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Abstract: Using first-principle spin-density functional computations, the structural, magnetic, and
electronic properties of the Cr- and V-doped diluted magnetic semiconductors Ca1-xCrxS and
Ca1-xVxSe at x = 0.25 in the B1 (NaCl) phase are explored. Elastic constants and structural properties
(lattice constants, bulk modulus, and its pressure derivative) were calculated and used to establish
structure stability. Plots of the TDOS and PDOS of transition metal atom-doped CaZ at x = 0.25 and
pure CaZ (Z = S, Se) are presented. Cr-doped CaZ (Z = S, Se) shows half-metallic character at x = 0.25
and is stable in ferromagnetic state, while that of V-doped CaZ compounds shows semiconductor
behavior and is stable in antiferromagnetic state. Dispersion of phonons was also evaluated to check
the global minima of energy in pure CaZ compounds. Curie temperature, magnetic moments, and
exchange constants were also calculated for all doped systems. The current results are in excellent
agreement with earlier research. Our current findings imply that CaZ doped with Cr/V (Z = S, Se)
would make a promising option for spintronic applications.

Keywords: spintronics; Cr-doped CaZ (Z = S, Se); magnetic moments

1. Introduction

Spintronics has advanced over the last two decades, and several investigations em-
ploying various ab initio methods have been carried out on DMS and DMO in an effort to
identify new, more effective materials with intriguing physical characteristics, including
ferromagnetic stability and high Curie temperature. These nonmagnetic DMSs are doped
lightly with small amounts of magnetic impurities in the host structure. The actual devel-
opment of these materials in material science is challenging because a compound must
have both electronic and magnetic doping, and the interaction between electronic carriers
and magnetic dopants must be thermally stable [1]. Early investigations in the field of
DMS began with research on II–VI semiconductors. It was found that a modest amount
of magnetic atom doping had no effect on the electrical, transport, or optical properties of
the fundamental material. Instead, it introduces effects of magnetic fields in nonmagnetic
materials [2]. Zn1−xMnxTe and Cd1−xMnxTe were the first II–VI semiconductor alloys that
were known. These ternary alloys attracted significant interest in the scientific community
as we can tune material properties of the compounds by changing their composition. The
lattice constant, energy band gap, and effective mass of the carriers are all easily modifiable
in II–VI compounds. Dilute magnetic semiconductor materials are high-performance mate-
rials as magnetic impurities in considerable amounts produce magnetic and cooperative
phenomena such as spin–exchange interactions [3–7]. Due to the stability of their magnetic
phase, the magnetic diluted industry has gained lot of interest in these types of compounds.
In the year 1960, the compounds, which were Cr-doped II–VI semiconductors, were being
used in a number of optical devices such as LEDs, lasers, and fluorescent displays [8]. In
2020, the electronic structure and magnetic properties of diluted Ca1−xTMxS (TM = V, Cr,
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and Co) in the rock salt structure at three concentrations (0.25, 0.125, and 0.0625) were
proposed by Amina Aiche et al. [9] while studying the electronic structure of Ca1−xCrxS
and Ca1−xVxS, and it was found that these compounds show half-metallic ferromagnetism
behavior with 100% spin polarization at all concentrations, whereas Ca1−xCoxS possessed
half-metallic ferromagnetic character at 0.0625 doping concentration. Half-metallic ferro-
magnetism with 100% spin polarization makes these compounds attractive for potential
applications in the spintronic field. Similarly, half-metallic ferromagnetic behavior of
Ca1−xTMxSe (TM = V, Cr, and Mn) with complete spin polarization of 100% at Fermi
level was predicted by Youcef Daoudi et al. in 2021 [10]. The computed band structures
and density of states indicates that these compounds are suitable candidates for possible
applications in the spintronic field. On the other hand, Meryam et al. explored the new
dilute magnetic semiconductor compound Ca1-xTixS using the FP-LAPW method based
on SP-DFT. Along with this, it was predicted that these compounds exhibit half-metallic
ferromagnetic demeanor [11]. Moreover, Hamidane et al. [12,13] reported the half-metallic
ferromagnetic properties of II–VI-semiconductor-based DMS compounds such as V- and Cr-
doped CaS using first-principle calculations, confirming the half-metallic ferromagnetism
behavior in these compounds.

