

Article High-Temperature Piezoelectric Response and Thermal Stability of BiGaO₃ Modified BiFeO₃–BaTiO₃ Lead-Free Piezoelectric Ceramics

Shibo Guan ^{1,2,3,4}, Huabin Yang ^{1,2,3,*}, Shuai Cheng ^{1,2,3,*}, Hua Tan ^{5,6}, Guanjun Qiao ^{4,*}, Qiaohong Chen ^{1,2,3}, Jiwen Xu ^{1,2,3}, Linna Yuan ^{1,2,3}, Xueting Wang ^{1,2,3} and Ling Yang ^{1,2,3}

- ¹ Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
- ² School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
- ³ Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guilin University of Electronic Technology, Guilin 541004, China
- ⁴ School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- ⁵ School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- ⁶ Guangdong HUST Industrial Technology Research Institute, Dongguan 523808, China
- * Correspondence: yhb_letters@163.com (H.Y.); chengshuai0108@163.com (S.C.); gjqiao@ujs.edu.cn (G.Q.)

Abstract: BiGaO₃ doped BiFeO₃–BaTiO₃ ceramics were prepared by the traditional solid-phase synthesis process. The phase analysis, microstructure, piezoelectric, ferroelectric, dielectric properties, and thermal stability of 0.7BiFeO₃-(0.3 – *x*)BaTiO₃-*x*BiGaO₃ (Abbreviated as BF–BT-*x*BG) were investigated. The results show that the ceramics have rhombohedral (*R*) and tetragonal (*T*) structures. Particle dimensions gradually get bigger with the increase of BiGaO₃ concentration, and dense ceramic grains were observed through SEM. Electrical properties of BF–BT-*x*BG are improved after adding a small amount of BiGaO₃: piezoelectric constants *d*₃₃ = 141 pC/N, electromechanical coupling coefficient *k*_p = 0.314, mechanical Quality Factor *Q*_m = 56.813, dielectric loss tan δ = 0.048, residual polarization intensity *P*_r = 18.3 µC/cm², Curie temperature *T*_c = 485.2 °C, depolarization temperature *T*_d = 465 °C for *x* = 0.003. The "temperature-piezoelectric performance" curve under in situ *d*₃₃ indicates that piezoelectric properties *d*₃₃ increase rapidly with increasing temperature. Remarkably, the piezoelectric response *d*₃₃ reaches a maximum of 466 pC/N at a temperature *T* = 340 °C, and afterward, reduces gradually to zero with increasing temperature until 450 °C.

Keywords: BiFeO₃–BaTiO₃; BiGaO₃; in situ *d*₃₃; piezoelectric response; thermal stability

1. Introduction

High-temperature piezoelectric ceramics are used in aircraft, aviation, military, oil prospecting, and other fields [1–3]. PbNb₂O₆ and BiScO₃–PbTiO₃ are the most commonly used materials in the area of high-temperature piezoelectric ceramics. The performances of PbNb₂O₆ system piezoelectric ceramics are $d_{33} = 70$ –190 pC/N and $T_c = 370$ –610 °C [4,5]. BiScO₃-bTiO₃ piezoelectric ceramics have a high properties $d_{33} = 400$ pC/N and $T_c = 450$ °C [1,6]. Following increased awareness of environmental protection during the 20th century, the use of lead became more and more regulated by law. Therefore, the research on low-cost, non-toxic, and high-quality lead-free piezoelectric ceramics is of major significance. So far, potential materials like (K, Na) NbO₃ (KNN), Bi_{1/2}Na_{1/2}TiO₃ (BNT), and BaTiO₃(BT), each with their own strengths and weaknesses [7–9]. KNN has a high d_{33} , but the piezoelectric properties gradually decrease as the temperature rises [10,11]. BNT has a large strain but a low depolarization temperature [12,13]. BiFeO₃–BaTiO₃ ceramics are attracting more attention due to their excellent properties.

Citation: Guan, S.; Yang, H.; Cheng, S.; Tan, H.; Qiao, G.; Chen, Q.; Xu, J.; Yuan, L.; Wang, X.; Yang, L. High-Temperature Piezoelectric Response and Thermal Stability of BiGaO₃ Modified BiFeO₃–BaTiO₃ Lead-Free Piezoelectric Ceramics. *Crystals* **2023**, *13*, 1026. https:// doi.org/10.3390/cryst13071026

Academic Editor: Shujun Zhang

Received: 5 June 2023 Revised: 22 June 2023 Accepted: 27 June 2023 Published: 28 June 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

BiFeO₃ is a material with high $T_c = 870$ °C and high residual polarization strength [14,15]. At room temperature, $BaTiO_3$ is a perovskite material with a tetragonal structure, which has a high dielectric constant (ϵ_r) and low tan δ . BiFeO₃ and BaTiO₃ can form a perovskite solid solution with excellent piezoelectric properties and thermal stability [16,17]. BF–BT is a kind of piezoelectric ceramic with high T_c and high T_d [18,19]. Kumar et al. Found that BF–BT has a rhombohedral structure and tetragonal structure, respectively, when the content of BiFeO₃ is higher than 70% and lower than 4%. It changes to a cubic structure when the content of BiFeO₃ is higher than 4% and lower than 70% [19]. In the process of synthesizing pure BF, some second phases will be produced, such as Bi₂O₃, Bi₂Fe₄O₉, Bi₂₅FeO₃₉, Bi₂₅FeO₄₀, or Bi₄₆Fe₂O₇₂ [20,21]. On the other hand, doping other elements will enhance the electrical performance of BF-BT. It has been reported that many ions doped to enhance the electric performances of BF-BT, such as Cr³⁺, Sc³⁺, Nd³⁺, Ga³⁺, and so on [22-25]. BiGaO₃ has huge tetragonal distortion and a P4mm space group [26]. Liu et al. have shown that the resistivity of $0.7Bi(Ga_xFe_{1-x})O_3-0.3BaTiO_3$ ceramics increases with the Ga content increasing [27]. Zhou et al. synthesized 0.71Bi(Fe_{1-x}Ga_x)O₃-0.29BaTiO₃ ceramics with good Curie temperature, and they obtained good electrical performances: $d_{33} = 157 \text{ pC/N}$, $k_p = 0.326$, $T_c = 467 \text{ }^\circ\text{C}$ [28]. Myang Hwan Lee et al. studied $0.67Bi_{1.05}$ -(Fe_{1-x}Ga_x)O₃-0.33BaTiO₃ ceramic and obtained d_{33} = 402 pC/N, T_c = 454 °C by quenching process [29]. Akram et al. prepared $(1 - x)(0.65Bi_{1.05}FeO_3 - 0.35BaTiO_3) - xBiGaO_3$ ceramics and obtained $d_{33} = 165 \text{ pC/N}$, $k_p = 0.25$ for this system of ceramics at x = 0.01 [30]. Guan et al. has been reported that $0.67BiFeO_3-0.33BaTiO_3-xBiGaO_3$ ceramics have good piezoelectric performances: $d_{33} = 170 \text{ pC/N}$ and $T_c = 434 \text{ }^{\circ}\text{C}$ [25]. Recently, Myang Hwan Lee et al. increased the d_{33} of 1 mol% BiGaO3-doped BF33BT (BG) ceramics from 402 to 454 pC/N [31]. As an additive, MnO_2 was added to BF–BT ceramics to enhance the DC resistance and electrical properties of the ceramics [32,33]. Recently, in situ d_{33} has been used to characterize the d_{33} in the actual operating state of piezoelectric ceramics [34,35].

