This surface
engineering method could be extended to more fields of infiltrating silicon-based functional materials.

Keywords: lithium-ion batteries; silicon anode; nanocrystals; surface engineering; piranha solution

1. Introduction

Over the past few years, lithium-ion batteries (LIBs) have become one choice for
portable electronic devices due to their extreme long cycling life, flexibility, and lightweight
design [1–4]. Silicon (Si), as one of the most abundant elements in the earth, is considered
as a candidate anode material for the next generation of high energy density LIBs due to its
high theoretical specific capacity (4200 mA h g−1) (Li22Si5), suitable working potential (0.2 V
vs. Li/Li+), and high energy density [5–11]. In addition, Si is less likely to cause surface
lithium precipitation during the lithiation/delithiation process, which could suppress the
occurrence of lithium dendrites to some extent, resulting in better safety performance than
graphite [12–14]. However, the inevitable huge volume expansion (up to 300%) during
the Li+ insertion/deinsertion process, resulting in severe cracking of active materials and
electrical contact losses, accompanied rapid electrode disassembly and capacity degra-
dation. In addition, the consequently formed unstable solid electrolyte interphase (SEI)
film is accompanied by subsequent continuous consumption of electrolytes and makes the
long-term cycling of Si anodes more difficult [15–18].
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To solve the issues mentioned above, Si-based materials with nanosized structures
are commonly used. Nanocrystals-Si can shorten the transport path of Li+, reducing
potential polarization and providing sufficient adjustment surfaces to effectively release
the stress caused by drastic changes in lattice volume, preventing the degradation of
electrode structure [19–23]. Commercial silicon is mainly obtained by using the external
energy of silane to decompose into silicon and hydrogen in a hydrogen atmosphere, which
is quickly condensed. Due to its easy operation and low cost, its mass production and
commercialization can easily be achieved. However, the problems of aggregation and
hydrophobicity of commercial silicon make further modification of commercial silicon
powder difficult [24,25]. Surface treatment of commercial nano Si powders is performed
to improve the interface and facilitate in situ coating modification on its surface to further
enhance the performance of Si-based materials. Therefore, surface engineering treatment
of Si materials is particularly important.

Piranha solution is a strong oxidant typically composed of concentrated sulfuric acid
(H2SO4) and hydrogen peroxide (H2O2), known for altering the surface properties of
polymers. This is due to the chemical reaction between H2SO4 and H2O2 in the piranha
solution, which produces hydrated hydrogen ions (H3O+), hydrogen sulfate ions (HSO4

−),
and active atomic oxygen (O.), as shown in Formula (1) [26]. The formation of active atomic
oxygen is the key to the formation of silanol groups on the surface of Si particles treated
with piranha solution. In this regard, Koh and co-workers used different acids and H2O2 at
a weight ratio of 3:1 to attack Si-CH3 on the surface of polydimethylsiloxane to generate
silanol groups to improve its hydrophilicity [26]. In addition, a large number of studies
have found that the functional groups on the surface of Si are particularly important for
subsequent coating, as well as for the modification of binders and electrolytes. Guo and
co-workers synthesized nano-Si with an amorphous protective layer and rich hydroxyl
groups by piranha solution (H2SO4/H2O2 = 7:3 v/v for 2 h at 80 ◦C), thus obtaining robust
Si-based anode, which is attributed to the excellent combination by esterification reaction
between the designed novel binders and hydroxyl groups. [27]. Jung and co-workers used
piranha solution (H2SO4/H2O2 = 3:1 v/v for 1–2 h at 85 ◦C) to introduce hydrophilic SiOx
into the surface of Si, which could better composite with the designed graphene oxide
polyacrylic acid [28]. Zhu and co-workers used piranha solution (H2SO4/H2O2 = 3:1 v/v
for 1 h in boiling) to introduce hydroxyl groups into Si nanowires, and then coated them
with graphene [29]. It can be observed that these studies used different surface treatment
conditions, while there is no work exploring the effect of acid treatment temperature on
piranha currently.