In particular, the appearance of half-metallic ferromagnetism in Ti-doped II–VI semi-
conductors such as Sr0.75Ti0.25X (X = S, Se, and Te) [13], make it a favorable system for
spintronic devices. While studying structural and magneto-electronic performance of
Ba1−xCrxS, they discovered the half-metallic characteristic with ferromagnetic state of
these compounds with better magnetoelectronic performances, which makes them ap-
propriate materials for spin-injection applications [14]. In 2021, Youcef Daoudi et al. [15]
studied Ca1−xTMxTe (TM = V, Cr, Mn) compounds with concentration of x = 0.25, 0.125, and
0.0625. They discovered that half-metallicity of Cr-doped CaTe is due to p–d hybridization
around Fermi level, and the ferromagnetic ground state of Ca1-xCrxTe could be explained
by a double exchange mechanism. Further, exchange constants have a substantial role in
producing half-metallicity in Cr-doped compounds and make them promising candidates
for the spintronic devices.

Calcium chalcogenides are wide bandgap semiconductors [16]. These are widely used
in thermo/electro/photoluminescence as well as phosphorescent and other optoelectronic
materials due to their broad applications in catalysis to microelectronics and optoelec-
tronics [17–19]. Under ambient conditions, they prefer to be crystallized in a B1-type
structure [20].

Analyzing the literature thoroughly reveals that it is important to find the compounds
which possess stable half-metallic ferromagnetism and high Curie temperature. This
motivates us to study the V/Cr-doped CaZ (Z = S, Se) materials. In this paper, we focused
on 0.25 concentration of TM dopants. We computed their structural, elastic, electrical, Curie
temperature, and magnetic properties. Our paper consists of the following sections: the
computational method used in the present work is described in Section 2. In Section 3,
in our discussion of V/Cr-doped CaZ (Z = S, Se) compounds, we cover the ground state
characteristics, electronic structure, elastic parameters, phonon dispersion, and magnetic
properties. A conclusion is given in the final section.

2. Computational Details

The present calculations of Ca1−xCrxS and Ca1−xVxSe at x = 0.25 were performed using
computer code SIESTA [21]. The structural, electrical, magnetic, and elastic properties
of V- and Cr-doped CaS and CaSe DMSs were calculated using DFT, and total energy
calculations were performed using GGA as an XC functional [22] in the form provided by
the Perdew–Burke–Ernzerhof (PBE) scheme. Ca, S, Se, Cr, and V have the pseudoelectronic
configurations 3s2 3p6 4s2 3d0, 3s2 3p4, 4s2 4p4, 3d5 4s1, and 4s2 3d3. The cutoff energy and
number of k-points in the B1 structure of CaS and CaSe compounds was optimized. As a
result, a plane-wave basis set with an energy cutoff of 100 Ry was employed for Brillouin
zone sampling, and a 10 × 10 × 10 Monkhorst–Pack [23] k-point grid was used for the B1
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phase. In the B1 (NaCl) phase, Ca atoms occupy places (0.00, 0.00, 0.00), while S/Se atoms
occupy positions (0.50, 0.50, 0.50). By replacing one Ca cation with one Cr/V atom, we were
able to create the Ca0.75T0.25Z (T = Cr, V; Z = S, Se) ternary compounds. The Ca0.75T0.25Z
(T = Cr, V; Z = S, Se) features an 8-atom unit cell with a cubic structure (1 × 1 × 1). In
order to determine the stability of ferromagnetic states in DMSs, we calculated the energy
difference between the ferromagnetic and antiferromagnetic states, i.e., ∆EAFM − ∆EFM.
The system is stable in the FM state when the energy difference is positive; otherwise, it
is in the AFM state. The Curie temperature was calculated considering the total energy
difference between the FM and AFM states. Formation energy was also evaluated. Using
exchange coupling constants, the magnetic characteristics of the ternary alloys Ca0.75T0.25Z
(T = Cr, V; Z = S, Se) were investigated. The spin-polarized calculations and geometric
relaxations were found using the DZP (double-zeta plus polarization) basis set and CG
(conjugate-gradient) method. This was accomplished by thorough structural optimization
unless the forces were less than 0.04 eV/Å.