In this work, $0.7BiFeO_3$ - $(0.3 - x)BaTiO_3$ - $xBiGaO_3 + 0.01MnO_2$ (BF–BT-xBG) piezoelectric ceramics were produced by the traditional solid reactive method. BiGaO_3 influences on the crystalline structure, piezoelectric, ferroelectric, dielectric properties, and thermal stability have been systematically investigated. By designing this experiment, it is expected to obtain high performances at high temperatures, and at room temperature, polarization still has good piezoelectric properties of ceramics. The results showed that BF–BT-0.003BG ceramics have good piezoelectric performances with $d_{33} = 466$ pC/N at 340 °C. When MnO₂ is added to the pre-fired ceramics, it also has good piezoelectric properties after polarization at room temperature. It represents the piezoelectric performance of ceramics in the actual working state. These findings show that BF–BT ceramics have a great possibility of replacing PZT ceramics.

2. Experimental Methods

0.7BiFeO₃-(0.3 - x)BaTiO₃-xBiGaO₃ + 0.01MnO₂ ceramics are synthesized by traditional solid-state sintering. Bi₂O₃ (99.99%), Fe₂O₃ (99.99%), BaCO₃ (99.99%), TiO₂ (99.99%), MnO₂ (99.99%) (Xilong Chemical Plant, Shantou, China) and Ga₂O₃ (99.99% Macklin) were used as raw materials for synthesis. Due to the volatilization of Bi during the sintering process, an excess of 2 mol% Bi was added. The powder was weighed following a certain stoichiometric ratio into a bottle, mixed with alcohol, and ball mill for 12 h with 1000 r/min. The mixed particles were calcined at 800 °C for 6 h with a heating speed of 5 °C/min. MnO₂ was added to the calcined powder and poured into the bottle for the second grinding. Then, sintered at 1020 °C for 9 h with a heating rate of 5 °C/min. Both sides of the fired ceramic sheets were coated with silver electrodes and fired at 600 °C for a holding time of 30 min for electrical properties testing. The thickness of the measured sample is about 0.8 mm.

The crystal structure of the ceramic was tested by using an X-ray diffractometer with Cu K α (Smart Lab 9 kw, Rigaku, Tokyo, Japan). The morphology of the ceramic surface was photographed using a scanning electron microscope (JSM-7610FPlus). Density was calculated by Archimedes's drainage method. Piezoelectric properties were tested

by the quasi-static d_{33} tester (Institute of Acoustics, Chinese Academy of Sciences). *P-E* curves were measured by a ferroelectric test system (aixACCT TF Analyzer 1000, Aachen, Germany) at room temperature. Thermal stability was measured by the LCR analyzer (keysight, 4980A) from 25 °C to 550 °C. The depolarization temperature was measured ex situ. The in situ d_{33} was obtained by using a high-temperature in situ d_{33} test instrument (Wide-temperature-range d_{33} m: TZFD-900, Harbin Julang Technology Co., Ltd., Harbin, China, Figure S1). In the in situ d_{33} test method: the ceramic plate is placed in the apparatus, and the d_{33} operating state of the ceramic piece is tested in the furnace as the temperature rises. In ex situ d_{33} , the ceramic piece is placed in a furnace, heated to a certain temperature, removed and cooled to room temperature, and then tested for its d_{33} .

3. Results and Discussion

Figure 1a shows the XRD of BF–BT-*x*BG ceramics and the standard diffraction peaks for BF (R3c, PDF#71-2494) with the *R* phase and BT (P4 mm, PDF#75-1169) with the *T* phase. The ceramics display a perovskite structure with a few $Bi_{25}FeO_{40}$ impurity phases in Figure 1a, which has been reported in other studies [36–38]. The structure of BF–BT-*x*BG ceramics is a coexistence of the *R* phase and *T* phase. Figure 1b shows the BF–BT-*x*BG XRD pattern of 39°. The peak of 39° has no obvious change as the BG concentration increases.

Figure 1. The XRD patterns of BF–BT-*x*BG ceramics from (**a**) 20–80°, (**b**) 38–40°, * is impurity phases $Bi_{25}FeO_{40}$.

As shown in Figure 2, the Rietveld refinement method was used to analyze the phase structure of the BF–BT-*x*BG ceramics. The *R* phase is R3c (PDF#71-2494), and the *T* phase is P4mm (PDF#75-1169) through fitting analysis. The *R* phase weight fraction increases from 29.478% to 41.662% as BG concentration increases from 0 to 0.006. Then, the *R* phase content decreases as BG concentration increases from 0.006 to 0.012. Table 1 shows the Rietveld refinement structure parameters. The XRD refinement data are consistent with the results in Figure 1b.

Figure 3 shows the microstructure of the BF–BT-*x*BG ceramic after sintering at 1020 °C for 9 h. The results show that all ceramic surfaces are dense without obvious pores, that the grains are regular polygons, and that the grain boundaries are clear. Figure 3 shows the particle dimension distribution of the BF–BT-*x*BG ceramics after sintering at 1020 °C for 9 h. The particle dimensions of the BF–BT-*x*BG ceramics were measured using Nano Measurer software. It was shown that the particle dimensions of ceramics increase gradually as the BG concentration increases, and the average particle dimensions increase from 7.02 µm at

x = 0 to 13.37 µm at x = 0.012. It can be concluded that the addition of BiGaO₃ promotes an increase in particle dimensions. There are two reasons for this: one is that the incorporation of Ga³⁺ ions boosts the formation of the liquid phase and the sintering of the ceramic, which increases the size of the grain [28]. The other one is that more Bi₂O₃ is added with the addition of BiGaO₃, resulting in the generated impurity phase Bi₂₅FeO₄₀ leading to the generation of a more liquid phase and promoting the growth of ceramic grains [36,37]. On the other hand, in pure dense ceramics, the parabolic law indicates that the grain boundary mobility controls grain growth [39], and the doping of BiGaO₃ may promote grain boundary migration. The relative density of BF–BT-*x*BG ceramics is shown in Figure 3. It was shown that the relative density of ceramics first grew and then reduced as the BG concentration increased, reaching the highest value of 95.79% at x = 0.003.

Figure 2. Rietveld refinement results for BF–BT-*x*BG ceramics by GSAS (**a**) x = 0, (**b**) x = 0.003, (**c**) x = 0.006, (**d**) x = 0.009, (**e**) x = 0.012.

