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Abstract: We study numerically the reconfiguration process of colliding |m| = 1/2 strength disclina-
tions in an achiral nematic liquid crystal (NLC). A Landau–de Gennes approach in terms of tensor
nematic-order parameters is used. Initially, different pairs {m1, m2} of parallel wedge disclination
lines connecting opposite substrates confining the NLC in a plane-parallel cell of a thickness h are
imposed: {1/2,1/2}, {−1/2,−1/2} and {−1/2,1/2}. The collisions are imposed by the relative rotation
of the azimuthal angle θ of the substrates that strongly pin the defect end points. Pairs {1/2,1/2} and
{−1/2,−1/2} “rewire” at the critical angle θ

(1)
c = 3π

4 in all cases studied. On the other hand, two
qualitatively different scenarios are observed for {−1/2,1/2}. In the thinner film regime h < hc, the
disclinations rewire at θ

(2)
c = 5π

4 . The rewiring process is mediated by an additional chargeless loop

nucleated in the middle of the cell. In the regime h > hc, the colliding disclinations at θ
(2)
c reconfigure

into boojum-like twist disclinations.

Keywords: liquid crystals; topological defects; disclinations; reconfiguration

1. Introduction

Topological defects (TDs) appear at diverse natural scales [1], including in particle
physics, condensed matter physics and cosmology. Their existence is enabled topologically,
which is independent of systems’ microscopic details. In most cases, they exhibit localized
singularities in the order parameter field that represent ordering in a symmetry-broken
phase. Their essential properties are determined by topological charges that are topo-
logical invariants [2]. The related topological charge conservation rules determine their
transformations, including merging and decaying processes.

TDs in uniaxial nematic liquid crystal [3] (NLC) phases and structures represent an
ideal testbed to study diverse TDs. In particular, they exhibit a rich pallet of qualitatively
different TD structures. Furthermore, TDs in NLCs could be relatively easily created, stabi-
lized, manipulated and observed. The ordering within NLC configurations is commonly
described by the nematic tensor order parameter Q. For the case of a uniaxial order, it is
commonly expressed as Q = S(n

⊗
n− I/3) in terms of the nematic uniaxial scalar-order

parameter S and the nematic director field n, and I stands for the unit tensor. The latter
unit vector field points in the mesoscopic-scale local uniaxial LC direction and exhibits
head-to-tail invariance (i.e., the states ±n are physically equivalent). The amplitude S
reflects the degree of nematic order. If distortions are present, then the NLC could locally
enter biaxial states. Consequently, the cores of TDs, where the NLC order experiences
relatively strong spatial variations, generally exhibit a biaxial order [4–6].

Of interest are line defects in NLCs. Their key properties are described by a 2D
topological charge m and a 3D topological charge q [7]. The former quantity is also termed
the “winding number” or Frank index [3], which is determined by the total reorientation of
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n when encircling a line defect center counter-clockwise. On the other hand, q reveals how
many times n samples all possible 3D orientations on any surface enclosing the defect. In
our work, we analyze reconfigurations of |m| = 1/2 disclinations, which is the fundamental
strength of a 2D defect. In bulk, they can form only closed loops. One must differentiate
between wedge and twist disclinations, and the former are characterized by a constant sign
of m. Close to the disclination core, the nematic director field exhibits spatial variations
within the plane that are perpendicular to the disclination’s local orientation, which we
henceforth refer to as the disclination plane. The associated 3D charge of wedge disclinations
is expressed as |q| = 1. Therefore, closed-wedge loops are “charged” and appear to a
distant observer to be point defects (i.e., the far director field of isolated TDs is distorted).
On the other hand, the sign of m varies along the twist disclination, and the 3D charge
of a closed twist loop equals zero [8–10] (i.e., they are “chargeless”). Consequently, an
isolated twist disclination could be embedded within an essentially spatially homogeneous
director structure. However, chargeless loops tend to decay into a topologically equivalent,
defectless, locally homogeneous nematic structure. Furthermore, the nematic orientational
order exhibits orientations out of the disclination plane along the twist disclination.