3. Result and Discussion
3.1. Structural Properties

In proximity of the parent CaS and CaSe semiconductors’ lattice parameters, the
ground state optimization for Ca0.75T0.25Z (T = V, Cr; Z = S, Se) compounds was performed.
To start the process, the total energy of the AFM and FM states in three different configura-
tions were established that correspond to various distances of the V- and Cr-doped CaS
and CaSe compounds as shown in Table 1. Here, we set the initial V/Cr atom’s location
(position “0”), and positions 1, 2, and 3 of the second V/Cr atom were chosen at random.
Configuration (0,1) for Ca0.75V0.25Z represents that the initial position of the first V-doped
atom is given by the “0” symbol and “1” represents the position of second V-doped atom
in a unit cell of size 2 × 2 × 1. Similarly, configurations (0,2), (0,3), and (0,4) represent
the positions of doped transition metal atoms (V/Cr) at different positions in the unit cell.
We calculated the distances dd1 and dd2 before and after relaxing for the models under
consideration. It was found that the total energy differences between the AFM and FM
states for Ca0.75V0.25Z (Z = S, Se) and Ca0.75Cr0.25Z (Z = S, Se) are negative and positive,
respectively. This suggests that the Cr-doped CaZ’s ferromagnetic state is more stable [24],
whereas CaZ that has been doped with V remains antiferromagnetic.

Table 1. V–V and Cr–Cr distance before (dd1) and after relaxation (dd2), magnetization energy
(∆E = EAFM − EFM).

Systems Configuration dd1 dd2 EAFM (eV) EFM (eV) ∆E = EAFM
− EFM (eV)

Stable
State

Tc (Curie
Temperature) (K)

Ca0.75V0.25S

(0,1) 0.74 0.71 −3677.831 −3677.827 −0.031 AFM 959.3 K

(0,2) 1.05 1.02 −3677.850 −3677.853 −0.022 AFM 680.8 K

(0,3) 1.15 1.14 −3677.869 −3677.868 −0.019 AFM 587.9 K

Ca0.75Cr0.25S

(0,1) 0.74 0.71 −3860.632 −3860.662 0.030 FM 928.39 K

(0,2) 1.05 1.02 −3860.455 −3860.482 0.027 FM 835.55 K

(0,3) 1.15 1.13 −3860.701 −3860.718 0.017 FM 526.09 K

Ca0.75V0.25Se

(0,1) 4.39 4.35 −3366.987 −3366.954 −0.028 AFM 866.5 K

(0,2) 6.21 6.19 −3366.782 −3366.761 −0.021 AFM 649.8 K

(0,3) 7.60 7.58 −3366.685 −3366.670 −0.015 AFM 464.19 K

Ca0.75Cr0.25Se

(0,1) 4.39 4.35 −3550.696 −3550.725 0.029 FM 902.3 K

(0,2) 6.21 6.19 −3550.489 −3550.507 0.018 FM 557.03 K

(0,3) 7.60 7.58 −3550.790 −3550.805 0.015 FM 464.19 K
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The following relation is used to determine the Curie temperature from the total
energy difference ∆E:

Tc KB =
2
3

∆E
x

(1)

where KB represents the Boltzmann constant and x represents the dopant concentration.
Furthermore, to establish structure stability, Murnaghan’s equation was utilized to

obtain the optimized value of the lattice constant A, bulk modulus B, and other elastic
constants [25].