Composition	Phase	Lattice	Volume	Fitting
	fraction	parameters	(V_R/V_T) (Å ³)	parameter
		a c (Å)		Rwp/Rp
x = 0	R3c 29.478	5.64780 (3)	386.48 (6)	Rwp = 0.0402
		13.99083 (6)		Rp = 0.0296
	P4 mm 70.522	3.99613 (1)	63.98 (2)	
		4.00659 (1)		
x = 0.003	R3c 38.808	5.65280 (2)	388.76 (2)	Rwp = 0.0425
		14.04836 (9)		Rp = 0.03
	P4 mm 61.192	3.99815 (5)	64.11 (8)	-
		4.01106 (1)		
x = 0.006	R3c 41.662	5.68791 (5)	388.58 (9)	Rwp = 0.0422
		13.86928 (7)		Rp = 0.0299
	P4 mm 58.338	3.99785 (9)	64.25 (1)	*
		4.02001 (1)		
x = 0.009	R3c 37.181	5.69049 (9)	388.10 (4)	Rwp = 0.0439
		13.83939 (5)		Rp = 0.0317
	P4 mm 62.819	3.99542 (0)	63.89 (6)	*
		4.00266 (2)		
x = 0.012	R3c 35.102	5.65378 (9)	389.47 (8)	Rwp = 0.0358
		14.06932 (2)		Rp = 0.0253
	P4 mm 64.898	3.99647 (3)	63.95 (2)	-
		4.00407 (4)		

Table 1. Rietveld refinement structure parameters for unpoled BF-BT-xBG ceramics.

Figure 3. The microstructure of BF–BT-*x*BG ceramics after sintering at 1020 °C for 9 h (**a**) $x = 0 \mod\%$, (**b**) $x = 0.3 \mod\%$, (**c**) $x = 0.6 \mod\%$, (**d**) $x = 0.9 \mod\%$, (**e**) $x = 1.2 \mod\%$, (**f**) the relative density (five-pointed star) of BF–BT-*x*BG ceramics.

Figure 4a shows the d_{33} of BF–BT-*x*BG ceramics polarization at room temperature (rp) and polarization at 100 °C (100p), of which the d_{33} has little difference. It can be seen that the d_{33} of ceramics grew at first and then reduced as the BG concentration grew, which reaches the highest $d_{33} = 141$ pC/N (rp) when x = 0.003. There are two reasons for this: one is that the ion radius Bi³⁺ = 1.38 Å (CN = 12), Ga³⁺ = 0.62 Å (CN = 6), Ba²⁺ = 1.61 Å (CN = 12), Ti⁴⁺ = 0.605 Å (CN = 6). A small amount of BiGaO₃ doped into BaTiO₃ will lead to lattice distortion, which promotes the movement of ferroelectric domains and enhances the piezoelectric performances. Another reason is that the addition of a small amount of

BiGaO₃ may produce polar nano micro-regions (PNRs). It destroys the long-range ordered ferroelectric state, strengthens the electromechanical coupling effect, and improves the intrinsic piezoelectric activity [40]. Meanwhile, BiGaO₃ doping promotes the formation of liquid phase and grain growth, and the relative density is maximum at x = 0.003, when the piezoelectric performance is the best. Ga³⁺ replaces Ti⁴⁺ to produce oxygen vacancy when the BiGaO₃ content is high [41]. The movement of the oxygen vacancy pinning domain causes the decrease of d₃₃. MnO₂ decomposes to Mn₂O₃ above 900 °C. In our experiment, MnO_2 is added after the pre-combustion, so that more MnO_2 becomes Mn_2O_3 [33,42]. According to this reaction:

$$\begin{pmatrix} a \\ 145 \\ 140 \\ 135 \\ 130 \\ 125 \\ 125 \\ 120 \\ 155 \\ 120 \\ 105 \\ 0.000 \\ 0.000 \\ 0.003 \\ 0.006 \\ 0.000 \\ 0.003 \\ 0.006 \\ 0.009 \\ 0.012 \\ 0.29 \\ 0.28 \\ 0.27 \\ 0.26 \\ 0.20 \\ 0.29 \\ 0.28 \\ 0.27 \\ 0.26 \\ 0.20 \\ 0.000 \\ 0.003 \\ 0.006 \\ 0.009 \\ 0.003 \\ 0.006 \\ 0.009 \\ 0.012 \\ 0.000 \\ 0.003 \\ 0.006 \\ 0.009 \\ 0.012 \\ 0.000 \\ 0.000 \\ 0.003 \\ 0.006 \\ 0.009 \\ 0.012 \\ 0.051 \\ 0.051 \\ 0.051 \\ 0.051 \\ 0.051 \\ 0.051 \\ 0.051 \\ 0.051 \\ 0.051 \\ 0.051 \\ 0.051 \\ 0.051 \\ 0.051 \\ 0.050 \\ 0.000 \\ 0.003 \\ 0.006 \\ 0.009 \\ 0.003 \\ 0.006 \\ 0.009 \\ 0.012 \\ 0.011 \\ 0.000 \\ 0.0$$

$$4MnO_2 \rightarrow 2Mn_2O_3 + O_2 \uparrow (\geq 900 \ ^\circ C)$$

$$Mn^{3+} + Fe^{2+} \rightarrow Mn^{2+} + Fe^{3+}$$

114-0

Figure 4. (a) The d_{33} of BF–BT-xBG ceramics polarization at room temperature (rp) and polarization at 100 °C (100p), (b) the changes of k_p and Q_m of ceramics with BG concentration, (c) the change of dielectric constant ε_r with BG concentration, (d) the change of dielectric loss tand with BG concentration

Mn₂O₃ can better inhibit the conversion from Fe³⁺ to Fe²⁺, and improve the thermal stability of ceramics. Therefore, ceramics still have excellent piezoelectric properties under rp conditions.

Figure 4b shows the k_p and Q_m of BF–BT-*x*BG ceramics. The k_p rises first and then drops as the BG concentration increases, and reaches the highest 0.314 when x = 0.003. $Q_{\rm m}$ changes little as the BG concentration increases. The change of k_p is consistent with d_{33} , and the reason is the same as that of d_{33} described above. Figure 4c shows the change of dielectric constant ε_r with BG concentration. The ε_r increases first from 751.843 at x = 0to 853.149 at x = 0.003, and then decreases to 670.483 at x = 0.012. The addition of a small amount of Ga³⁺ causes lattice distortion and contributes to the enhancement of ε_r . Figure 4d shows the change of dielectric loss $tan\delta$ with BG concentration. It can be concluded that tan δ decreases first to 0.048 at x = 0.003 and then increases as the BG concentration grows, indicating that a small amount of $BiGaO_3$ incorporation is conducive to enhancing the dielectric properties of ceramics.

Figure 5a–f show the variation in impedance and phase angle θ with frequency at 25 °C. It has been shown that the polarization phase angle θ reaches the maximum value θ = 58.917 when *x* = 0.003, which corresponds to the component point when *d*₃₃ is at the maximum value, indicating that the ceramic has sufficient polarization and the highest performance when *x* = 0.003.

Figure 5. (a-f) The variation of impedance and phase angle with frequency at room temperature.

Figure 6a–e shows the *P*-*E* hysteresis loop diagram of the BF–BT-*x*BG ceramic at room temperature. It can be seen that the morphology of the hysteresis loop tends to saturate with increasing electric field at the same component point, and gradually changes from flat to well-saturated. It shows that the ferroelectric performances of ceramic increase gradually with the enhancement of the electric field. Figure 6f shows the *P*-*E* hysteresis loops of different component points under the same electric field of 50 kv/cm. All hysteresis loops are saturated. The asymmetric shape of the *P*-*E* hysteresis line is due to the internal bias field of the ceramic during the test [2]. Figure S2 shows the internal bias field at different composition points of 50 kV/cm. The *E*_i at all component points is between 2 and 3 kV/cm. The main doped ferroelectric produces oxygen vacancies to maintain its own electrical neutrality, which in turn leads to the formation of defective dipoles, which are oriented in the polarization direction after sufficient polarization aging, so that the directionally arranged defective dipoles form the internal bias field *E*_i.