H2SO4 + H2O2 → H3O+ + HSO4
− + O· (1)

In this work, we achieved the adjustable introduction of hydroxyl groups to Si
nanocrystals under the optimal reaction temperature (e.g., 80 ◦C) and appropriate piranha
solution composition (e.g., H2SO4/H2O2 = 3:1 v/v), ultimately forming an amorphous
coating layer of ~1.3 nm on the Si surface, which is shown in Figure 1. The optimized Si
anode exhibited superior electrochemical performance (with an initial Coulombic efficiency
of 85.5%; a reversible specific capacity of 1121.4 mA h g−1 at 1 A g−1 after 200 cycles)
and improved hydrophilicity. The introduced hydroxyl groups significantly enhanced the
hydrophilicity of Si in the electrolytes and binders, thus increasing the electrochemical
activity of the Si anodes. In addition, hydrogen bonds formed between hydroxyl groups
and binders ultimately enhanced the mechanical strength and stability of the electrode.
This work summarized the optimal treatment temperature for Si materials with piranha
solution, which can be widely used in the pretreatment of hydrophobic materials.
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2. Materials and Methods
2.1. Preparation of Si@(OH)x

Commercial nanosized-Si powders were purchased from Xiang Tian Nano (Shanghai,
China). Typically, 2 g nanosized-Si powders were magnetically stirred in the 80 mL piranha
solution (H2SO4/H2O2 = 3:1 v/v) at different temperatures (e.g., 65 ◦C, 80 ◦C, and 95 ◦C) for
2 h. After that, the modified products were diluted with deionized water, then centrifugally
washed with deionized water three times. Then, after washing with ethanol solution, the
obtained products dried in an oven at 80 ◦C for 12 h. The Si crystals treated at different
temperatures were named as Si@Si(OH)x-1 (65 ◦C), Si@Si(OH)x-2 (80 ◦C), and Si@Si(OH)x-3
(95 ◦C), respectively.

2.2. Materials Characterization

The morphologies and elemental composition of materials were characterized by
transmission electron microscope (TEM, FEI Talos F200x G2, Thermo Fisher Scientific,
Hillsboro, OR, USA) and scanning electron microscope (SEM, ZEISS Sigma 300, Carl Zeiss
AG, Oberkochen, Germany). X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-
Alpha, Thermo Fisher Scientific, Waltham, MA, USA) was utilized to measure the elements
and components on the surface of materials. The phase and crystallinity of materials
were measured by powder X-ray Diffraction (XRD Bruker D8 X-ray diffractometer, Bruker
Corporation, Billerica, MA, USA, Cu Kα radiation, λ = 1.5406 Å, operated from 5◦ to 90◦

(2θ)) and Raman spectroscopy (HORIBA Scientific LabRAM, HORIBA, Kyoto, Japan) with
a 532 nm excitation laser. The functional groups of materials were characterized by Fourier
transform infrared spectroscopy (FTIR, Thermo Scientific Nicolet iS20, Thermo Fisher
Scientific, Waltham, MA, USA) from 400 to 4000 cm−1 (KBr tablet). The hydrophilicity and
contact angle of samples were analyzed by spinning drop interface tensiometer (TX500 TM,
KINO, Boston, MA, USA).

2.3. Electrochemical Measurements

The electrochemical performances of materials were measured by assembling 2032 coin-
type half cells. The active materials, super-P and sodium alginate (SA) with a weight ratio
of 70:15:15 were mixed in deionized (DI) water to form a homogenous slurry. The obtained
slurry was then painted onto copper foils with a blade, then dried at 100 ◦C for 12 h. For
each electrode, the mass loading of active materials was controlled at around 1 mg cm−2.
In the half cells, metal lithium foils were used as the counter electrode in an Ar-filled glove
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box (O2 and H2O less than 0.1 ppm). The electrolyte consists of 1 M LiPF6 dissolved in
EC:DEC = 1:1 (volume ratio) with 5% FEC. The electrochemical impedance spectroscopy
(EIS) and cyclic voltammetry (CV) were performed on an electrochemical workstation (CHI
760E, Shanghai, China). EIS was tested under a frequency range of 100k–0.01 Hz. CV
characterizations were measured with a potential range of 0.01–2.0 V (scan rate: 0.1 mV s−1).
The galvanostatic discharge-charge tests were performed on a Neware CT-4008 battery
system (Bellevue, WA, USA) at 28 ◦C (voltage range: 0.01–2 V).

