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Abstract: In this paper, the results of a study on the influences of different morphologies, types,
and sizes of inclusions on the fatigue lives of 20CrMnTi are reported. The results show that the
addition of the rare earth element Ce can lead to the formation of spherical CeAlO3-TiN inclusions in
20CrMnTi. The fatigue performance of 20CrMnTi-Ce was significantly improved compared to that
of 20CrMnTi. Using the “edge-to-edge matching” crystallographic theory, CeAlO3 was validated
as a suitable hetero-nucleus core for TiN, and the following best orientation relationships between
them were determined: [010]TiN//[2111] CeAlO3&(002) TiN//

(
1121

)
CeAlO3

. The fatigue cycle times
of 20CrMnTi-Ce range up to 107, and this value is higher than that of 20CrMnTi without Ce. As
the size of the TiN inclusions increases, the maximum stress of the steel matrix also increases. Also,
the high-stress and low-life regions noticeably increase, thus increasing the possibility of a fatigue
fracture. Under the same sizes of inclusions, the high-stress and low-life regions of square TiN are
larger than those of circular TiN.

Keywords: gear steel; high cycle fatigue; crystallography; finite element analysis

1. Introduction

As an important mechanical component of power transmission, gear steel is required to
have good strength, toughness, and wear resistance due to repeated impacts and alternating
stress [1–4]. In recent years, with the increasing demand for mechanical equipment, the
ultra-high cycle fatigue (VHCF) performance of steel materials has become an interesting
topic, especially regarding the high-strength steels widely used in key components. The
research and development of gear steel with high fatigue properties is of great significance
for the production of high-end equipment.

In the production of 20CrMnTi, a type of gear steel, Ti inclusions that had large
particles and were very angular inevitably formed in the molten steel, and such inclusions
were difficult to remove later, leading to the deterioration of the toughness and fatigue
resistance of the steel [5]. The large, hard, and brittle nonmetallic oxide inclusions in the
gear steel had a great influence on the fatigue properties [6,7]. Sakai et al. [8,9] compared
the causes of fatigue crack induction during the rotation and bending of similar rigid
materials and found that internal defects caused by inclusions could lead directly to fatigue
crack production. Rare earth (RE) elements can purify molten steel and modify irregular
inclusions into relatively regular RE inclusions. It has been proven that the size of inclusions
can also be significantly reduced with the addition of an appropriate amount of RE [10–12].
Ahn et al. [13] showed that Gd not only played a positive role in the cleanliness of the
analyzed steel but also reduced the size of the inclusions in their study of duplex stainless
steel. Bao et al. [14] studied the nucleation behaviors of the sulfide inclusions in H13 steel
after the addition of the rare earth element Ce and found that the most effective nucleation
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size of Ce-S was 1–2 µm, followed by 2–3 µm. Additionally, a Ce-S sample larger than 3 µm
had the least effect on nucleation. Zheng et al. [15] studied the effects of the addition of Ce
on the formation of nitride inclusions in shovel teeth steel and found that the addition of
Ce effectively reduced the size of the nitride inclusions. Although scholars have studied
the nucleation behavior of inclusions in steel after adding rare earth elements, there are
still few reports about TiN inclusions in 20CrMnTi modified by the addition of the rare
earth element Ce and its effect on fatigue properties. Therefore, it is of great significance
for the production of high-quality gear steels to study the modification behaviors of TiN
inclusions and their influence on fatigue properties after the addition of Ce.

In this study, the mechanisms and fatigue properties of the inclusions modified with
Ce in 20CrMnTi were analyzed using experimental and numerical simulation methods.
The evolution behaviors of the inclusions, such as their morphologies, quantities, and sizes
in steel before and after the addition of Ce, are compared and analyzed. The relationships
between the inclusions and the fatigue properties of the steel are studied. This study
lays the theoretical foundation for the stable, high-quality, and efficient production of
high-performance 20CrMnTi gear steel.

2. Materials and Methods

In order to study the inclusions and fatigue properties of the analyzed steels before
and after the addition of Ce, comparative studies of 20CrMnTi and 20CrMnTi-Ce were
carried out. The weight percentages of the main constituent chemicals are given in Table 1.
Before hot rolling, the ingot size was 250 mm × 150 mm × 80 mm, while after hot rolling,
the ingot size was 40 mm × 40 mm × 1500 mm. All specimens were obtained on the rolled
ingot. The austenitization temperature and time were 1200 ◦C and 20 min, respectively.
The austenitized specimens were then quenched in water at room temperature. The
tempering temperature and time of the specimens were 180 ◦C and 80 min, respectively.
High-frequency fatigue tests were conducted on the specimens at room temperature using
POWER SWING MOT at 100 kN (Bao gang Group, Baotou, China) with a stress ratio R =−1
and a resonant frequency of 75 Hz. The yield strengths of 20CrMnTi and 20CrMnTi-Ce
were 780.75 MPa and 781.25 MPa, respectively. Alternating axial loads with 750 MPa were
applied in the experiments. The geometry and dimensions of the fatigue specimen are
shown in Figure 1. During the fatigue experiments, 8 samples were used to test both
20CrMnTi and 20CrMnTi-Ce, so there were 16 samples in total. 20CrMnTi sample numbers
were #1 to #8, and the 20CrMnTi-Ce sample numbers were #9 to #16.