Ec (kV/cm)

Figure 6. (**a**–**e**) The *P*-*E* hysteresis loop diagram of BF–BT-*x*BG ceramic at room temperature, (**f**) the *P*-*E* hysteresis loops of different component points under the same electric field 50 kV/cm.

Ec (kV/cm)

Figure 7a shows the changes in residual polarization intensity P_r and coercive field E_c at different composition points at room temperature. The results show that P_r rises first and then drops as the BG concentration grows, reaching the highest value, $P_r = 18.3 \,\mu\text{C/cm}^2$, when x = 0.003. E_c does not change much as the BG concentration increases. The reason why P_r reaches the maximum at x = 0.003 is that a few doping of BiGaO₃ improves the lattice aberration of the ceramic, which increases the ferroelectric activity. Another reason may be that a few doping of BiGaO₃ improves the order of ceramic domains and then improves P_r . Figure 7b shows the *P*-*E* hysteresis loop of BF–BT-0.003BG ceramics at 40 kV/cm with different temperatures. P_r rises, and E_c drops gradually with the increase in temperature. The reason for this is that the high-temperature environment diminishes the pegging effect of the defective dipole and contributes to the flipping of the ferroelectric domains. Because of the internal bias field in this ceramic, there is an asymmetry in the *P*-*E* hysteresis loop [2].

Figure 7. (a) The changes of residual polarization intensity P_r and coercive field E_c at different composition points at room temperature, (b) *P*-*E* hysteresis loop of BF–BT-0.003BG ceramic variable with temperature.

Figure 8a–e shows the temperature-dependent ε_r and tand of the ceramic with different BG concentrations as a function of temperature. The test frequencies are 1, 10, and 100 kHz, respectively. There is a high-temperature dielectric anomaly peak and no obvious frequency dependence at low temperatures. As the temperature increases, the frequency dependence becomes more pronounced. This behavior is associated with the chemical heterogeneity of the material and the decomposition of the macro-nano domain into a nanodomain structure near the ferroelectric paraelectric phase transition. Ferroelectrics can be classified as normal ferroelectrics, dispersion ferroelectrics, and relaxor ferroelectrics [43]. Normal ferroelectrics are distinguished by a sharp phase change peak, dispersed ferroelectrics by a broad phase change peak, and relaxor ferroelectrics by a broad phase change peak, which gradually shifts to higher temperatures as the frequency increases. Figure 8 shows that the ceramics in this system exhibit all the characteristics of a relaxor ferroelectric. There are many defects in the ceramic sintering process. These defects have little influence on the dielectric performances of ceramics at low temperatures and have no obvious frequency dependence. The influence of the defects on the ceramic becomes stronger, and the ceramic shows an evident dependence on frequency as the temperature continues to increase. The ε_r initially remains unchanged and then increases rapidly with increasing temperature, and then drops gradually after arriving at the peak. Oxygen vacancies require less energy to be excited and can be excited at low temperatures. Cation excitation requires more energy and is not easy to excite at a lower temperature; therefore, the ε_r is low. The energy of the excited cation is satisfied at high temperatures, so it may be excited, leading to a high dielectric constant [44]. On the other hand, it may be due to the directional arrangement of ferroelectric domains in the polarization process of ceramics, and the lattice energy in the stable state is locked. At this time, the energy is difficult to make the long-range ordered macro domain move, and the domain wall cannot move as the electric field is applied. The relaxing time is long, resulting in a very low dielectric constant. Then, the energy required for the thermal motion is achieved as the temperature continues to increase, which makes the electric domain of the ceramics change from the long-range ordered state to the short-range disorder state, resulting in a large dielectric response and a rapid increase in ε_r [23]. The temperature of this peak is the T_c (phase change temperature from the ferroelectric phase to the paraelectric phase). Ceramics exhibit a ferroelectric phase below T_{c} , and the ferroelectric domains remain in an ordered state with piezoelectric properties. Ceramic is a paraelectric phase above T_{c_r} and the electrical domain is disordered without piezoelectric properties. Tand rises slightly at low temperatures, and it rises quickly at high temperatures. The reason is that there are a lot of oxygen vacancies in the ceramic during the sintering process, and the energy needed to excite the cations of these oxygen vacancies is more, which has no effect on the tan δ at low temperatures. Cations gain more energy

and are excited at higher temperatures, leading to a rapid increase in tan δ . Tan δ increases slowly with the BG concentration increasing at low temperatures, and the loss is mainly relaxation loss. Then, the tan δ increases rapidly when a definite temperature is achieved, which is mainly the leakage loss. Figure 8f shows the change in the ceramic dielectric constant at different BG concentrations under 1 kHz. As the BG concentration grows, the curve shifts first to high temperatures and then to low temperatures. Figure S3 shows the local enlargement of the dielectric temperature spectrum of BF–BT-*x*BG ceramics and the variation of T_f at different composition points. The temperature at which the normal ferroelectric transforms into a non-ergodic relaxor ferroelectric is the freezing temperature (T_f). T_f reduces and then rises with the increase of BG concentration. The temperature at which the transition from the paraelectric state to the ergodic relaxor state is called Burns Temperature (T_B). In this system of ceramics, T_c corresponds to the T_B .

Figure 8. (**a**–**e**) Temperature dependences of ε_r and $tan\delta$ for BF–BT-*x*BG ceramics at 1, 10, and 100 kHz; (f) temperature dependences of dielectric constant ε_r for BF–BT-*x*BG ceramics at 1 kHz.

Figure 9a–f shows the curve of $\ln(1/\varepsilon_r - 1/\varepsilon_m)$ as a function of $\ln(T - T_m)$ for the BF–BT-*x*BG ceramics under 1 kHz. These points are almost in a straight line. Perovskite

ferroelectrics are generally divided into normal ferroelectrics, dispersed ferroelectrics, and relaxor ferroelectrics [43]. According to Curie Weiss's law:

$$1/\varepsilon_{\rm r} - 1/\varepsilon_{\rm m} = (T - T_{\rm m})^{\gamma}/C$$

where γ , T_{m} , ε_{m} , and C represent the diffusion coefficient, phase transition temperature, maximum ε_{r} , and Curie constant, respectively [45,46].

Figure 9. (**a**–**e**) The curve of $\ln(1/\varepsilon_r - 1/\varepsilon_m)$ as a function of $\ln(T - T_m)$ for the BF–BT-*x*BG ceramics under 1 kHz. The blue squares are the corresponding points.

It can judge what kind of ferroelectric the ceramics is. All γ values are higher than 1, showing that the ceramics are relaxor ferroelectrics. The γ value decreases first and then increases with the BG concentration increasing, and reaches the minimum value $\gamma = 1.538$ when x = 0.006. A few doping of BiGaO₃ reduces the relaxation characteristics of the ceramics.