In confined geometries, disclinations could originate and terminate at bounding sur-
faces [3,11,12]. One can routinely enforce and stabilize a predetermined pattern of such discli-
nations in plane-parallel cells through appropriate treatment of confining surfaces [13–20].
One possible method is scribing a polymer alignment layer with the stylus of an atomic force
microscope (AFM) [13].

In this paper, we numerically study reconfigurations of initially parallel |m| = 1/2 line
defects in a plane-parallel geometry. The plan of the paper is as follows. The methods are
presented in Section 2. In Section 3, the results are discussed, and our conclusions appear
in Section 4.

2. Methods

We used a Landau—de Gennes mesoscopic model [21], where the nematic orienta-
tional order is described by the traceless symmetric tensor nematic-order parameter [22,23]

Q = ∑3
i=1 λi(ei ⊗ ei) (1)

in terms of its eigenvectors ei and eigenvalues λi. It describes both the uniaxial and biaxial
states, where the uniaxial states are commonly expressed as [21] Q = S

(
n⊗ n− 1

3 I
)

. Here,

S ∈
[
− 1

2 , 1
]

is the scalar uniaxial-order parameter and n is the nematic director field. In
the positive uniaxial state, n points along the eigenvector exhibiting the largest eigenvalue,
which we align along e1. Note that in the figures, where we show the orientational order,
we plot the orientational field for e1.

The degree of biaxiality is measured by the biaxial parameter [22,23]

β2 = 1− 6(TrQ3)
2

(TrQ2)
3 ∈ [0, 1], (2)

where β2 = 0 and β2 > 0 reflect the uniaxial and biaxial states, respectively. In particular,
the condition β2 = 1 corresponds to states exhibiting maximal biaxiality.

We express the free energy F of the system as F =
∫
( fc + fe)d3r, fc, where fe stands

for the condensation- and elastic-free energy contributions, and the integral is carried over
the whole NLC body. The latter is confined within the plane-parallel cell of a thickness h.
At the bounding plates, we strongly enforce pairs of 2D defects. At the lateral sides of the
NLC body, we implement free boundary conditions.

The free energy density terms are expressed as

fc =
1
2

A0(T − T∗)Tr
(

Q2
)
− 1

3
BTr
(

Q3
)
+

1
4

CTr
(

Q2
)2

, (3a)
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fe =
1
2

L|∇Q|2 . (3b)

Here, A0, B and C are material constants, T∗ is the supercooling temperature of the
isotropic phase, and L is the representative Landau-like nematic elastic constant in the
single elastic constant approximation. In the simulations, we parametrize Q in the Cartesian
coordinate frame

(
ex, ey, ez

)
as

Q =

q1 + q2 q3 q4
q3 q1 − q2 q5
q4 q5 −2q1

 , (4)

where q1, q2, q3, q4 and q5 are variational parameters. We introduce the dimension-
less temperature [23] r = (T − T∗)/(T∗∗ − T∗) for scaling purposes, where T∗∗ = T∗ +
B2/(24A0C) is the superheating temperature and the scaled-order parameter is expressed
as Q̃ = Q/S0. Here, S0 = B/(4C), and we scale distances with respect to the cell thickness
h. We express the resulting dimensionless free energy contributions as

fc =
r
6

Tr
(

Q̃
2)− 2

3
Tr
(

Q̃
3)

+
1
8

Tr
(

Q̃
2)2

, (5a)

fe =

(
ξb
h

)2∣∣∣∇̃Q̃
∣∣∣2 . (5b)

Here, ξb = 2
√

LC/B is the bare biaxial correlation length [21] with a typical value
of ξb ≈ 30 nm for nematics [24], and ∇̃ = h∇. The minimization of the free energy is
performed numerically deep inside the nematic phase, far below T∗.

