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Abstract: Patterson superposition techniques are a historical method for solving the structures of
small molecules ab initio, provided they contain heavy atoms in the unit cell. In the 1990s, they
were combined with effective EDM procedures and succeeded in the crystal structure solution
of macromolecular structures with resolution data up to 1.6–1.9 Å. In this paper we enlarge the
concept of Patterson superposition by replacing it with the vector superposition concept. We show,
indeed, that besides Patterson other Fourier syntheses may also be used for the superposition of
the interatomic vectors. Five Fourier syntheses are described and used in the practical applications.
We show that even macromolecular structures with 2.2 Å data resolution may be solved via the
new approach.

Keywords: ab initio phasing; Patterson techniques; Fourier syntheses; vector superposition techniques

1. Introduction

Patterson superposition techniques (PSTs) were initially proposed by Wrinch [1],
Beevers and Robertson [2] and Buerger [3] and were successfully applied to several prac-
tical cases. One of their limitations was the necessary presence of heavy atoms in the
target structure.

PSTs were soon relegated to a niche by the development of direct methods. The
introduction of sophisticated techniques for the estimation of structure invariants and
semi-invariants [4–6] and the automation of corresponding programs via the alternate use
of reciprocal and real-space refinement enabled direct methods to solve the phase problem
for structures of up to 300 non-H atoms in the asymmetric unit. Among the most popular
programs, we mention SnB [7], SHELXD [8], ACORN [9] and SIR2002 [10].

The revival of PSTs started with Nordman [11] and continued with Richardson and
Jacobson [12], Sheldrick [13] and Pavelčík et al. [14]. A quite general approach was de-
scribed by Burla et al. [15], who generalized the automatic procedure to high symmetry and
centrosymmetric space groups; they combined PSTs with an effective EDM procedure and
succeeded in the crystal structure solution of macromolecular structures with resolution
data up to 1.6 Å resolution.

To date, vector superposition technique (VST) has essentially been a different term
for the Patterson superposition technique. In this paper, we show that the term VST is
more appropriate because, besides Patterson, a larger set of Fourier syntheses may be
used, each providing an alternative approach for the solution of the phase problem. Let us
invoke a scenario to clarify the point. Besides Patterson, the Fourier syntheses traditionally
used in phasing procedures are the hybrid Fourier syntheses. The adjective “hybrid” is
currently used for syntheses based on the Fourier coefficients τFo −vFp, where τ and v
are small integer numbers. According to this definition, observed, difference and calculated
syntheses are special hybrid cases. Two new observed syntheses, studied in Paper II [16],
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show a special ability in enhancing peaks corresponding to missed target atoms and in
depleting peaks corresponding only to model atoms. Their Fourier coefficients are:

[my|F| − (my −m)
∣∣Fp
∣∣]exp

(
iϕp
)
, with y = 0.3 (1)

and (
|F| − (1−m)

∣∣Fp
∣∣)exp

(
iϕp
)

(2)

respectively. Both the syntheses behave like the observed one for very good models but
share some properties of the difference syntheses for poor models.

In this paper, we will be extending the classic PST concept (as described in Section 4).
Specifically, we will demonstrate that superposition techniques can be applied to a larger
set of Fourier syntheses beyond just the Patterson synthesis. In Sections 3 and 4, we
will describe this set of Fourier syntheses that are useful for the success of superposition
techniques. As a result, PST might be replaced by the more appropriate term VST.

When applying PST to non-atomic resolution data, rough electron density maps are
often produced. This leads to electron density peaks being frequently misplaced, resulting
in a high average phase error. Therefore, a phase refinement step is necessary, where the
VSTs described in Section 5 can act as a supplementary tool, specifically as a supplementary
constraint to hinder phase degradation. In Section 6, we will describe the VST algorithms
used for refining model maps, and in Section 7, we will show their application to practical
cases. Our results demonstrate that ab initio crystal structure solutions can be extended up
to 2.2 Å resolution.

2. Fourier Syntheses for Vector Superposition Techniques

We describe here the main properties of the Fourier syntheses that may be useful for
the solution of the phase problem via VSTs.

2.1. The Ideal |F - and Fp-Syntheses

The ideal synthesis ρ(r), with Fourier coefficients F = |F|exp(iϕ), is not available
during the phasing procedure because ϕ is unknown. On the other hand, the model
synthesis ρp(r), with coefficients Fp =

∣∣Fp
∣∣exp

(
iϕp
)
, is not informative because it does not

provide supplementary information with respect to the model itself.