Figure 10a displays the variation of d_{33} with temperature for BF–BT-*x*BG ceramic. The d_{33} at the same component point x remains stable with rising temperature, and drops abruptly when it reaches a definite temperature. This temperature is determined as the depolarization temperature $T_{\rm d}$ [34]. The domains are arranged orderly when the temperature is low, and the ceramics have high d_{33} . The domain progressively returns to a disorderly state when the temperature rises to a certain value, which d_{33} decreases progressively. Figure 10b shows the T_c and the T_d at different BG concentrations of BF–BT-xBG ceramics. The T_c reaches the maximum of 485.9 °C when x = 0.006. The T_d increases first when the BG concentration grows, achieving the highest of 465 °C at x = 0.003 and x = 0.006, and then drops when the BG concentration grows. The higher the amount of *R* phase, the higher the $T_{\rm c}$ and $T_{\rm d}$, which is in agreement with the XRD refinement results (Table 1). It has been shown that a few doping of BiGaO₃ increases the T_c and T_d of ceramics. Because a few doping of BiGaO₃ enhances the lattice distortion and anisotropy of the ceramic, it increases the T_c and T_d . At the same time, lattice distortion means a higher phase transition barrier, resulting in a higher T_c [47]. Part of Bi³⁺ and Ga³⁺ accumulate on the grain boundary surface when too much Bi³⁺ and Ga³⁺ are doped, which reduces the lattice distortion and reduces the T_c and T_d . On the other hand, too much Bi³⁺ and Ga³⁺ doping may introduce defects and disrupt the long-range ordered structure of the ceramic, reducing T_c and $T_{\rm d}$ [48].

Figure 10. (a) Variation of d_{33} with the temperature at different composition points *x* of BF–BT-*x*BG ceramic, (b) the T_c and the T_d at different composition points *x* of BF–BT-*x*BG ceramics.

Figure 11a shows the variation of ε_r and tan δ with temperature for x = 0, x = 0.003, and x = 0.012; the ε_r grows slowly at low temperatures and grows rapidly when it reaches a certain temperature. The tan δ increases gradually with increasing temperature, decreases after achieving a definite temperature, and then rises rapidly. The specific mechanism is explained in Figure 8. Figure 11b shows the ex situ depolarization plots for x = 0, x = 0.003, and x = 0.012. The d_{33} of different components remained stable with the rise of temperature, and when reaching a certain temperature (T_d) [34], d_{33} decreases quickly. Figure 11c shows the in situ d_{33} of BF–BT-*x*BG ceramic with high temperature. This in situ d_{33} represents the variation of d_{33} with temperature in the actual working condition of the ceramic. It shows that the d_{33} of the ceramic gradually rises with rising temperature, and decreases quickly after achieving the maximum at high temperature. Interestingly, ceramics have a large piezoelectric response d_{33} = 466 pC/N at 340 °C when x = 0.003. According to the formula $d_{33} = 2Q\varepsilon P_s$ [49], where Q is the electrostrictive coefficient, ε is the dielectric constant, and P_s is the spontaneous polarization. The enhancement of the piezoelectric properties is related to the ferroelectric and dielectric properties. The increase from d_{33} at low temperature corresponds to the change in residual polarization intensity P_r in Figure 7b. The d_{33} rises when the temperature rises because the rise of temperature will increase ε and P_s . As the ceramic is cooled in the furnace, oxygen vacancies will be generated, resulting in lattice defects. Oxygen vacancies will gather at grain boundaries and domain walls, preventing the

movement of ferroelectric domains. The movement of ferroelectric domains and domain walls becomes active when temperature increases, improving piezoelectric response and piezoelectric properties. The flattening of the Gibbs free energy curve caused by the temperature variation leads to an increase in the dielectric sensitivity and piezoelectric response of the material under test [50,51]. The in situ d_{33} increase is influenced by both P_s and ε factors. It is mainly affected by P_s at low temperatures and ε_r at high temperatures, so it increases nonlinearly [52]. The depolarization process starts with a further increase in temperature. The microdomain returns to its initial state with a further increase in temperature. At this time, the ferroelectric domain changes from normal ferroelectric to non-ergodic relaxor ferroelectric, and the local microdomain is decomposed into randomly oriented nanodomains. It promotes the transition of the ferroelectric relaxor phase, so d_{33} decreases sharply [35]. It shows that a small amount of $BiGaO_3$ can improve the thermal stability of ceramics. By comparing Figure 11a-c, it can be found that the ceramics of this system have an extremely high piezoelectric response in practical work. GuO and Wang reported PZT ceramics with $d_{33} = 910 \text{ pC/N}$, $T_c = 184 \degree \text{C}$ and $d_{33} = 680 \text{ pC/N}$, $T_c = 330 \degree \text{C}$, respectively [53,54]. Compared with PZT ceramics, the present work has a high Curie temperature and good d_{33} at high temperatures. It provides great research value for the use of lead-free piezoelectric ceramics. Table 2 shows the piezoelectric properties of the BF-BT system synthesized using the conventional solid-state reaction and quenching process. A high d_{33} of 466 pC/N was achieved in this work.

Figure 11. (a) The variation of ε_r and tan δ with temperature for x = 0, x = 0.003, and x = 0.012, (b) the ex situ depolarization plots for x = 0, x = 0.003 and x = 0.012, (c) the in situ d_{33} of BF–BT-*x*BG ceramics for x = 0, x = 0.003 and x = 0.012 at high temperature.

Systems	<i>d</i> ₃₃ (pC/N)	k _p	$E_{\rm c}$ (kV/cm)	$P_{\rm r}$ (µc/cm ²)	T_{c} (°C)	$T_{\rm d}$ (°C)	Ref.
$0.725 BiFe_{0.98}Sc_{0.02}O_3 - 0.275 BaTiO_3 + 0.01 MnO_2$	127	0.366	48	19.1	636	450	[55]
$0.67BiFeO_3 - 0.33BaTiO_3 + 0.02BiGaO_3 + 0.0035MnO_2$	170	0.306	22.059	25	434	422	[25]
$0.75 \text{ BiFeO}_3 - 0.25 \text{BaTiO}_3 + \text{MnO}_2$	116	-	39.3	22.9	619	469	[32]
0.75 BiFeO ₃ - 0.25BaTiO ₃ + 0.01NdCoO ₃ + 0.01MnO ₂	110	-	-	8.2	605	525	[56]
0.7BF - 0.3BT(SBT)	210	0.34	30	31.2	514	400	[57]
0.67Bi _{1.05} (Fe _{0.97} Ga _{0.03}) - 0.33BaTiO ₃ (water-quenching)	402	-	-	-	454		[29]
$0.67BiFeO_3 - 0.33BaTiO_3 + 0.01BiGaO_3$ (water-quenching)	454				451		[31]
$0.7BiFeO_3 - 0.297BaTiO_3 - 0.003BiGaO_3 + 0.01MnO_2$	466 (340 °C) 141 (RT)	0.314	30.84	18.3	485.2	465	This work

Table 2. Electrical properties of reported BiFeO₃–BaTiO₃ Lead-free piezoelectric ceramics. Room Temperature: RT.