3. Results

We studied reconfigurations of initially effectively parallel pairs {m1, m2} of wedge
disclinations within a plane-parallel confinement enforcing planar-type anchoring. Here,
mi marks the i-th defect winding number, where we analyzed cases {1/2,1/2}, {−1/2,−1/2}
and {−1/2,1/2}. The cell plates enforcing the surface point defects with planar nematic
ordering were at z = 0 and z = h of the Cartesian system (x,y,z). The initial set-ups are shown
in Figures 1a, 2a, 3a and 4a. We assumed that the defect endpoints were strongly pinned to
the confining surfaces. The defect reconfigurations were enforced by the relative azimuthal
rotation with an angle θ for the facing confining plates. Initially, the defect ends were
pinned at points (xd, yd) = (±R/2,0) at each plate. We represented the disclination lines
by plotting the regions where the defect-induced biaxiality was relatively strong. Upon
increasing θ—in the simulations, we rotated the lower plate—the length of the disclinations
increased, which was energetically costly. Specifically, the free energy penalty of a straight
disclination was, in general, linearly proportional to its length. At a critical rotation
angle, the disclinations exhibited reconfigurations that prevented further elongation of the
disclinations. The resulting process exhibited either a periodic structural transformation
within or a transformation into the qualitatively different boojum-like pattern.
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Figure 1. Structural reconfiguration of a pair {1/2,1/2} of disclinations upon increasing 𝜃. (a) Initial 
structure at 𝜃 = 0. The two line defects have different shades of red to assist the reader in recog-
nizing the reconfiguration. (b) A representative rotated pattern, where 0 𝜃 𝜃( ) ≡ 3𝜋/4.  At 𝜃 = 𝜃( ), the disclinations exchange their segments, where (c) is just before contact, (d) is at the mo-
ment of contact and (e) is after the exchange. (f) Pattern after full rotation, which is equal to (a). 𝑅 =2ℎ = 25 𝜉 . Note that the scaling along the vertical and horizontal directions is different. Line defects 
are indicated by colored regions, where 𝛽 ≥ 0.8. 

 
Figure 2. Structural reconfiguration of a pair {−1/2,−1/2} of disclinations upon increasing 𝜃. (a) Ini-
tial structure at 𝜃 = 0. The two line defects have different shades of blue to assist the reader in 
recognizing the reconfiguration. (b) A representative rotated pattern, where 0 𝜃 𝜃( ) ≡ 3𝜋/4. 
At 𝜃 = 𝜃( ), the disclinations exchange their segments, where (c) is just before contact, (d) is at the 
moment of contact, and (e) is just after the exchange. (f) Pattern after full rotation, which is equal to 

Figure 1. Structural reconfiguration of a pair {1/2,1/2} of disclinations upon increasing θ. (a) Initial
structure at θ = 0. The two line defects have different shades of red to assist the reader in recognizing

the reconfiguration. (b) A representative rotated pattern, where 0 < θ < θ
(1)
c ≡ 3π/4. At θ = θ

(1)
c , the

disclinations exchange their segments, where (c) is just before contact, (d) is at the moment of contact
and (e) is after the exchange. (f) Pattern after full rotation, which is equal to (a). R = 2h = 25 ξb. Note
that the scaling along the vertical and horizontal directions is different. Line defects are indicated by
colored regions, where β2 ≥ 0.8.
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Figure 2. Structural reconfiguration of a pair {−1/2,−1/2} of disclinations upon increasing θ. (a) Ini-
tial structure at θ = 0. The two line defects have different shades of blue to assist the reader in
recognizing the reconfiguration. (b) A representative rotated pattern, where 0 < θ < θ

(1)
c ≡ 3π/4.

At θ = θ
(1)
c , the disclinations exchange their segments, where (c) is just before contact, (d) is at the

moment of contact, and (e) is just after the exchange. (f) Pattern after full rotation, which is equal to
(a). R = 2h = 25 ξb. For presentation purposes, the scaling along vertical and horizontal directions is
different. Line defects are indicated by colored regions, where β2 ≥ 0.8.
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Initial structure at 𝜃 = 0.  (b,c) Representative rotated patterns, where 0 𝜃 𝜃( ) ≡ 5𝜋/4.  (d) 
The structure at 𝜃( ) consists of two nearly straight and one loop-like chargeless disclination (pur-
ple). (e,f) Representative rotated patterns in the regime 𝜃( ) 𝜃 2𝜋. 𝑅 = 2ℎ = 25 𝜉 . For presen-
tation purposes, the scaling along the vertical and horizontal directions is different. Line defects are 
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Figure 4. Structural reconfiguration of disclinations upon increasing 𝜃, where the initial structure 
consists of defects bearing different winding numbers and where ℎ > ℎ . (a) Initial structure at 𝜃 =0. (b) 0 𝜃 𝜃( ) ≡ . (c) Configuration at 𝜃( ). (d) Configuration slightly above 𝜃( ), (e) 𝜃 = 𝜋. 