Table 1. Chemical compositions of the steels.

Sample
C Si Mn Al Cr Ti Ce N O

(wt./%) (ppm)

20CrMnTi 0.23 0.18 0.95 0.042 1.02 0.065 48 42

20CrMnTi-Ce 0.22 0.20 0.89 0.046 1.05 0.061 52 55 39
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Before the fatigue tests, while oriented perpendicular to the rolling direction, metal-
lographic samples were selected, and the types, sizes, and distributions of the inclusions
were characterized using scanning electron microscopy (SEM) and an energy spectrometer
(EDX). The Aspex Explorer software (Explorer 4) was used to analyze the inclusions in the
steels that were larger than 0.5 µm, with a statistical area of 15.5 mm2. After the fatigue
tests, the inclusions on the surfaces of the failed samples were characterized using SEM.
The inclusion elements on the fractured surfaces were characterized using EDX.

The equivalent finite element models of the inclusions in 20CrMnTi were established
using Abaqus software, and the physical properties of the inclusions were incorporated
into the models. The influences of the types, sizes, morphologies, and distributions of the
inclusions on high-stress concentration regions were analyzed. Combined with the results
of the fatigue experiments, the influences of the inclusions on the fatigue properties of the
steels were analyzed.

3. Results and Discussion
3.1. Compositions of Inclusions in the Steels

The inclusions in 20CrMnTi were analyzed using scanning electron microscopy (SEM,
ZEISS, Oberkochen, Germany) and energy dispersive X-ray spectroscopy (EDS, ZEISS,
Oberkochen, Germany). As shown in Figure 2a, the main types of the inclusions were Al2O3,
TiN, and Al2O3-TiN, which were mostly square or strip-shaped, with a size larger than
3 µm. In addition to Al2O3, TiN, and Al2O3-TiN, large quantities of CeAlO3-TiN inclusions
were generated in 20CrMnTi-Ce, as shown in Figure 2b, and no phenomena wherein
Ce had combined with other titanium-containing inclusions were found. The modified
CeAlO3 inclusions were smaller (≤2 µm) and more spherical, and these characteristics
were previously reported in experiments conducted by other researchers [16].
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With the help of Aspex Explorer software (Explorer 4), a trace analysis of the inclusions
larger than 0.5 µm in the steel was conducted. The statistical results are shown in Figure 3a.
Among them, TiN and Al2O3 were the most abundant types of inclusions in 20CrMnTi,
accounting for 47% and 34% of the total shares of inclusions, respectively. After adding the
rare earth element Ce, the main titanium-containing inclusion in 20CrMnTi-Ce was CeAlO3-
TiN, accounting for 63% of the total share of inclusions. From the size distributions of the
inclusions shown in Figure 3b, it can be seen that the size fluctuation ranges of CeAlO3-TiN
were relatively small and that its average size was the smallest, indicating that the addition
of the rare earth element Ce could serve to modify titanium-containing inclusions.
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3.2. Crystallographic Analysis of CeAlO3-TiN Inclusion Formation

Based on the morphology of the CeAlO3-TiN inclusion shown in Figure 2c, it could be
speculated that Ce did not directly react with TiN to form a compound. However, it could
react with Al2O3 to generate CeAlO3. CeAlO3 could serve as the nucleation site for TiN
and eventually lead to the formation of CeAlO3-TiN inclusions. One of the popular views
in academia is that high-melting-point rare earth inclusions could act as heterogeneous
nucleation cores during the process of liquid steel’s solidification [17,18]. This view has
been successfully applied to finding the cores of effective heterogeneous nucleation in
magnesium and aluminum alloys [19,20] and predicting the promotional effects of the
nuclei on heterogeneous nucleation. In this study, the possibility of CeAlO3 serving as a
nucleation site for TiN was determined using the edge-to-edge matching model [21]. A
schematic diagram of the E2EM model is shown in Figure 4 [22]. The calculation formulas
for the atomic-plane mismatch are presented in Equations (1) and (2).
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The calculation formulas for atomic misfit and lattice mismatch are given as follows:

fr =
|rA − rB|

rB
(1)

where fr is the atomic misfit, while rA and rB are the atomic distances on the densely
packed arrangement of the body phase and core phase during heterogeneous nucleation,
respectively.

fd =
|dA − dB|

dB
(2)

In the equation above, fd is the lattice mismatch, and dA and dB are the lattice spacings
on the densely packed crystal faces of the heterogeneous nucleation body and core.