2.2. The Observed Synthesis

The observed Fourier synthesis ρo(r) is traditionally calculated via the coefficients
m|F|exp(iϕ) or, according to Paper I [17], via Coefficients (1) and (2). A simple mathematical
trick for understanding where the maxima of a Fourier synthesis are expected to lie, and
in general for learning its main properties, is to replace the Fourier coefficients by their
formal expression in terms of scattering factors and atomic positions. This technique will
be applied to all the new syntheses proposed in this paper. For example, for the ρo(r)
synthesis we have

ρo(r) = 1
V ∑

h
|F| exp(iφp − 2πihr)

= 1
V ∑

h
exp(i∆ϕh)

N
∑

j=1
f jexp(2πih(rj − r))

(3)

According to Paper I, the expected amplitude of the observed synthesis at the jth
model atomic position is

< ρo
(
rpj
)
>=

2
V ∑

h
[
π

4
+ (1− π

4
)σ2

A] f j (4)
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the expected amplitude at the target atomic positions is

〈ρo
(
rj
)
〉 = 2

V ∑h f jcos(∆ϕh). (5)

Usually,
〈
ρo
(
rpj
)〉

>
〈
ρo
(
rj
)〉

, particularly when the model is poor. The use of the
Fourier Coefficients (1) and (2) may make such an inequality less critical.

2.3. The P(u) Patterson Synthesis

It is the convolution of ρ(r) and ρ(−r). Since

P(u) =
1
V ∑h |F|

2exp(−2πihu) =
1
V ∑h ∑i,j fi f j exp

[
2πih

(
ri − rj − u

)]
,

the maxima are expected at:

(i) u = 0, with intensity 1
V ∑h ∑i f 2

i , or, roughly speaking, proportional to ∑N
j=1 Z2

j ;

(ii) uij = ri − rj, for i 6= j, with intensity

P
(
uij
)
=

1
V ∑h fi f j (6)

or, roughly speaking, with intensity proportional to ZiZj.

2.4. The FoFo-Synthesis

In Paper I the FF-synthesis was considered, with density distribution equal to

ρFF(r) = 1
V ∑h |F|2exp[i(2ϕ− 2πhr)]

= 1
V ∑h ∑i,j fi f jexp

[
2πih

(
ri + rj − r

)]
In practice ϕ is unknown and therefore ρFF cannot be calculated. We replace it by the

FoFo-synthesis with density distribution given by

ρFo Fo (r) =
1
V ∑h |F|2exp

[
i
(
2ϕp − 2πhr

)]
= 1

V ∑h exp(2i∆ϕh)∑i,j fi f jexp[2πih
(
ri + rj − r

) (7)

We observe the following:

(i) ρFo Fo is the convolution of ρo(r) with itself, which causes the individual peaks to be
broader than in a typically observed electron density map.

(ii) If the quality of the model is sufficiently high (that is, if for a non-negligible percentage
of observed reflections ∆ϕh ∼ 0), then peaks are expected to be located at r = ri + rj
for i, j = 1, 2, . . . , N, i.e., at the sum of positional vectors rather than at the interatomic
vectors ri − rj (as in the Patterson synthesis). Thus, the number of peaks in the unit
cell is equal to N2, as in the Patterson map.

(iii) The peak intensity is expected to be proportional to ZjZj as in the Patterson synthesis,
but the presence of 2∆ϕh modulates the contribution of each reflection to the right-
hand side of Equation (7). In analogy with the appendix in Paper I the observed
electron density at the target atomic positions is expected to be ∑h fi f jcos(2∆ϕh). The
larger the phase error, the weaker will the peaks be.

(iv) ρo(r) and ρFo Fo show the same rotational symmetry, but different translational sym-
metries. In particular, the space group symmetry elements of the target electron
density transform according to the following rules: 21 → 2, (41, 43)→ 42, 31 → 32,
(61, 65)→ 62, (62, 64)→ 64. Glide planes a, b, c, n transform into the mirror plane m
and glide planes d into n.

(v) ∆ϕh = 0, π for reflections with symmetry restricted phase. Since 2∆ϕh = 2π, this
subset of reflections is not subject to the disturbing effect of exp(i2∆ϕh).
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(vi) If the quality of the model is sufficiently high, exp(i2∆ϕh) may be replaced by its
mean value, and the ρFo Fo -map can be computed.