Figure 3. Structural reconfiguration of a disclination pair {1/2,−1/2} upon increasing θ, h < hc.

(a) Initial structure at θ = 0. (b,c) Representative rotated patterns, where 0 < θ < θ
(2)
c ≡ 5π/4.

(d) The structure at θ
(2)
c consists of two nearly straight and one loop-like chargeless disclination

(purple). (e,f) Representative rotated patterns in the regime θ
(2)
c < θ < 2π. R = 2h = 25 ξb. For

presentation purposes, the scaling along the vertical and horizontal directions is different. Line
defects are indicated by colored regions, where β2 ≥ 0.8.
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Figure 4. Structural reconfiguration of disclinations upon increasing θ, where the initial structure
consists of defects bearing different winding numbers and where h > hc. (a) Initial structure at θ = 0.

(b) 0 < θ < θ
(1)
c ≡ 3π

4 . (c) Configuration at θ
(1)
c . (d) Configuration slightly above θ

(1)
c , (e) θ = π.

R = h = 25 ξb. For presentation purposes, the scaling along the vertical and horizontal directions is
different. Line defects are indicated by colored regions, where β2 ≥ 0.8.
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3.1. Pairs {1/2,1/2} and {−1/2,−1/2}

We first considered a pair of {1/2,1/2} disclinations that were initially approximately
parallel (i.e., θ = 0 (Figure 1a)). Note that the disclinations mutually repelled and were there-
fore slightly bent outward with respect to each other. In planar 2D systems, their mutual re-
pulsive interaction per disclination unit length is approximately f ∼ m1m2K Log($/ξ) [3],
where $ > ξ is the distance between the centers of defects, the nematic order parameter
correlation length ξ measures the characteristic size of defects’ cores and K stands for the
representative Frank elastic constant. The far director field in any (x,y) plane is essentially
radial from the central line located at (x,y) = (0,0). Upon increasing θ, the lengths of the
disclinations progressively increased until the critical angle θ

(1)
c = 3π

4 was reached. The

representative patterns for 0 < θ < θ
(1)
c are shown in Figure 1b,c. At the critical angle,

the cores of the defects joined, forming a single m = 1 two-dimensional defect in the (x,y)
plane at z = h/2 (see Figure 1d). Figure 5 shows representative nematic cross-sections in the
(x,y) plane. All the cross-sections possess a separated pair of m = 1

2 singularities. Figure 5c
shows the case close to the merging point, where the two disclinations tended to merge
via an intermediate m = 1 profile at z = h/2. This allowed the exchange of defect segments
of disclinations, which enabled a decrease in disclination lengths upon further increasing
θ. Therefore, the upper (extending above z = h/2) part of the first disclination joined the
bottom (extending below z = h/2) part of the second disclination, which emerged as a new
first single line at θ > θ

(1)
c . A representative structure is shown in Figure 1e. Simultaneously,

the bottom part of the first disclination joined the upper part of the second disclination,
which joined into a new second disclination. The whole reconfiguration is shown in more
detail in Video S1 (see Supplementary Materials). This structural reconfiguration exhibited
periodic behavior in θ with respect to a π unit period. In Figure 6a, we plot the total length
hd of both disclinations upon increasing θ.
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In Figure 2 (and Supplementary Video S2), we show the rotation-induced reconfigura-
tion of the {−1/2,−1/2} disclinations, where intermediate configurations for the same vales
of θ are shown as in Figure 1. In the approximation of equal elastic constants, the reconfigu-
ration process was qualitatively and even quantitatively (with respect to disclination axis
direction variations) the same for the {−1/2,−1/2} and {1/2,1/2} pairs. In Figure 6b, we
plot the total length hd of both disclinations upon increasing θ.