The atomic misfit probabilities of TiN nucleating with CeAlO3 were calculated as
shown in Tables 2–4.

Table 2. Crystal structures, space groups, and lattice parameters of TiN and CeAlO3.

Phase Crystal Structure Space Group Lattice Parameter/nm

TiN FCC Fm3m a = 0.4235
CeAlO3 Cubic Pm3m a = 0.3802
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Table 3. Closed-packed rows (CP row) and closed-packed planes (CP plane) of TiN and CeAlO3.

Phase CP Row Interatomic
Spacing/nm Type CP Plane Interatomic

Spacing/nm

TiN
<010> 0.212 Straight rows {002} 0.212
<101> 0.300 Straight rows {022} 0.150
<111> 0.367 Straight rows {222} 0.122

CeAlO3

{1121} 0.220
<2111> 0.233 Straight rows {0220} 0.190
<1101> 0.269 Straight rows {0222} 0.134

{1341} 0.115

Table 4. Calculated misfit and mismatch between TiN and CeAlO3 based on the E2EM model.

Matching Rows Misfit fr/% Matching Planes Misfit fd/%

< 010 > TiN// < 2111 > CeAlO3 9.01
{002}TiN//{1121}CeAlO3

3.63
{222}TiN//{0222}CeAlO3

8.96
{222}TiN//{1341}CeAlO3

6.09

According to the matching principles, the orientation relationships between CeAlO3
and TiN were [010]TiN//[2111] CeAlO3&(002) TiN//

(
1121

)
CeAlO3

. The calculation results
showed that CeAlO3 could serve as a heterogeneous nucleation core for TiN.

3.3. Finite Element Simulations

In this study, the inclusions incorporated in the simulation models were alumina and
titanium nitride. The fatigue mechanisms caused by the above inclusions were summarized
to further ascertain the stress distributions in the inclusion–steel system, and they provided
a theoretical basis for the experimental results. To further investigate the stress distributions
and fatigue failure mechanisms, finite element simulations were conducted according to the
different sizes and shapes of the inclusions. The mechanical properties of the inclusions and
20CrMnTi in the simulations are shown in Table 5 [23,24]. When the inclusion sizes were
1.5 µm, 3 µm, 5 µm, and 10 µm, the mesh size was uniformly divided by 0.5 µm to ensure
the accuracy of the calculation of key areas. In the simulation study in the geometric effects
of the TiN inclusions, the total numbers of mesh elements in the models with spherical
and square inclusions were 13,736 and 13,318, respectively, and the calculated areas of
the model were both 40 × 40 µm2. The cell type of the mesh element was CPS3, which
is a three-node linear-plane stress triangle. The generalized Hooke’s law was used in the
simulation calculations. A total of 750 MPa of stress was applied to the steel matrix along
the X direction.

Table 5. Mechanical properties of the inclusions and 20CrMnTi [23,24].

Material Young’s Modulus, E/GPa Poisson’s Ratio, ν

20CrMnTi 206 0.27
Titanium nitride 320 0.19

Aluminium oxide 375 0.22

3.3.1. Type Effects of the Inclusions

When the Young’s modulus of the inclusions was greater than that of the steel matrix,
the strain force of the matrix was greater during the fatigue loading, resulting in stress
concentrations on the sides of the inclusions. Taking TiN as an example, under extreme
fatigue conditions, the inclusions reached their critical fatigue limits earlier than the steel
matrix. As the stress concentrations increased, the TiN inclusions broke before the steel
matrix, and such cracks subsequently extended into the steel matrix. These results are
consistent with those presented in the study conducted by Chao Gu et al. [25]. Figure 5
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illustrates the stress concentrations of TiN and Al2O3 at the same size, which revealed that
when they were in the same location, the TiN and Al2O3 inclusions caused similar stress
concentrations. Stress was applied on the steel matrix along the X direction. The sizes of the
different inclusions were both 5 µm. Generalized Hooke’s law was used in the simulation
calculations. The calculation parameters are shown in Table 5. However, the maximum
stress caused by TiN was significantly higher than that of Al2O3. Moreover, the high-stress
and low-life regions affected by the TiN inclusions also increased significantly.
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3.3.2. Size Effects of TiN Inclusions

Stress concentrations and fatigue life distributions were evaluated by considering the
TiN inclusions with radii of 1.5, 3, 5, and 10 µm. As shown in Figure 6 and Table 6, as the
size of the TiN inclusions increased, the maximum stress of the steel matrix increased. Also,
the number of high-stress and low-life regions noticeably increased, thus increasing the
possibility of a fatigue fracture. Therefore, the small TiN inclusions were beneficial for
improving fatigue life.