4. Conclusions

Lead-free high-temperature piezoelectric 0.7BiFeO₃-(0.3 – *x*)BaTiO₃-*x*BiGaO₃ (BF–BT-*x*BG) after pre-sintering with MnO2 system ceramics were fabricated by solid-state sintering technique and their phase analysis, microstructure, piezoelectric, ferroelectric, dielectric properties and thermal stability, were studied. XRD results show that BF–BT-*x*BG ceramics have co-existed *R* and *T* phases structure. SEM shows that the particle dimensions of ceramics gradually grow with the increase of Bi³⁺ and Ga³⁺ incorporation. The electrical property reaches the maximum value when *x* = 0.003: *d*₃₃ = 141 pC/N, *k*_p = 0.314, $Q_{\rm m} = 56.813$, $P_{\rm r} = 18.3 \,\mu\text{C/cm}^2 T_{\rm c} = 485.2 \,^{\circ}\text{C}$, $T_{\rm d} = 465 \,^{\circ}\text{C}$. Lattice distortion leads to improved room-temperature piezoelectric and dielectric properties. The excitation of cations at high temperatures leads to the improvement of dielectric properties at high temperatures leads to the improvement of piezoelectric properties at high temperatures. This study shows that doping BiGaO₃ into BF–BT has excellent electrical properties, making it a potential application for high-temperature piezoelectric devices.

Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/cryst13071026/s1, Figure S1: Wide-temperature-range d33 meter (TZFD-900, Harbin Julang Technology Co., Ltd., Harbin, China). Figure S2: Internal bias field Ei for different component points at 50 kV/cm. Figure S3: Local enlargement of the dielectric temperature spectrum of BF-BT-xBG ceramic and the variation of Tf at different composition points. (a) x = 0, (b) x = 0.003, (c) x = 0.006, (d) x = 0.009, (e) x = 0.012, (f) the variation of Tf at different composition points.

Author Contributions: Conceptualization, S.G., H.Y., S.C. and H.T.; methodology, S.G., H.Y. and G.Q.; software, S.G.; validation, S.G. and H.Y.; formal analysis, S.G., S.C.; investigation, S.G., S.C., H.T., Q.C., J.X., L.Y. (Linna Yuan), X.W. and L.Y. (Ling Yang); resources, H.Y. and G.Q.; data curation, S.G.; writing—original draft preparation, S.G.; writing—review and editing, S.G., H.Y. and S.C.; visualization, S.G.; supervision, H.Y. and G.Q.; project administration, H.Y. and G.Q.; funding acquisition, H.Y. and G.Q.; All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the National Natural Science Foundation of China (52162016, 52172069, 52062007), Natural Science Foundation of Guangxi, China (2021GXNS-FAA220020, 2022CXNSFBA035612, AD19245084), Guangxi Key Laboratory of Information Materials, the Key Research and Development Plan (BE2019094), Thanks to Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guilin University of Electronic Technology for help with related tests.

Data Availability Statement: The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Chen, S.; Dong, X.; Mao, C.; Cao, F. Thermal Stability of (1–*x*)BiScO₃–*x*PbTiO₃ Piezoelectric Ceramics for High-Temperature Sensor Applications. *J. Am. Ceram. Soc.* **2006**, *89*, 3270–3272. [CrossRef]
- Yang, H.; Zhou, C.; Liu, X.; Zhou, Q.; Chen, G.; Wang, H.; Li, W. Structural, microstructural and electrical properties of BiFeO₃–BaTiO₃ ceramics with high thermal stability. *Mater. Res. Bull.* 2012, 47, 4233–4239. [CrossRef]
- 3. Guan, S.; Yang, H.; Chen, G.; Zhang, R. Microstructure, Piezoelectric, and Ferroelectric Properties of BZT-Modified BiFeO₃-BaTiO₃ Multiferroic Ceramics with MnO₂ and CuO Addition. *J. Electron. Mater.* **2018**, *47*, 2625–2633. [CrossRef]
- Li, Y.; Cheng, L.; Gu, X.; Zhang, Y.; Liao, R. Piezoelectric and dielectric properties of PbNb₂O₆-based piezoelectric ceramics with high Curie temperature. *J. Mater. Process. Technol.* 2008, 197, 170–173. [CrossRef]
- 5. Fang, R.; Zhou, Z.; Liang, R.; Dong, X. Effects of CuO addition on the sinterability and electric properties in PbNb₂O₆-based ceramics. *Ceram. Int.* **2020**, *46*, 23505–23509. [CrossRef]
- 6. Eitel, R.; Randall, C.; Shrout, T.; Park, S. Preparation and Characterization of High Temperature Perovskite Ferroelectrics in the Solid-Solution (1–*x*)BiScO₃–*x*PbTiO₃. *Jpn. J. Appl. Phys.* **2002**, *41*, 2099–2104. [CrossRef]