E(V)− E(V0 ) =
B0V
B0


(

V
V0

)B′0

B′0 − 1

− B0V0

B′0 − 1
(2)

B0 = V
∂2E
∂2P

∣∣∣∣ V = V0 (3)

3.1.1. Elastic Properties

In this study, the mechanical stability of binary and ternary compounds was investi-
gated using second-order elastic constants. The structure has the space group Fm3m. C11,
C12, and C44 are the only three independent elastic constants in the FCC structure. The
values of the elastic constants were calculated using the following matrix [26]:

[C] =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 (4)

These three elastic constants were calculated using suitable deformations which are as
below:

D1 =

1 + δ 0 0
0 1− δ 0
0 0 1

1−δ2



D2 =

1 + δ 0 0
0 1 + δ 0
0 0 1 + δ



D3 =

1 δ 0
δ 1 0
0 0 1

1−δ2



(5)

D1 is an orthorhombic distortion that conserves volume and D2 alters the a-lattice
lattice parameter. The distortion lattice’s volume varies using D2, but the strained lattice’s
symmetry stays cubic. The energy of the volume-preserving monoclinic distortion D3 may
be computed as follows [27]:

E (V, δ) = E (V0 , 0) + V0

{
(C11 − C12) δ2 + O

(
δ4
)}

(6)

E (V, δ) = E (V0 , 0) + V0δ (r1 + r2 + r3) + V0
{ 3

2 (C11 + 2 C12 )δ
2 + O

(
δ4)}

E (V, δ) = E (V0 , 0) + V0
(
2C44δ2 + O

(
δ4)) (7)

Finally, a polynomial fitting method was used to obtain the second-order elastic
constants. The three equations listed above were resolved using least square fit using
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the derived elastic constants. Tables 2 and 3 show the elastic moduli results for pure and
TM-doped CaS and CaSe.

Table 2. Calculated lattice constants, elastic constants, and elastic moduli of pure and TM-doped CaS.

Parameters
CaS Ca0.75V0.25S Ca0.75Cr0.25S

Present Exp. Other Theoretical Present Present

a (Å) 5.72 5.689 [16]
5.717 [25]
5.598 [28]
5.721 [29]

4.778 4.463

Beq (GPa) 86.24 64 [16] 57.42 [24]
115.67 [30] 64.56 63.29

B’eq 4.05 4.2 [16] 3.8 [24]
4.1 [30] 3.32 3.19

C11 (GPa) 227.04 -

122.87 [24]
135 [29]

202.35 [30]
123.3 [31]

181.30 180.34

C12 (GPa) 17.24 -
32.01 [24]
31.45 [32]
23.6 [33]

19.65 18.85

C44 (GPa) 32.46

36.08 [24]
38 [29]

67.45 [30]
33.5 [32]

30.99 29.32

Table 3. Calculated lattice constants, elastic constants, elastic moduli, compressibility, and anisotropy
for pure and TM-doped CaSe.

Parameters
CaSe Ca0.75V0.25Se Ca0.75Cr0.25Se

Present Exp. Other. Theoretical Present Present

a (Å) 6.02 5.916 [16]
5.968 [24]
6.087 [29]
5.91 [31]

4.961 4.792

Beq (GPa) 75.24 51 [16]

56.2 [28]
88.92 [30]
63.94 [32]
60.88 [31]

67.27 66.81

B’eq 5.3 4.2 [16] 4.1 [28]
4.39 [32] 3.81 3.75

C11 (GPa) 199.55 -

155.25 [30]
135.0 [32]

120.32 [31]
104.6 [34]

156.14 160.73

C12 (GPa) 16.89 -

23.12 [28]
18 [29]

28.38 [32]
20.6 [34]

18.42 18.84

C44 (GPa) 28.58 -
29.90 [24]

31 [29]
28.5 [34]

22.70 23.52

The computed value of the lattice constant of pure CaS and CaSe was found to be
comparable to experimental and other theoretical data. Tables 2 and 3 indicate that the
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value of the lattice constant drops in V/Cr-doped CaS and CaSe. The reason for this is that
the atomic radius of doped atoms is smaller than that of the host Ca atom. The Ca atom
has an atomic radius of 231 pm, while V and Cr atoms have atomic radii of 205 pm and
128 pm, respectively. In pure CaZ systems, as well as in V and Cr-doped CaZ (Z = S, Se)
systems, the values of the elastic constants C11, C12, and C44 similarly drop from S to Se.