3. Results

The XRD patterns are shown in Figure 2a. The commercial Si powders possess obvious
Si characteristic peaks, and their diffraction peaks coincide with the peak positions of the
standard card of Si (PDF#27-1402), where the peak positions of 28.4◦, 47.3◦, 56.1◦, 69.1◦, and
76.4◦ correspond to crystalline Si (111), (220), (311), (400), and (331) crystal planes [27,30].
The treated Si (Si@Si(OH)x) powders possess peaks at the same positions with Si, while
the peaks intensity was slightly smaller than the commercial Si powders, which may be
due to the influence of the amorphous Si(OH)x surface introduced by piranha solution on
the surface of Si. Additionally, Figure 2a demonstrates that the peak intensity gradually
decreases as the treatment temperature of the piranha solution increases, which could be
apparently observed in Figure S1. The particle sizes of different samples calculated based
on the Scherrer formula are shown in Table S1. As the processing temperature increases,
the corresponding particle sizes calculated by the formula gradually decrease, indicating
the improvements in the dispersion of Si. Meanwhile, the Raman spectra of the samples
are shown in Figure S2. The Si and Si@Si(OH)x-2 powders have characteristic peaks of Si at
496 cm−1 and 925 cm−1, while the peak intensity of the treated sample was slightly smaller
than raw materials, which is consistent with the XRD results.

To investigate the surface functionalization effect of Si treated by piranha solution,
FTIR spectra of the samples are displayed in Figure 2b. Both Si and serials of Si@Si(OH)x
powders possess the characteristic peaks of hydroxyl (-OH) and Si-O bond at 3435 cm−1 and
1211 cm−1 [31–35], which may be caused by the exposure of Si materials to air. However,
the treated Si materials at different temperatures show a weak characteristic peak of Si-OH
at 965 cm−1 [32], which proved that the treatment of piranha solution successfully realized
the introduction of Si(OH)x surface in Si. To further clarify the details of the surface of Si
treated with different temperature piranha solutions, we performed XPS characterizations
of the Si and treated samples. As shown in Figure 2c, the Si 2p spectra show that both
the Si and treated Si possess the two peaks at 99.06 and 99.68 eV, corresponding to Si and
Si-Si bonds. The intensities of these two peaks corresponding to pure Si in Si without
introducing Si(OH)x surface are significantly higher than that of treated Si. Moreover,
with the increase in treatment temperature, their intensities correspondingly decrease. The
peaks at 100.38, 102.39, and 103.19 eV correspond to Si-O bond, Si-OH bond, and SiO2 are
observed in Si, indicating that the surface of Si has a natural silicon-oxygen layer [27]. It
could be seen that with the increase in treatment temperature, the Si-OH bond intensity
significantly increases, indicating that the controllable preparation of Si(OH)x surface could
be achieved by adjusting the temperature. The introduction of Si(OH)x surface could form
hydrogen bonds with SA to effectively strengthen the bond between Si and binders, thereby
increasing the stability of the electrode. In C 1s, the samples possess two characteristic
peaks at 284.8 and 286.5 eV, corresponding to C-C and C-O-C bonds. It is noticed that
compared with commercial Si, the treated Si powders with piranha solution appeared
O-C=O characteristic bond at 288.8 eV, which is consistent with the results in O 1s. The
Si@Si(OH)x powders exhibit an obvious peak at 535.5 eV, corresponding to C=O bond,
which is absent in Si. We speculate that this may be through the treatment of Si powders,
they absorb carbon dioxide in exposed air. Excluding the aforementioned C=O bond, the
samples all have three peaks at 531.6, 532.2, and 533 eV, corresponding to C-O, Si-O, and
SiO2 bond. Compared with Si, the intensities of SiO2 are smaller, which corresponds to
results in Si 2p.
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and Si@Si(OH)x-3 nanoparticles.