- Yang, H.; Zhou, C.; Zhou, Q.; Chen, G.; Wang, H.; Li, W. Microstructural and electrical properties of Na_{1/2}Bi_{1/2}TiO₃-(Na_{1/4}Bi_{3/4})(Mg_{1/4}Ti_{3/4})O₃ piezoelectric ceramics. *J. Alloys Compd.* 2012, 542, 17–21. [CrossRef]
- 8. Xu, K.; Li, J.; Lv, X.; Wu, J.; Zhang, X.; Xiao, D.; Zhu, J. Superior Piezoelectric Properties in Potassium–Sodium Niobate Lead-Free Ceramics. *Adv. Mater.* **2016**, *28*, 8519–8523. [CrossRef] [PubMed]
- 9. Guan, S.; Yang, H.; Zhao, Y.; Zhang, R. Effect of Li₂CO₃ addition in BiFeO₃-BaTiO₃ ceramics on the sintering temperature, electrical properties and phase transition. *J. Alloys Compd.* **2018**, *735*, 386–393. [CrossRef]
- 10. Zuo, R.; Fu, J. Rhombohedral–Tetragonal Phase Coexistence and Piezoelectric Properties of (NaK)(NbSb)O₃–LiTaO₃–BaZrO₃ Lead-Free Ceramics. J. Am. Ceram. Soc. **2011**, *94*, 1467–1470. [CrossRef]
- 11. Zuo, R.; Fu, J.; Lu, S.; Xu, Z. Normal to Relaxor Ferroelectric Transition and Domain Morphology Evolution in (K,Na)(Nb,Sb)O₃–LiTaO₃–BaZrO₃ Lead-Free Ceramics. *J. Am. Ceram. Soc.* **2011**, *94*, 4352–4357. [CrossRef]
- 12. Wang, D.; Wang, G.; Murakami, S.; Fan, Z.; Feteiraz, A.; Zhou, D.; Sun, S.; Zhao, Q.; Reaney, I. BiFeO₃-BaTiO₃: A new generation of lead-free electroceramics. *J. Adv. Dielectr.* **2018**, *8*, 1830004. [CrossRef]
- Zhang, S.; Kounga, A.; Aulbach, E.; Ehrenberg, H.; Rödel, J. Giant strain in lead-free piezoceramics Bi_{0.5}Na_{0.5}TiO₃–BaTiO₃– K_{0.5}NbO₃ System. *Appl. Phys. Lett.* 2017, *91*, 112906. [CrossRef]
- 14. Eerenstein, W.; Mathur, N.; Scott, J. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [CrossRef]
- 15. Guan, S.; Yang, H.; Qiao, G.; Sun, Y.; Qin, F.; Hou, H. Effects of Li₂CO₃ and CuO as Composite Sintering Aids on the Structure, Piezoelectric Properties, and Temperature Stability of BiFeO₃-BaTiO₃ Ceramics. J. Electron. Mater. **2020**, 49, 6199–6207. [CrossRef]
- 16. Chen, J.; Cheng, J.; Guo, J.; Cheng, Z.; Wang, J.; Liu, H.; Zhang, S. Excellent thermal stability and aging behaviors in BiFeO₃–BaTiO₃ piezoelectric ceramics with rhombohedral phase. *J. Am. Ceram. Soc.* **2020**, *103*, 374–381. [CrossRef]
- 17. Guo, J.; Chen, J.; Cheng, J.; Tan, Q. Enhanced aging behaviors and electric thermal stabilities in 0.75BiFeO₃–0.25BaTiO₃ piezoceramics by Mn modifications. *J. Am. Ceram. Soc.* **2021**, *104*, 5547–5556. [CrossRef]
- 18. Luo, F.; Li, Z.; Chen, J.; Yang, Y.; Zhang, D.; Zhang, M.; Hao, Y. High piezoelectric properties in 0.7BiFeO₃–0.3BaTiO₃ ceramics with MnO and MnO₂ addition. *J. Eur. Ceram. Soc.* **2022**, *42*, 954–964. [CrossRef]
- 19. Kumar, M.; Srinivas, A.; Suryanarayana, S. Structure property relations in BiFeO₃/BaTiO₃ solid solutions. *J. Appl. Phys.* **2000**, *87*, 855–862. [CrossRef]
- 20. Gheorghiu, F.; Ianculescu, A.; Postolache, P.; Lupu, N.; Dobromir, M.; Luca, D.; Mitoseriu, L. Preparation and properties of (1–*x*)BiFeO₃–*x*BaTiO₃ multiferroic ceramics. *J. Alloys Compd.* **2010**, *506*, 862–867. [CrossRef]
- Yao, Z.; Xu, C.; Liu, H.; Hao, H.; Cao, M.; Wang, Z.; Song, Z.; Hu, W.; Ullah, A. Greatly reduced leakage current and defect mechanism in atmosphere sintered BiFeO₃–BaTiO₃ high temperature piezoceramics. *J. Mater. Sci. Mater. Electron.* 2014, 25, 4975–4982. [CrossRef]
- 22. Liu, X.; Xu, Z.; Wei, X.; Yao, X. Ferroelectric and Ferromagnetic Properties of 0.7BiFe_{1-x}Cr_xO₃–0.3BaTiO₃ Solid Solutions. *J. Am. Ceram. Soc.* **2008**, *91*, 3731–3734. [CrossRef]
- 23. Guan, S.; Yang, H.; Liu, G.; Qiao, G.; Zhang, R.; Chen, D.; Jiang, M.; Sun, Y. Effect of BiScO₃ doping on the structure and properties of BiFeO₃-BaTiO₃ piezoelectric ceramics. *J. Electroceram.* **2019**, *43*, 26–33. [CrossRef]
- 24. Wang, D.; Khesro, A.; Murakami, S.; Feteira, A.; Zhao, Q.; Reaney, I. Temperature dependent, large electromechanical strain in Nd-doped BiFeO₃-BaTiO₃ lead-free ceramics. *J. Eur. Ceram. Soc.* **2017**, *37*, 1857–1860. [CrossRef]
- 25. Guan, S.; Yang, H.; Zhang, R.; Pang, J.; Jiang, M.; Sun, Y. Structure, piezoelectric, ferroelectric and dielectric properties of leadfree ceramics 0.67BiFeO₃–0.33BaTiO₃–*x*BiGaO₃+0.0035MnO₂. *J. Mater. Sci. Mater. Electron.* **2018**, *29*, 16872–16879. [CrossRef]
- Belik, A.; Rusakov, D.; Furubayashi, T.; Takayama-Muromachi, E. BiGaO₃-Based Perovskites: A Large Family of Polar Materials. *Chem. Mater.* 2012, 24, 3056–3064. [CrossRef]