To determine the isotropic elastic constants, three averaging approaches are imple-
mented. In the Voiget method, uniform strain is assumed, and Russ technique is used in
the event of uniform stress. Hill [35] showed that Voigt and Reuss elastic moduli are the
strict upper and lower bounds, respectively. The Hill average bulk modulus may therefore
be computed from the elastic moduli of Voigt and Ruess as BH = (BR + BV)/2, where
BV = (1/9)[(C11 + C22 + C33) + 2 (C12 + C23 + C31)]; in addition, BR = [(S11 + S22 + S33)
+ 2(S12 + S23 + S31)]−1; Sij (=Cij−1) are the elastic compliance constants [35]. The bulk
moduli of Voigt and Reuss are comparable for cubic crystal structures C11 = C22 = C33 and
C12 = C23 = C31, BR = BV = (C11 + 2C12)/3. This property is illustrated in Tables 2 and 3,
and BR = BV = BH for pure and doped systems. This is true only for cubic symme-
try. The data also show that derived values of bulk modulus from elastic constants,
BH = (C11 + 2C12)/3 for all systems, are extremely near to values obtained from Mur-
naghan’s equation of state Beq by fitting the E–V curves with a discrepancy of less than
2%. This might be substantial evidence for the correctness and reliability of the existing
estimates of the elastic constants for CaS, CaSe, and Ca0.75T0.25Z (T = V, Cr; Z = S, Se). It
has been observed that the compressibility of pure and doped CaSe is greater than that of
CaS. CaSe systems are therefore more compressible than pure CaS and doped CaS systems.
Mechanical stability requires elastic constant limits such as C11 − C12 > 0, C11 + 2C12 > 0,
C11 > 0, C12 < C11, and C44 > 0 [26–38]. The evaluated elastic constants in this work satisfy
all of these conditions for stable B1 structures. The cubic stability condition is also satisfied
by the estimated elastic constants, i.e., C12 < B < C11.

3.1.2. Phonon Dispersion Curves

We calculated the dispersion of phonons in pure CaS and CaSe semiconductors to
check the global minima of energy. HF forces were used to calculate the force constants
which were induced due to the displacement of atoms. The size of the supercell is utilized
to determine phonon frequencies at each location of the Brillouin zone Γ, X, L, M. In the
present work for the calculations of dispersion of phonons, supercell of size (1 × 1 × 1) was
considered. Phonon dynamics also helps to evaluate the macroscopic behavior of solids,
e.g., thermal expansion, specific heat, etc. Furthermore, very low frequency modes can be
related to a phase transition, whereas imaginary frequencies indicate that the estimated
structure is inherently unstable. Figures 1 and 2 indicate that our computed phonon
frequencies are positive, indicating that the structure of CaS and CaSe considered for
subsequent calculations is stable.
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3.2. Electronic Structure