2.5. The FoFp-Synthesis

The synthesis with coefficients FFp was studied by Carrozzini et al. [18], for brevity
indicated as C-function; it was shown that its space group is the symmorphic variant of the
space group of the target structure (e.g., if P 212,121 is the target space group, the C-function
space group is P 222), The synthesis is equal to

ρFFp
(r) = 1

V ∑h FFpexp(−2πihr) = 1
V ∑h|F|

∣∣Fp
∣∣exp

[
i
(

ϕ− ϕp − 2πhr
)]

= 1
V ∑h ∑i,j fi fpjexp

[
2πih

(
ri − rpj − r

)] (8)

Equation (8) is not computable because the ϕs are unknown. To overcome this problem,
Carrozzini et al. [18] supposed that the quality of the model was sufficiently high to
guarantee that, for a non-negligible subset of reflections, the m value is sufficiently large.
Then, the relation exp(iϕ) ≈ m exp

(
iϕp
)

holds, so that

F||Fp|exp[i
(

ϕ− ϕp − 2πhr
)
≈ m|F||Fp|exp(−2πihr)

and
FFp ≈ m|F||Fp|. (9)

In this case Synthesis (9), denoted as C’, is computable but the map is centric. Calian-
dro et al. [19,20] combined the C’-map with PSTs for solving structures with data at
non-atomic resolution.

In this paper we study the computable FoFp-synthesis, with density given by

ρFo Fp
(r) = 1

V ∑h FoFpexp(−2πihr)
= 1

V ∑h exp(i∆ϕh)∑i,j fi fpjexp
[
2πih

(
ri − rpj − r

)] (10)

We observe:

(i) ρFo Fp
is the convolution between ρo(r) and ρp(−r), and therefore peaks are broader

than in a typical electron density map.
(ii) The intensity of the peaks is modulated by the factor exp(i∆ϕh); for sufficiently good

models the maxima are expected at rij = ri − rpj, for i = 1, . . . , N and j = 1, . . . Np,
with intensity proportional to ∑h fi fpjcos(∆ϕh) (approximately proportional to ZiZpj).
Their number is expected to be equal to NNp, usually much smaller than the peak
number in the Patterson map; peaks’ superposition is therefore lower.

(iii) A strong peak is expected at r = 0, corresponding to the cases for which ri ∼ rpj;
its amplitude becomes larger and larger when the model improves. Thus, non-zero
peaks correspond only to interatomic distances with ri 6= rpj; they involve atoms
which are not in the model.

(iv) Equation (10) is not computable in practical cases unless exp(i∆ϕh) is replaced by its
expected value mh, but it becomes centric, so sharing the Patterson symmetry.

2.6. The Fp
∣∣Fo
∣∣2-Synthesis

Its electron density is given by

ρFp |Fo |2(r) =
1
V ∑h |Fp||F|2exp

[
i
(

ϕp − 2πhr
)]

= 1
V ∑h ∑j,l fpi f j flexp

[
2πih

(
rpi + rj − rl − r

)] (11)

We observe the following:

(i) The map is the convolution between ρp(r) and the Patterson synthesis P(u). Therefore,
its peaks will be broader compared to those in ρp(r) or ρp(r).
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(ii) The maxima are at r = rpi + rj − rl , for j, l = 1, . . . , N and p = 1, . . . , Np, with intensity
proportional to ZpiZjZl . Therefore, peaks involving heavy atom positions will be
dominant, in the order of peaks involving three, two and one heavy atom. The map is
expected to contain NpN2 peaks, with large mutual overlap.

(iii) The strongest peaks are expected to lie at rpi, i = 1, . . . , Np, and each of them has
multiplicity equal to N because j = l for N times. Less dominant peaks lie at rj, for i =
1, . . . , N, and each of them will have multiplicity equal to Np only if, for Np times,
rpi = rl . Unfortunately, this condition is not frequent because the model atoms may
be close to or far away from the target atoms. This last characteristic makes ρFp |F|2 less
appealing; indeed, the usefulness of maps dedicated to the target structure recovery
may be estimated from the prominence of the peaks corresponding to target atoms.
We will see that more useful maps may correspond to the

∣∣Fp
∣∣2|Fo| -syntheses.

2.7. The
∣∣Fp
∣∣2|Fo| -Synthesis

Its electron density is given by

ρ|Fp |2Fo
(r) = 1

V ∑h |Fp|2|F|exp
[
i
(

ϕp − 2πhu
)]

= 1
V ∑h exp(i∆ϕh)∑i,j fi fpj fplexp

[
2πih

(
ri + rpj − rpl − r

)] (12)

We observe that:

(i) The map is the convolution between ρo(r) and the Patterson synthesis P(u), thus
single peaks will be broader than in ρp(r) or ρp(r).

(ii) If the model is of sufficiently high quality the maxima are expected at r = ri + rpj− rpl ,
for i = 1, . . . , N and j, l = 1, . . . , Np, with intensity proportional to the product ZiZpjZpl .
However, if the model is poor, the factor exp(i∆ϕh) may reduce the intensities of all
peaks and shift them from the expected positions.