Note that we observed qualitatively the same structural behavior for all studied cell
thicknesses (we probed the behavior in cells up to the maximal thickness h = 2R). One would
intuitively expect that in thick enough cells, two boojums would be formed at the confining
plates while a nonsingular escaped radial–like nematic structure would be formed in
between. In this structure, the nematic director field “escapes” along the z-direction in the
region mediating the facing boojums and in such a way that the LC configuration avoids the
singularity in nematic ordering. However, our simulations suggest that the energy barrier
separating the structures that we presented and the topologically equivalent escaped-like
configurations were, in our studied cases, too large to be triggered by a disclination collision.
For instance, a similar competition of topologically equivalent structures was realized in
a nematic LC confined to a cylindrical confinement [25] where the lateral walls impose
homeotropic anchoring (i.e., the nematic director field tends to be aligned along the surface
normal of a confining surface patch). In these cases, the competing structures were (i) the
escaped radial structure, (ii) the escaped radial structure with point defects (ERPD), (iii) the
radial structure exhibiting non-escaped m = 1 disclination along the cylinder symmetry
axis and (iv) the planar radial structure possessing two parallel m = 1/2 disclinations along
the cylinder axis. These structures are topologically equivalent, and there exist continuous
nematic-order parameter field transformations among the competing configurations. Here,
cases (ii) and (iv) are the corresponding analogues of a structure consisting of two boojums
and of a configuration exhibiting an {m,m} pair of disclinations, respectively. Specifically,
ERPD structures consist of a sequence of alternating hedgehog and anti-hedgehog point
defects along the cylinder axis. An LC volume segment between a neighboring hedgehog-
anti-hedgehog pair, where we take into account only half of each point defect (which could,
in general, form a ring-like structure [5]), is a topological analogue of a structure consisting
of two boojums in our geometrical setting.

3.2. Pairs {−1/2,1/2}

We next consider the reconfigurational transformations imposed by increasing the
angle θ of the initially effectively parallel disclination pairs {−1/2,1/2}. Qualitatively
different behavior was observed for h > hc and h < hc, where hc ≈ 15ξb stands for the
critical thickness.

We first considered the case h < hc. For θ = 0, the disclinations were slightly bent
inward because the facing ±1/2 segments in each (x,y) plane experienced attraction (see
Figure 3a). The nematic director far field at distances large with respect to $ was essentially
spatially homogeneous because the total winding number within each (x,y) plane equaled
zero. Representative structures upon increasing θ ∈ [0, 2π] are depicted in Figure 3b–f
and in Supplementary Videos S3 and S4. One can see that for θ 6= θ

(2)
c ≡ 5π

4 , there existed
two wedge disclinations. Note that the director field surrounding each wedge disclination
tended to be confined within the plane perpendicular to the disclinations’ orientations.
Upon approaching θ

(2)
c , the interaction between defects increased, and a kink-like structure

was formed (Figure 3c) in nearby disclination segments. At θ
(2)
c , the local conditions in

this region were established to form a charge loop in the (x,y) plane centered at z = h/2
(Figure 3d). In this plane, the loop mediated the {m = 1/2, m = −1/2} segments, which
effectively enabled the existence of two approximately straight chargeless disclinations
running along the z coordinate. Therefore, the nematic pattern at θ

(2)
c consisted of three

chargeless loops. The representative (x,y) cross-sections are depicted in Figure 7. The
additional chargeless loop hosted in the (x,y) plane at z = h/2 enabled the immersion of
the central domain (globally oriented along the y axis) into the surrounding pattern, where
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the nematic far field was essentially homogeneously aligned along the x direction. This
intermediate structure possessed a circular ring within the (x,y) plane at z = h/2, whose
biaxial structure exhibited a markedly different appearance in comparison with the other
line defect structures that we observed in this study. In particular, in the regime where
θ 6= θ

(2)
c , the structure consisted of edge disclinations in which the nematic structure within

the disclination plane was essentially planar (i.e., two of the Q eigenvectors lied within
the disclination plane). On the contrary, the ring formed at θ = θ

(2)
c consisted of a twist

dislocation ring along which the Q eigenvector frame also explored orientations that did
not coincide with the disclination plane. In addition, the nematic structure within the
(x,y) plane hosting the ring was, on average, confined in this plane, where the domain-like
orientational ordering within and outside the ring were approximately perpendicular
to each other. This constrained local distortion gave rise to the relatively broad band
appearance of the ring’s biaxial profile. Just above θ