We performed simulations to determine the electrical and magnetic characteristics
of pure and V/Cr-doped CaS and CaSe compounds after confirming structure stability.
Understanding electronic band structure is tremendously important for spintronics. Using
an optimum lattice parameter, the electronic band structures and total density of states of
pure and doped materials were investigated. As shown in Figures 2 and 3, we first calcu-
lated the band structures and total density of states of pure CaS and CaSe semiconductors
along various symmetry lines in the Brillouin zone. The horizontal line in band structure
and the vertical line in TDOS at E = 0 eV represent the Fermi level. The investigation of
band structures reveals that the conduction band minima (CBM) and valence band maxima
(VBM) for both substances, CaS and CaSe, are located at the Γ point. We found that CaS
and CaSe have 3.84 eV direct band gaps and 3.27 eV in the B1 phase at ambient pressure,
respectively, which agrees with other theoretical predictions listed in Table 3.
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Furthermore, the total and partial density of states, as well as the spin-polarized band
structures, of V/Cr-doped CaS and CaSe semiconductors at x = 0.25 in B1 phase were also
determined. Spin-polarized band structures with TDOS Cr-doped CaS and CaSe diluted
magnetic semiconductors are shown in Figures 4 and 5, respectively, and V-doped CaS and
CaSe DMSs in B1 phase for spin-up and spin-down states, with high symmetry directions
in the Brillouin zone, are shown in Figures 6 and 7. The forbidden gap in the majority
spin channel (MAC) is shown in Figures 4 and 5 to be completely filled with impurity
atom energy levels, suggesting that the studied compound exhibits a metallic character
in the MAC. These impurity energy levels are generated by Cr-3d states, which generate
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a significant number of electron traps. As a result, they significantly improve electrical
conductivity and optical characteristics of CaS semiconductors. In contrast, the conduction
band minima and valence band maxima of a minority spin channel (MNC) are both found
at the Γ K-point. As a result, these compounds exhibit semiconductor behavior in the
minority channel. As a result, at x = 0.25, Cr-doped CaS and CaSe compounds exhibit
half-metallic behavior in the B1 phase. The bottom energy of the minority (dominant) spin
conduction band is subtracted from the fermi level to determine the half-metallic band
gap. Table 3 shows the predicted half-metallic gaps of minority spin channels (GHM) of Cr-
doped CaS and CaSe. The total density of states (TDOS) of Ca0.75Cr0.25S and Ca0.75Cr0.25Se
alloys are also useful in establishing the band state character. The maximum of the valence
band crosses the Fermi energy level in the majority channel, as seen by the total density of
states in Figures 4 and 5, but the maximum of the valence band remains below the Fermi
energy level and the bottom of the conduction band remains above the Fermi energy level
in the minority spin state, implying that Cr-doped CaS and CaSe in the spin-up state exhibit
metallic behavior and in the spin-down state exhibit semiconductor behavior.
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Figures 6 and 7 show that in in Ca0.75V0.25S and Ca0.75V0.25Se, valence band maxima
and conduction band minima in MAC and MNC both lie at the K-point Γ, indicating that
direct band gaps exist in V-doped CaS and CaSe compounds at Γ point and both DMSs
exhibit semiconductor behavior. Table 4 shows the computed spin-up and spin-down band
gaps of Ca0.75V0.25S and Ca0.75V0.25Se diluted magnetic semiconductors at x = 0.25. Total
density of states (TDOS) Ca0.75V0.25S and Ca0.75V0.25Se are also useful in demonstrating
the semiconductor behavior of these alloys. Total density states shown in Figures 6 and 7
show that in V-doped CaS and CaSe, in spin-up and spin-down states no electronic energy
state occurs at Fermi energy level. CaVS and CaVSe DMSs exhibit semiconductor behavior
in the B1 phase at x = 0.25.

Partial Density of States

The partial density of states for Ca1-xCrxS and Ca1-xCrxSe at x = 0.25 in B1 phase is
depicted in Figure 8 and the overall density of states was decomposed into s-, p-, and d-
orbital contributions to perform a qualitative investigation of each set of energy bands of
Ca1-xCrxS and Ca1-xCrxSe.
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Table 4. Spin-up and spin-down and half-metallic band gaps of V/Cr-doped CaZ (Z = S, Se).