(iii) Peaks involving heavy atom positions will be dominant (in the order of peaks in-
volving three, two and one heavy atom). ρ|Fp |2Fo

(r) is expected to contain NNp
2

peaks, with large mutual overlap, usually NNp
2 << NpN2, so that overlap in the∣∣Fp

∣∣2|Fo| -synthesis is less severe than in ρFp |F|2(r).

(iv) If the model is sufficiently good, large peaks are expected at ri for i = 1, . . . , N, with
multiplicity of order Np (since l = j for Np times). Peaks are also expected at rpj,
j = 1, . . . , Np, with each having multiplicity equal to Np only if ri = rpl for Np times.
Fortunately, this condition is not common because the model atoms may be close to
or far away from the target atoms; consequently, an image of the target structure may
be obtained in favorable cases.

(v) Synthesis (12) is not practically computable, so in our calculations exp(i∆ϕh) is re-
placed by its expected value mh.

2.8. The Difference Patterson Synthesis

It is defined as

∆P(u) = 1
V ∑h(|F|2− |Fp|2)exp(−2πihu)= 1

V ∑h ∑i,j fi f jexp2πih
(
ri − rj − u

)
−

∑i,j fpi fpjexp2πih
(
rpi − rpj − u

) (13)

The right-hand side of Equation (13) suggests the presence of positive maxima at
uij = ri − rj, for i, j = 1, . . . , N, and of negative minima at upij = rpi − rpj, for i, j = 1, . . . ,
Np. However, if upij and uij simultaneously belong to the model and to the target (i.e.,
upij ∼ uij) then the resulting peak will vanish. Positive peaks are expected to correspond
to interatomic distances in the target that are not present in the model, and negative peaks
are expected to correspond to interatomic distances in the model that are not present in
the target.
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3. Patterson Superposition Techniques

A brief review of the PSTs may serve as a useful introduction to the more general
VSTs. The electron density map ρo(r), shifted by the vector rH (the subsript H is usually
associated with heavy atoms), is defined by the convolution

ρo(r + rH) = ρo(r) ∗ δ(r + rH)

The Fourier transform of this equation gives:

T[ρo(r) ∗ δ(r + rH)] = T[ρo(r)]T[δ(r + rH)] = |F|exp(2πihrH)

The right-hand member is the Fourier coefficient of the shifted Fourier map. Simi-
larly, the shifted Patterson map can be computed by using |F|2exp(2πihrH) as the Fourier
coefficient. The equation for this is:

P(u + rH) =
1
V ∑h |F|2exp[−2πih(u− rH)]

= 1
V ∑h fH ∑i fiexp[2πih(ri − u)

+ 1
V ∑h ∑i,j 6=H fi f j exp[2πih

(
ri − rj + rH − u

)
]

The maxima of this equation are expected at u = ri − rj + rH , for i, j = 1, . . . , N. The
first term on the right-hand side of the equation corresponds to the case rH = ri; it may
provide an image of the target structure because maxima are expected at ri, for i = 1, . . . , N.
The last term generates numerous noise peaks located at u = ri − rj + rH , for i, j = 1, . . . , N.

The noise can be partially eliminated by using PSTs, which can be summarized
as follows.

(i) The symmetry minimum function (SMF) is calculated by combining symmetry-
independent Harker domains according to

SMF(r) = Minn
s=1[P(r− Cs r)] (14)

where r− Cs r is a typical Harker vector. Min is the minimum operator to be applied, pixel
by pixel, to the n Harker sections.

(ii) A pivot peak in the SMF map is selected and used to calculate the minimum superpo-
sition function S(r) between the SMF and the translated Patterson map, according to

S(r) = Min[P(u + rH), SMF(r)] (15)

where rH denotes the position of the pivot peak, usually corresponding to a heavy atom.
If more pivot peaks are available, then (15) is replaced by

S(r) = Min[P(u + rH1), P(u + rH2), ....., SMF(r)] (16)

where rH1, rH2, . . . are the pivot positional vectors, usually corresponding to heavy
atom positions.

The above-described techniques frequently provide a poor model structure, containing
one or a few correctly located heavy atoms and a small number of light atoms located
correctly, mixed with many light atoms located incorrectly. In some space groups S(r)
shows a residual centrosymmetry, as heritage of the centric nature of the Patterson map.
Model refinement is therefore a necessary step, which is traditionally performed by electron
density modification (EDM) techniques; we will show that if the data resolution is not
sufficiently high, EDM phase refinement may be difficult. When we refer to the effectiveness
of the PSTs we will also include the contribution of the EDM techniques, as these are the
necessary final step of the method.