The SEM images of samples are displayed in Figure 3. After piranha solution treat-
ment, the agglomeration phenomena of particles in all three treated-samples, especially
Si@Si(OH)x-2, and Si@Si(OH)x-3 nanoparticles, were alleviated. This is because the hy-
droxyl functions introduced through the treatment of piranha solution improve their hy-
drophilicity, making the Si more easily dispersed in solutions and reducing agglomeration.
In order to further verify whether the hydrophilicity of Si powders treated with piranha
solution is improved, we performed contact angle tests between the Si and the Si@Si(OH)x
electrode, which is shown in Figure S3. Compared with the contact angle (23.78◦) of Si
electrode, Si@Si(OH)x-1 (19.15◦), Si@Si(OH)x-2 (16.34◦), and Si@Si(OH)x-3 (18.92◦) elec-
trodes are much smaller than the contact angle of the raw materials, indicating that the
hydrophilicity of Si powders treated with piranha solution is significantly enhanced.
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In order to further observe the morphologies, we characterized the Si and Si@Si(OH)x-2
by TEM, which are shown in Figure 4. The spherical structures could be observed in both Si
powders and Si@Si(OH)x-2 powders. The Si powders without surface treatment of piranha
solution have serious accumulation, and the particle sizes of Si@Si(OH)x-2 are slightly
smaller. Distinct lattice fringes can be observed for all materials in high resolution transmis-
sion electron microscopy (HRTEM), and the measured 0.31 nm lattice spacing corresponds
to the (111) crystal plane of Si, confirming the existence of Si phase. From the selected area
electron diffraction (SAED) patterns of Si and Si@Si(OH)x-2, it shows that the Si powders
used are polycrystalline materials, and both materials have obvious diffraction rings at the
crystal faces of (111), (220), and (311), which indicates that the surface engineering treatment
of the piranha solution does not change the crystal structures of Si. In addition, as shown
in Figure 4(b2), the amorphous layer range on the surface of the modified Si@Si(OH)x-2
powders increases, and the thickness increases from ~0.87 nm of Si powders to ~1.3 nm,
further indicating that piranha solution successfully introduced a new amorphous layer to
the Si surface. It is clear from the energy dispersive spectrometer (EDS) element mappings
of Si@Si(OH)x-2 powders (Figure 4c) that the O element is evenly allocated in the external
layer of the Si nanoparticles, which is consistent with the XPS results.

The electrochemical performances of Si and serials of Si@Si(OH)x samples were tested
in half cells, which are shown in Figure 5. Figure 5a shows the cycling performances of Si,
Si@Si(OH)x-1, Si@Si(OH)x-2, and Si@Si(OH)x-3 anodes at a current density of 1.0 A g−1.
Compared with the raw Si, the anode materials treated with piranha solution exhibit
excellent cycling performance after 200 cycles. The discharge capacity of the first cycle of
the Si@Si(OH)x-2 anode is 3394.7 mA h g−1, and the discharge capacity of the 200th cycle is
1121.4 mA h g−1, which are higher than Si@Si(OH)x-1 anode (3095.5 mA h g−1 in the first
cycle and 924.3 mA h g−1 after 200th cycles) and Si@Si(OH)x-3 anode (2935.0 mA h g−1