Compound Spin-Up Band
Gap Eg(eV)

Spin-Down Band
Gap Eg (eV)

Other’s
Calculations Nature Half-Metallic Band

Gap GHM (eV)

CaS 3.84 - 3.969 [31], 4.086 [27] Semiconductor -

CaSe 3.26 - 3.491 [27], 3.451 [31] Semiconductor -

Ca0.75Cr0.25S 0.439 3.75 - Half-Metallic 2.811

Ca0.75Cr0.25Se 0.081 3.28 - Half-Metallic 2.577

Ca0.75V0.25S 1.374 3.76 - Semiconductor -

Ca0.75V0.25Se 1.44 3.19 - Semiconductor -
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In S and Se, valence electrons are s- and p-state electrons. The remaining electrons, on
the other hand, are considered to be part of the core. Figure 8 indicates that the 3s states of
S, with a tiny contribution from 4s states of Ca, of the valence band are in the lowest section
in Ca0.75Cr0.25S.

There is a minor contribution of 3p states of S in the top section of the valence band,
which is near the Fermi level. Cr-3d states play a key role in the upper area of the valence
band, but in the spin-up condition, these are near the Fermi surface. In the spin-down
situation, these states are a few electron volts below the Fermi surface. Ca-4s states dominate
the bottom of the conduction band, with a tiny contribution from S-3s states in the spin-up
condition and Ca-4s and Cr-3d states in the spin-down situation. The energy difference
between the spin-up and spin-down peaks due to effective Cr-3d states is characterized as
the spin–exchange splitting energy. The lowest half of the valence band in Cd0.75Mn0.25Se
is attributable to Ca-4s states with a tiny contribution from Se-4s states, whereas the upper
part of the valence band is filled with Ca-4s, Se-4p, and Cr-3d states. Cr-3d states are
present around the fermi level in spin-up states, but a few eV below the Fermi level in
spin-down states. In the conduction band, which lies above the Fermi surface, the bottom
of the conduction band is occupied with Ca 4s and Se-4p states for spin-up states, and
Cr-3d and Ca-4s states for spin-down states.

Furthermore, substitution of a transition metal atom on the semiconductor’s cation
site degenerates the 3d atomic levels of Cr atom in Ca0.75Cr0.25S and Ca0.75Cr0.25Se, degen-
erating into three degenerate t2g states and two doubly degenerate e2g states, as illustrated
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in Figure 9. These states are separated by tetrahedral crystal field splitting caused by the
Ca cation and the S/Se anion. In general, both the eg and t2g states are in the valence
band for majority spin. In these systems, a percentage of t2g states in majority spin states
cross the Fermi level, whereas it is completely in conduction in minority spin states. It can
also be noticed that the Fermi level only crosses the peak in one direction, suggesting that
Ca0.75Cr0.25S and Ca0.75Cr0.25Se are half-metallic in nature.
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Figure 10 shows that in Ca0.75V0.25Se, Ca-4s states, with a small contribution from S-3s
states, dominate the bottom portion of the valence band, while Ca 4s and S-3p levels at
the Fermi surface control the upper portion of the valence band. For spin-up states, V-3d
states can be observed in the upper section of the valence band. For spin-up states, they
are close to the Fermi surface, while for spin-down states, they are a few electron volts
below the Fermi surface. In the spin-up situation, Ca 4s states dominate the bottom of the
conduction band above the Fermi surface, whereas in the spin-down situation, Ca 4s and
V-3d states dominate.
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Crystal field theory states that when V transition metal ions replace the cationic sites
of CaZ (Z = S/Se), the tetrahedral crystal field created by the S/Se ion splits the fivefold
degenerate 3D states of the transition metal ions into three high-lying t2g (dxy, dyz, dzx)
and two low-lying (dx

2
-y

2, dz
2) symmetries, as shown in Figure 11. Ca0.75V0.25S and

Ca0.75V0.25Se are found to be semiconductors in nature since the Fermi level does not pass
any peak in either direction.
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3.3. Magnetic Properties