- 27. Liu, X.; Xu, Z.; Qu, S.; Wei, X.; Chen, J. Microstructure and properties of Ga-modified 0.7BiFeO₃-0.3BaTiO₃ solid solution. *Chin. Sci. Bull.* **2007**, *52*, 2747–2752. [CrossRef]
- 28. Zhou, Q.; Zhou, C.; Yang, H.; Yuan, C.; Chen, G.; Cao, L.; Fan, Q. Piezoelectric and ferroelectric properties of Ga modified BiFeO₃–BaTiO₃ lead-free ceramics with high Curie temperature. *J. Mater. Sci. Mater. Electron.* **2014**, 25, 196–201. [CrossRef]
- Lee, M.; Kim, D.; Park, J.; Kim, S.; Song, T.; Kim, M.; Kim, W.; Do, D.; Jeong, I. High-Performance Lead-Free Piezoceramics with High Curie Temperatures. *Adv. Mater.* 2015, 27, 6976–6982. [CrossRef]
- 30. Akram, F.; Malik, R.; Khan, S.; Hussain, A.; Lee, S.; Lee, M.; In, C.; Song, T.; Kim, W.; Sung, Y.; et al. Electromechanical properties of ternary BiFeO₃ 0.35BaTiO₃–BiGaO₃ piezoelectric ceramics. *J. Electroceram.* **2018**, *41*, 93–98. [CrossRef]
- Lee, M.; Kim, D.; Choi, H.; Kim, M.; Song, T.; Kim, W.; Do, D. Thermal Quenching Effects on the Ferroelectric and Piezoelectric Properties of BiFeO₃-BaTiO₃ Ceramics. ACS Appl. Electron. Mater. 2019, 1, 1772–1780. [CrossRef]
- Leontsev, S.; Eitel, R. Dielectric and Piezoelectric Properties in Mn-Modified (1–*x*)BiFeO₃–*x*BaTiO₃ Ceramics. *J. Am. Ceram. Soc.* 2009, 12, 2957–2961. [CrossRef]
- Li, Q.; Wei, J.; Cheng, J.; Chen, J. High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO₃-BaTiO₃ lead-free ceramics. *J. Mater. Sci.* 2017, *52*, 229–237. [CrossRef]
- Zheng, T.; Wu, J. Perovskite BiFeO₃–BaTiO₃ Ferroelectrics: Engineering Properties by Domain Evolution and Thermal Depolarization Modification. *Adv. Electron. Mater.* 2020, *6*, 2000079. [CrossRef]
- Tan, Y.; Zhou, C.; Wang, J.; Yao, K.; Yuan, C.; Xu, J.; Li, Q.; Rao, G. Probing the in-time piezoelectric responses and depolarization behaviors related to ferroelectricrelaxor transition in BiFeO₃–BaTiO₃ ceramics by in-situ process. *J. Mater. Sci. Mater. Electron.* 2021, 32, 1197–1203. [CrossRef]
- 36. Cheng, S.; Zhang, B.; Zhao, L.; Wang, K. Enhanced insulating and piezoelectric properties of BiFeO₃-BaTiO₃-Bi_{0.5}Na_{0.5}TiO₃ ceramics with high Curie temperature. *J. Am. Ceram. Soc.* **2019**, *102*, 7355–7365. [CrossRef]
- 37. Rojac, T.; Bencan, A.; Malic, B.; Tutuncu, G.; Jones, J.; Daniels, J.; Damjanovic, D. BiFeO₃ Ceramics: Processing, Electrical, and Electromechanical Properties. *J. Am. Ceram. Soc.* **2014**, *97*, 1993–2011. [CrossRef]
- Pradhan, S.; Roul, B. Improvement of multiferroic and leakage property in monophasic BiFeO₃. *Physica B* 2011, 406, 3313–3317.
 [CrossRef]
- Bah, M.; Podor, R.; Retoux, R.; Delorme, F.; Nadaud, K.; Giovannelli, F.; Monot-Laffez, I.; Ayral, A. Real-Time Capturing of Microscale Events Controlling the Sintering of Lead-Free Piezoelectric Potassium-Sodium Niobate. *Small* 2022, 18, 2106825. [CrossRef]
- 40. Li, F.; Wang, L.; Jin, L.; Lin, D.; Li, J.; Li, Z.; Xu, Z.; Zhang, S. Piezoelectric Activity in Perovskite Ferroelectric Crystals. *IEEE T. Ultrason. Ferr.* **2015**, *62*, 18–32. [CrossRef]
- Zhou, Q.; Yuan, D.; Zhou, C.; Yang, H.; Yuan, C. Development of BNKT-BiGaO₃ Lead-free Ceramics. *Piezoelectr. Acoustoopt.* 2010, 32, 423–425.
- 42. Zheng, Q.; Luo, L.; Lam, K.; Jiang, N.; Guo, Y.; Lin, D. Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO₃-BaTiO₃ lead-free ceramics. *J. Appl. Phys.* **2014**, *116*, 184101. [CrossRef]
- Wang, Y.; Pu, Y.; Li, X.; Zheng, H.; Gao, Z. Evolution from ferroelectric to diffused ferroelectric, and relaxor ferroelectric in BaTiO₃-BiFeO₃ solid solutions. *Mater. Chem. Phys.* 2016, 183, 247–253. [CrossRef]
- Zhou, C. Study on Electrical Properties and Mechanism of BNT–BKT–BiMeO₃(Me=Fe, Cr, Co) Lead-free Piezoelectric Ceramics. Ph.D. Thesis, Central South University, Changsha, China, 2008; pp. 1–145.
- Wan, Y.; Li, Y.; Li, Q.; Zhou, W.; Zheng, Q.; Wu, X.; Xu, C.; Zhu, B.; Lin, D. Microstructure, Ferroelectric, Piezoelectric, and Ferromagnetic Properties of Sc-Modified BiFeO₃–BaTiO₃ Multiferroic Ceramics with MnO₂ Addition. *J. Am. Ceram. Soc.* 2014, 97, 1809–1818. [CrossRef]
- Uchino, K.; Nomura, S.; Cross, L.; Jang, S.; Newnham, R. Electrostrictive effect in lead magnesium niobate single crystals. *J. Appl. Phys.* 1980, *51*, 1142–1145. [CrossRef]
- 47. Wu, J.; Zhao, G.; Pan, C.; Tong, P.; Yang, J.; Zhu, X.; Yin, L.; Song, W.; Sun, Y. Simultaneously enhanced piezoelectricity and curie temperature in BiFeO₃-based high temperature piezoelectrics. *J. Eur. Ceram. Soc.* **2021**, *41*, 7645–7653. [CrossRef]
- 48. Zeng, F.; Zhang, Y.; Tu, Z.; Ge, X.; Wang, F.; Hao, M.; Zhang, J.; Wang, Y.; Chen, X.; Lu, W.; et al. Large electric field-induced strain in BiFeO₃-based ceramics by tuning defect dipoles and phase structure. *Ceram. Int.* **2021**, *47*, 14097–14106. [CrossRef]
- 49. Lv, X.; Zhang, X.; Wu, J. Nano-domains in lead-free piezoceramics: A review. J. Mater. Chem. A 2020, 8, 10026–10073. [CrossRef]
- 50. Huang, C.; Cai, K.; Wang, Y.; Bai, Y.; Guo, D. Revealing the real high temperature performance and depolarization characteristics of piezoelectric ceramics by combined *in situ* techniques. *J. Mater. Chem. C* **2018**, *6*, 1433–1444. [CrossRef]
- 51. Budimir, M.; Damjanovic, D.; Setter, N. Piezoelectric response and free-energy instability in the perovskite crystals BaTiO₃, PbTiO₃, and Pb(Zr,Ti)O₃. *Phys. Rev. B* **2006**, *73*, 174106. [CrossRef]
- 52. Cheng, S.; Zhang, B.; Ai, S.; Yu, H.; Wang, X.; Yang, J.; Zhou, C.; Zhao, J.; Rao, G. Enhanced piezoelectric properties and thermal stability of Bi_{0.5}Na_{0.5}TiO₃ modified BiFeO₃-BaTiO₃ ceramics with morphotropic phase boundary. *J. Mater.* **2023**, *9*, 464–471.
- Guo, Q.; Li, F.; Xia, F.; Gao, X.; Wang, P.; Hao, H.; Sun, H.; Liu, H.; Zhang, S. High-Performance Sm-Doped Pb(Mg_{1/3}Nb_{2/3})O₃-PbZrO₃-PbTiO₃-Based Piezoceramics. ACS Appl. Electron. Mater. 2019, 11, 43359–43367. [CrossRef] [PubMed]
- 54. Wang, P.; Guo, Q.; Li, F.; Xia, F.; Hao, H.; Sun, H.; Liu, H.; Zhang, S. Pb(In_{1/2}Nb_{1/2})O₃-PbZrO₃-PbTiO₃ ternary ceramics with temperature-insensitive and superior piezoelectric property. *J. Eur. Ceram. Soc.* **2022**, *42*, 3848–3856. [CrossRef]

- 55. Yi, W.; Lu, Z.; Liu, X.; Huang, D.; Jia, Z.; Chen, Z.; Wang, X.; Zhu, H. Excellent piezoelectric performance of Bi-compensated 0.69BiFeO₃-0.31BaTiO₃ lead-free piezoceramics. *J. Mater. Sci. Mater. Electron.* **2021**, *32*, 22637–22644. [CrossRef]
- Guo, Y.; Wang, T.; Shi, D.; Xiao, P.; Zheng, Q.; Xu, C.; Lam, K.; Lin, D. Strong piezoelectricity and multiferroicity in BiFeO₃– BaTiO₃–NdCoO₃ lead-free piezoelectric ceramics with high Curie temperature for current sensing application. *J. Mater. Sci. Mater. Electron.* 2017, *28*, 5531–5547. [CrossRef]
- 57. Cheng, S.; Zhao, L.; Zhang, B.; Wang, K. Lead-free 0.7BiFeO₃-0.3BaTiO₃ high-temperature piezoelectric ceramics: Nano-BaTiO₃ raw powder leading to a distinct reaction path and enhanced electrical properties. *Ceram. Int.* **2019**, *45*, 10438–10447. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.