Table 6. The maximum stresses in the steel matrix.

Inclusion Radius/µm The Maximum Stress in the Steel
Matrix/MPa

1.5 1133
3 1170
5 1182
10 1185
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3.3.3. Geometric Effects of TiN Inclusions

To analyze the geometric effects of the TiN inclusions on the stress concentrations, it
was necessary to ensure that the sizes of the square inclusions were the same as those of
the circular inclusions. In the simulation models, it was determined that the circular TiN
had a diameter of 5 µm, while the square TiN had a side length of 5 µm. The results are
shown in Figure 7. Under the same size conditions, the high-stress and low-life regions
of the square TiN were greater than those of the circular TiN. Therefore, the effects of the
square TiN inclusions on 20CrMnTi were terminally detrimental.

In the present study, CeAlO3-TiN inclusions could not be characterized during the
simulation calculations due to the inability to obtain data on the elastic modulus and
Poisson’s ratio. However, based on the composition of CeAlO3-TiN, it could be inferred
that the stress concentration effects on the steel matrix were weaker than those on the TiN
inclusions. Therefore, Ce played a certain role in modifying TiN, which directly affected
the fatigue performance of 20CrMnTi. To confirm this hypothesis, high-frequency fatigue
tests were performed on 20CrMnTi and 20CrMnTi-Ce.
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3.4. Relationships between Inclusions and Fatigue Strengths

Figure 8 shows the inclusion statistics and distributions in samples of the different
steels. Figure 9 shows the morphologies of the typical inclusions on the fracture surface
of the steel. Axial loads of 750 MPa were applied to the samples in the fatigue tests. the
20CrMnTi sample numbers were #1 to #8, and 20CrMnTi-Ce the sample numbers were #9
to #16. The results showed that the fatigue performance of 20CrMnTi-Ce was significantly
improved compared to that of 20CrMnTi. The main inclusions causing fatigue failures in
20CrMnTi were TiN and Al2O3. The main inclusion in 20CrMnTi-Ce was CeAlO3-TiN,
and adding Ce led to the formation of spherical CeAlO3-TiN inclusions, which accounted
for 63% of the total inclusions. The mean times of the fatigue cycles of 20CrMnTi and
20CrMnTi-Ce were 8.19 × 105 and 5.37 × 106, respectively, and the corresponding standard
deviations were 1.60 × 106 and 4.23 × 106, respectively. Although the standard deviation
of 20CrMnTi-Ce was higher than that of 20CrMnTi, the minimum times of the fatigue
cycles were much higher than those of 20CrMnTi. The fatigue cycle times of the eight
samples of 20CrMnTi did not reach 107, while the fatigue cycle times of the three samples
of 20CrMnTi-Ce reached 107. Therefore, the fatigue properties of the steel were improved
after the addition of Ce. It was also found that the quantities of Al2O3 and Al2O3-TiN
inclusions were significantly reduced in 20CrMnTi-Ce compared to 20CrMnTi. The main
inclusion morphologies of Al2O3 and Al2O3-TiN on the fatigue fracture surfaces are shown
in Figure 9b,c, respectively. Based on the results, we determined that the number of
CeAlO3-TiN inclusions was significantly increased in 20CrMnTi-Ce.
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4. Conclusions

(1) TiN and Al2O3 are the most abundant types of inclusions in 20CrMnTi, accounting
for 47% and 34% of the total share of inclusions, respectively. After adding the rare
earth element Ce, the main type of titanium-containing inclusion in 20CrMnTi-Ce was
CeAlO3-TiN, accounting for 63% of the total share of inclusions. The addition of Ce
can serve the purpose of modifying titanium-containing inclusions.

(2) Using the crystallographic theory of “matching edges”, the matching orientation rela-
tionships between CeAlO3 and TiN were calculated as [010]TiN//[2111] CeAlO3&(002)
TiN//

(
1121

)
CeAlO3

. CeAlO3 can serve as a heterogeneous nucleation core for TiN.
(3) The main sources of fatigue failure in 20CrMnTi were TiN and Al2O3 inclusions.

Adding Ce led to the formation of spherical CeAlO3-TiN inclusions in 20CrMnTi. The
fatigue cycle times of 20CrMnTi did not reach 107, while the fatigue cycle times of
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20CrMnTi-Ce reached 107. The fatigue performance of 20CrMnTi-Ce was significantly
better than that of 20CrMnTi.

(4) With the same inclusion sizes, the high-stress and low-life regions of the square TiN
were larger than those of the circular TiN. As the sizes of the TiN inclusions increase,
the maximum stress of the steel matrix increases. Also, the high-stress and low-life
regions noticeably increase, thus increasing the likelihood of a fatigue fracture.
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