The magnetic characteristics of V/Cr-doped CaZ (Z = S, Se) DMSs were studied using
exchange constants. We evaluated N0α and N0β exchange constants. The s–d exchange
constant is N0α, while the p–d exchange constant is N0β. The cation concentration is
N0. The interaction between V/Cr spin and conduction electron carriers is shown by
N0α (s–d exchange constant), whereas the interaction between V/Cr spin and holes is
defined by N0β (s–d exchange constant). Valence and conduction band edge splitting are
important in the exchange and splitting process. These exchange constants can also be
evaluated experimentally using spin split exciton bands and optical-magneto absorption
experiments [41]. Total magnetic moments, local magnetic moments, exchange constants,
and valence and conduction band edge splitting are all determined in Table 5. The following
formulas were used to determine exchange constants [42]:

N0α =
∆Ec

x〈S〉 , N0β =
∆EV

x〈S〉 (8)

where ∆EC and ∆Ev are band edge splitting of conduction band minima (CBM) and valence
band maxima (VBM), x is the concentration of V/Cr atom, and <S> is one half of the
magnetization per V/Cr ion.

The total magnetic moment of 3d electrons inside the Cr sphere in CaCrS and CaCrSe
is 4.00 µb, while the total magnetic moment of 3d electrons within the V sphere in CaVS and
CaVSe is 3.00 µb, as shown in Table 5. DMSs create permanent local magnetic moments due
to partly filled Cr 3d/V-3d levels. Other fascinating features of DMSs result from exchange
interactions between magnetic ions and electrons or holes near the band boundaries [42–47].
On nonmagnetic Ca, S, and Se atoms, a Cr/V atom induces a local magnetic moment. The
magnetic moments of Ca, S, and Se atoms are all negative, suggesting that their magnetic
moments are antiparallel. The magnetic moments of S/Se and Ca atoms are also the result
of Cr/V and Cs S/Se orbital hybridization.



Crystals 2023, 13, 1069 13 of 15

Table 5. Calculated values of band edge splitting of CBM and VBM, exchange constants, and total
and local magnetic moments.

Parameter Ca0.75Cr0.25S Ca0.75Cr0.25Se Ca0.75V0.25S Ca0.75V0.25Se

∆EC (eV) 1.25 1.33 2.00 1.75

∆Ev (eV) −2.06 −1.87 −0.38 −0.25

N0α 2.50 2.65 5.34 4.66

N0β 4.12 3.74 1.01 0.66

M (µb) 4.0 4.0 3.00 3.00

mCa (µb) −0.054 −0.045 −0.03 −0.027

mS (µb) −0.567 - −0.265 −
mSe (µb) - −0.638 - −0.301

mCr (µb) 4.61 4.70 - -

mV (µb) - - 3.294 3.33

4. Conclusions

The structural, vibrational, elastic, electronic, and magnetic characteristics, as well
as the Curie temperature, of pure and transition metal atoms V/Cr-doped CaS and CaSe
semiconductors were investigated using density functional theory. Our calculated phonon
frequencies for CaS and CaSe semiconductors are positive in nature which shows that
compounds are dynamically stable. It is found that Cr-doped CaS and CaSe DMSs are
ferromagnetically more stable than in the antiferromagnetic state, whereas Ca0.75V0.25S and
Ca0.25V0.75Se compounds are stable in the antiferromagnetic state. It was also established
that the Fermi level crosses the peak in just one direction in Cr-doped CaS and CaSe
DMSs, which implies that Ca0.75Cr0.25S and Ca0.25Cr0.75Se compounds show half-metallic
behavior. On the other hand, V-doped CaS and CaSe show semiconductor behavior, where
the Fermi level does not cross any peak. Double exchange in the ferromagnetic phase is
the mechanism responsible for its stability in Ca0.75Cr0.25S and Ca0.25Cr0.75Se, while the
super exchange coupling is responsible for the stability of the antiferromagnetic state in
Ca0.75V0.25S and Ca0.25V0.75Se. We also evaluated the Curie temperatures for V/Cr-doped
CaS and CaSe at different positions of the dopant atoms, and distance was also evaluated
before and after the optimization. At ambient pressure, the elastic constants of pure and
doped systems in B1 phase were computed. The estimated elastic constant values indicate
that these compounds are mechanically stable.
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