in the first cycle and 992.3 mA h g−1 after 200th cycles). Figure S4 compares the constant
current charge–discharge curves of various anodes in the first cycle and the 100th cycle. The
initial Coulomb efficiencies of Si, Si@Si(OH)x-1, Si@Si(OH)x-2, and Si@Si(OH)x-3 anodes
were 81.4%, 84.9%, 85.5% and 80.5%, respectively, and Si@Si(OH)x-2 anode possesses
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the highest initial Coulomb efficiency. In addition, compared with Si, Si@Si(OH)x-1 and
Si@Si(OH)x-3 anodes, the Si@Si(OH)x-2 anode exhibits the highest discharge platform and
the lowest charging platform, meaning excellent electrochemical performances, which is
consistent with the results of Figure 4a. The rate performances of the serials samples are
measured by ramping the current from 0.2 to 5 A g−1, which are shown in Figure 5b. The
rate performance of Si@Si(OH)x-2 anode is much better than that of Si, Si@Si(OH)x-1, and
Si@Si(OH)x-3, with a high reversible specific capacity of 1127.6 mA h g−1 even at a high
rate of 5 A g−1.
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The differences in electrochemical performances between Si@Si(OH)x serial samples
indicate that controllable introduction of the Si(OH)x layer could be achieved by adjusting
the temperature of the piranha solution. The introduction of an appropriate Si(OH)x layer
could sufficiently improve the hydrophilicity of materials to better disperse and contact
with the binders and electrolytes. Furthermore, the Si(OH)x layer could serve as a protective
layer to avoid the pulverization of materials during the charge/discharge process. Table
S2 lists the comparations of our wok with those reported works of Si-based materials
treated by piranha solution. Generally, recent works in the literature all used piranha
solution to introduce the Si(OH)x layer, however the parameters of treated process are not
comprehensively explored. In contrast, we have systematically explored the influences
of treated temperature, have achieved the controllable generation of Si(OH)x layer and
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obtaining advanced Si-based anode with excellent electrochemical performance. Actually,
excess Si(OH)x layer is not a beneficial factor for the Si anode. The Si(OH)x layer itself is
an inert and non-conductive layer, and the excess Si(OH)x layer could alleviate volume
expansion of Si, while seriously affecting e− transport, leading to poor rate performance.
Combined with electrochemical performances, the proper introduction of Si(OH)x layer
can be achieved by treating Si with piranha solution at 80 ◦C (Si@Si(OH)x-2), taking into
account long cycling stability and rate performance.
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Figure 5c displays the CV curves of the Si@Si(OH)x-2 anode from 0.01 to 2.0 V at
a scan rate of 0.1 mV−1. During the initial discharge, the sharp reduction peak in the
range of 0.2~0.01 V is attributed to the amorphous Li-Si alloy phase formed by crystalline
Si. In both the second and the third negative scans, the new reduction peak evolved
at 0.16 V, corresponding to the reversible lithiation process from amorphous Si to Li-Si
phase. During the charge process, two oxidation peaks around 0.33 V and 0.50 V occur
during the initial sweep cycle and subsequent scan cycles due to the delithiation process of
Li−Si to amorphous Si [36,37]. Similar redox behaviors are found in the original Si anode
(Figure S5a). Notably, the potential gap between the oxidation and reduction peaks of the
Si@Si(OH)x-2 anode narrows in subsequent cycles compared to the Si anode, indicating the
reduction in polarization of the Si@Si(OH)x-2 anode. In addition, the Si@Si(OH)x-2 anode
displays stronger peak areas, reflecting that Si treated with piranha solution are easier to
perform electrochemical reactions. In addition, the cathodic peak at about 1.4 V could be
ascribed to the FEC reduction at 1st cycle for the Si and Si@Si(OH)x-2 anode (Figure S5b).