(2)
c , two wedge disclinations emerged

again (Figure 3e,f). Note that the collision of two disclination segments exhibiting different
winding number signs requires an intermediate region where the nematic order is pushed
out of the disclination planes. The total disclination length upon increasing θ is depicted in
Figure 6c.
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Next, we analyzed the case where h > hc, which is shown in Figure 4 (and Supplemen-
tary Videos S5 and S6). In this case, the energy barrier between the structure consisting
of two disclinations spanning the opposite plates and the structure resembling boojum-
like dislocations (see Figure 4c,e) confined to the bounding plates was small enough so
that upon increasing θ, the latter structure was established. Note that this transition was
discontinuous. The nematic structure in the selected (x,y) planes is shown in Figure 8. In
this scenario, the central region of the cell was essentially homogenously aligned along the
x axis.
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4. Conclusions

We numerically studied the structural reconfigurations of nematic disclinations in
plane-parallel cells. Transformations were enforced by relative rotation of the confining
plates, which strongly pinned the end points of the disclinations. The initial (non-rotated)
configurations exhibited essentially parallel wedge disclinations spanning the facing plates.
Upon increasing the azimuthal rotation angle θ, the total disclination length in the be-
ginning increased, which was energetically expensive. Specifically, the energy cost of an
isolated straight disclination linearly increased with its length. However, when the critical
value of θ was reached, the disclinations locally merged, which enabled their reconnec-
tion or reconfiguration. As a consequence, the resulting total disclination length did not
monotonically increase upon increasing θ.

We first discussed the transformation of pairs of disclinations possessing the same
winding number. Note that such neighboring disclination segments mutually repel. There-
fore, a local collision in which the repelling segments merge reflects a local energy “sac-
rifice”, which opens a transformation channel toward a configuration possessing a lower
total free energy cost. In this transformation, the character of the disclinations does not
change (i.e., the system exhibits two wedge disclinations before and after the collision).

The rotationally induced reconfiguration of initially parallel {−1/2,1/2} disclinations
exhibited more complex behavior. In this case, the facing segments experienced mutual
attraction. Therefore, in the initial configuration, the disclinations must be separated well
enough (i.e., the distance R in our notation) to avoid contact in the middle of the cell. The
latter would open the door to the formation of two chargeless loops. These display a
boojum-like configuration with localized nematic distortions, where the remaining part of
the cell would exhibit an essentially spatially homogeneous structure. Such a condition is
achieved if the cell thickness is above the critical value hc = hc(R).

We remark that line-like topologically protected structures [26–28] are ubiquitous
in nature and exhibit several universal features, owing to their topological origin. They
exhibit robust body-like structures, and their stability is guaranteed by relevant topological
invariants [26,27]. (In our case, these were 2D and 3D topological charges.) Of particular
interest are topologically protected knotted configurations in particle physics [28], as they
might provide a pathway to stabilizing stable localized field states representing “particles”,
assuming the physical fields represent fundamental natural entities [29]. Controlling
the formation of knots in physical fields [30–35] might also have numerous practical
applications, as knots are difficult to untie. Our study revealed that the line defects
examined in the presented geometrical set-up did not form knots. However, they could
form knotted structures in the presence of colloids [35].
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cryst13060904/s1. Video S1: Structural reconfiguration of a
pair {1/2,1/2} disclinations on increasing θ. The video is slowed down in the moment of contact
to better show the exchange. R = 2h = 25 ξb. Note that the scaling along vertical and horizontal
directions are different. Line defects are indicated by colored regions where β2 ≥ 0.8. Video S2:
Structural reconfiguration of a pair {−1/2,−1/2} disclinations on increasing θ. The video is slowed
down in the moment of contact to better show the exchange. R = 2h = 25 ξb. Video S3: Structural
reconfiguration of a disclination pair {1/2,−1/2} on increasing θ, h < hc. R = 2h = 25 ξb. Video S4:
A slowed down video of the structural reconfiguration shown in Video S3 with the slowed down
focus on the exchange. R = 2h = 25 ξb. Video S5: Structural reconfiguration of a disclination pair
{1/2,−1/2} on increasing θ, h > hc. R = 2h = 25 ξb. Video S6: A slowed down video of the structural
reconfiguration shown in Video S5 with the slowed down focus on the exchange. R = 2h = 25 ξb.
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