To further explore the differences in electrochemical performance, the impedance
characteristics of Si anodes treated with piranha solution under different conditions were
characterized by the EIS. Figure 5d,e shows the EIS patterns and corresponding equivalent
circuit models for each anode before cycling and after 200 cycles. The EIS plots of pre-cycle
Si, Si@Si(OH)x-1, Si@Si(OH)x-2, and Si@Si(OH)x-3 anode in Figure 5d are all composed of
semicircle in the intermediate frequency region (reflecting the charge transfer resistance
Rct) and oblique line in the low frequency region (reflecting the lithium-ion diffusion
Zw) [38,39]. The fitted data are shown in Table S3. The Rct of each anode before cycling
is 541.5 Ω (Si anode), 516.2 Ω (Si@Si(OH)x-1 anode), 403.8 Ω (Si@Si(OH)x-2 anode), and
468.8 Ω (Si@Si(OH)x-3 anode), respectively. It can be found that the Rct resistance of Si
treated with piranha solution is smaller than that of raw Si, while the Si treated with
piranha solution at 80 ◦C exhibits the smallest Rct value, which indicates that the proper
introduction of amorphous Si(OH)x layer is conducive to charge transfer. Meanwhile, as
demonstrated in Table S3, the Zw value of Si treated with piranha solution is lower than
that of Si, which indicates that the amorphous Si(OH)x layer introduced promotes the
lithium-ion transport capacity of the anode materials. As shown in Figure 5e, all four
samples after 200 cycles exhibit a depressed semicircle in the high-frequency region that
reflects the resistance of the SEI film (Rsei). As demonstrated in Table S3, the value of Rsei
of each anode after cycling is 80.76 Ω (Si anode), 76.62 Ω (Si@Si(OH)x-1 anode), 69.6 Ω
(Si@Si(OH)x-2 anode), and 73.19 Ω (Si@Si(OH)x-3 anode), respectively. The Rsei resistance
of the Si treated with piranha solution is smaller than that of the raw silicon, and the sample
treated with piranha solution at 80 ◦C shows the smallest Rsei value, which indicates that
the introduced amorphous Si(OH)x layer could inhibit the excessive growth of SEI film to a
certain extent. The Zw value of Si treated with piranha solution is also smaller than that of
Si, indicating that the Li+ transport rates of anodes treated with piranha solution are faster.
The fitting results of Warburg parameter are shown in Figure S6 and Table S4. Si@Si(OH)x-2
anode exhibits smaller slope than Si and other samples treated by piranha solution, which
indicates that the Si@Si(OH)x-2 anode possesses the best Li+ diffusion rate. The EIS results
are consistent with the rate capability of anodes, further confirming that piranha solution
treatment can improve the electrochemical performances of Si-based anodes.

As illustrated in Figure 6(a1,b1), the interfaces and cross sections of Si and Si@Si(OH)x-2
electrodes before cycling all possess porous interfaces, which is beneficial to fast Li+ dif-
fusion and electrolyte penetration. However, the electrode of raw Si has a raised block
structure, while Si@Si(OH)x-2 electrodes show a uniform and flat interface. After 200 cycles,
significant cracks are seen in Figure 6(a2) due to poor cycling stability of Si, which may be
caused by the volume expansion of Si during insertion/deinsertion of Li+ and deposition
of the SEI film, resulting in slow diffusion of Li+. In contrast, Figure 6(b2) shows that only a
trace of cracks appeared at the interfaces of the Si@Si(OH)x-2 electrode treated with piranha
solution. From the cross sections diagrams before and after cycles, the raw Si electrode
has a large volume expansion, and the cross-section is concave and convex. Compared to
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Si, the Si@Si(OH)x-2 electrode has only a slight thickness increase, and the cross-sectional
shape remains intact. The above discussions confirm that the electrochemical stability of
the Si treated with piranha solution has been significantly improved.
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To further measure the surface elemental composition of the electrode after cycles, XPS
were performed after 200 cycles. The full-test scan in Figure S7 shows that after 200 cycles,
the elements Li, Si, C, O, and F are present in the Si and Si@Si(OH)x-2 electrodes. As shown
in Figure 6c, both two electrodes possess four characteristic peaks at 284.8, 286.6, 288.8,
and 290 eV in C 1s, corresponding to C-C, C-O, O-C=O bonds, and lithium carbonate
(Li2CO3) [40]. The intensity of C=O bond on the surface of the modified Si@Si(OH)x-
2 electrode is weaker than that of Si, which means that the modified electrode surface
possesses fewer organic components than Si, which is also observed in O 1s spectrum. The
peak intensity of ROCO2Li corresponding to organic components on the surface of the
modified electrode is notably lower than that of Si [41,42]. Ideal Si-based materials will
generate a thin and dense SEI film on the surface during cycling. Previous studies have
demonstrated that high inorganic components are beneficial for the formation of highly
elastic SEI films, such as lithium fluoride (LiF) and Li2CO3. As shown in F 1s spectra, both
two electrodes exhibit two characteristic peaks at 684.9 and 686.8 eV, corresponding to
LiF and LixPOyFz, respectively [40,43]. The results of XPS show that SEI of the modified
Si@Si(OH)x-2 electrode possesses LiF-rich inorganic layer and fewer organic components,
which is caused by its outstanding cycling stability [44–46].

4. Conclusions

On the whole, we successfully realized the adjustable introduction of the amorphous
silicon hydroxyl layer on the Si surface by adjusting the reaction temperature of piranha
solution (H2SO4/H2O2 = 3:1 v/v). The optimal sample of Si@Si(OH)x-2 corresponded to
the Si treated with piranha solution at 80 ◦C, which exhibited excellent electrochemical per-
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formance with a reversible specific capacity of 1121.4 mA h g−1 at 1 A g−1 after 200 cycles
and an initial Coulomb efficiency of 85.5%. The enhancement of electrochemical perfor-
mance can be attributed to the controllable introduction of amorphous silicon hydroxyl
groups, which could not only greatly improve the dispersion of Si, thus increasing the
contact area between the active materials and conductive additives and binders and making
electrons/ions easier to transport, but also improve the hydrophilicity of Si to allow the
active materials tightly contact with the binders and electrolytes to form robust connection.
In addition, the increasing potential of more hydrogen bonds forming between the Si and
the hydroxyl-rich SA binders, thereby further enhancing the structural integrity of the
electrode. Moreover, the Si@Si(OH)x-2 anode acquires highly elastic SEI film with rich
inorganic components of LiF and Li2CO3 as well as lower electrochemical impedance than
Si after long cycles. This work delivers a promising and scalable strategy for the surface
engineering of nano-Si crystals and has guiding significance for further modification and
industrial application of Si-based anodes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13071127/s1, Figure S1: Partial enlargement of XRD patterns
of Si, Si@Si(OH)x-1, Si@Si(OH)x-2, and Si@Si(OH)x-3 nanoparticles; Table S1: Calculated particles
sizes of Si, Si@Si(OH)x-1, Si@Si(OH)x-2, and Si@Si(OH)x-3 based on the Scherrer formula; Figure S2:
Raman spectra of Si and Si@Si(OH)x-2; Figure S3: Photos of Si, Si@Si(OH)x-1, Si@Si(OH)x-2, and
Si@Si(OH)x-3 electrodes after contact angle tests; Figure S4: The charge-discharge profiles of Si,
Si@Si(OH)x-1, Si@Si(OH)x-2, and Si@Si(OH)x-3 anodes at 1st and 100th cycles; Figure S5: CV curves
of (a) the Si anode and (b) the Si and Si@Si(OH)x-2 anode for 1st cycle at a scan rate of 0.1 mV s−1;
Table S2: The anodic performances comparison of different surface treatment methods; Table S3: The
fitting data of the Si, Si@Si(OH)x-1, Si@Si(OH)x-2, and Si@Si(OH)x-3 anodes; Figure S6. Z′~ω−1/2

linear relationship diagram of (a) before cycling and (b) after 200 cycles; Table S4: The fitting Warburg
parameters of the Si, Si@Si(OH)x-1, Si@Si(OH)x-2, and Si@Si(OH)x-3 anodes; and Figure S7: XPS
spectra of the Si and Si@Si(OH)x-2 electrode after 200 cycles.
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