In this paper we will show that the use of the VSTs described in the following section
makes the crystal structure solution easier. They follow the application of the PSTs and
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require that at least one heavy atom has been correctly located via PSTs; for simplicity, its
position will be reported as rH = rpH .

4. Vector Superposition Techniques

Let us apply proper origin shifts to the electron syntheses described in Section 3.

4.1. The Shifted FoFo-Synthesis

Shifted by the vector −rH , its map may be rewritten as

ρFo Fo (r− rH) =
1
V ∑h ∑i,j fi f jexpi

[
2∆ϕp + 2πh

(
ri + rj − r− rH

)]
(17)

When rH = rj, Equation (17) reduces to

ρFo Fo (r− rH) =
1
V ∑h fHexpi(2∆ϕh)∑i fiexpi[2πh(ri − r)]
+ 1

V ∑h ∑i,j 6=H fi f jexpi[2∆ϕh + 2πh
(
ri + rj − r− rH

) (18)

If ∆ϕh ∼ 0 for a sufficiently large number of reflections the first term on the right-
hand side of Equation (18) will produce an image of the target structure; the observed
electron density at the target atomic positions is expected to be the sum ∑h fi fH cos(2∆ϕh).
The second term at the right-hand side of Equation (18) corresponds to noise peaks at
ri + rj − rH .

ρFo Fo (r− rH) alone cannot provide a high-quality image of the target structure, but the
minimum function Min[P(u + rH), ρFo Fo (r− rH)] may help to reduce the number of noise
peaks in ρFo Fo (r− rH) and consequently the mean phase error. Indeed, the noise peaks of
the two maps do not systematically overlap (they are at ri − rj + rH for the shifted Patterson
and at ri + rj − rH for the shifted FoFo-synthesis). If Min[P(u + rH), ρFo Fo (r− rH)] reduces
the noise in the ρFo Fo (r− rH) map, then the average value of 2∆ϕh in Equation (7) will also
diminish. This property suggests a cyclic algorithm of the above operations.

4.2. The Shifted FoFp-Synthesis

Shifted by the vector rH , it may be rewritten as

ρFFp
(r + rH) =

1
V ∑h fpHexp(i∆ϕh)∑i fiexp[2πih(ri − r)]
+ 1

V ∑h exp(i∆ϕh)∑i,j 6=H fi fpjexp
[
2πih

(
ri − rpj + rH − r

)] (19)

However, in practical cases ∆ϕh is unknown, and the above synthesis cannot be
calculated. If the model is sufficiently good, exp(i∆ϕh) may be replaced by its mean value
mh for a large number of reflections, and Equation (19) becomes computable. Then, the
first term at the right side of Equation (19) would provide an image of the target structure.

A comparison between ρFFp
(r + rH) and ρFo Fo (r− rH) may be useful:

(i) The noise peaks are located at ri − rpj + rH ; their number is of order NNp, much
smaller than the number of noise peaks (N2) in ρFo Fo (r− rH).

(ii) The unknown phase error parameter exp(2i∆ϕh) on the right-hand side of Equation
(18) is replaced by the most convenient parameter exp(i∆ϕh) in Equation (19). Both
parameters affect the image of the target structure resulting from the two syntheses,
but the second one is more manageable.

(iii) ρFFp
(r + rH) cannot lead to a high-quality image of the target structure, but the

minimum function Min[P(u + rH), ρFFp
(r + rH)] may help to reduce the number of

noise peaks and consequently the mean phase error.

4.3. The Shifted Fp
∣∣Fo
∣∣2-Synthesis

Let CsrH be a position symmetry equivalent to rH .
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If we shift ρFp |F|2(r) by the vector uH = (I− Cs)rH , we have

ρFp |F|2(r + uH) = 1
V ∑h ∑i fpi f 2

Hexp[2πih(ri − r)]

+ 1
V ∑h

′
∑
j,l

fpi f j flexp
[
2πih

(
rpi + rj − rl + uH − r

)] (20)

The first term at the right-hand side of Equation (20) corresponds to the case rH = rl
and CsrH = rj, and it is expected to provide an image of the target structure. The second
term includes all the other cases (this is the reason for the prime to one summation symbol)
and generates noise peaks at r = rpi + rj − rl + (I− Cs)rH .

4.4. The Shifted
∣∣Fp
∣∣2|Fo| -Synthesis

As in Section 4.3, let CsrH be a position symmetry equivalent to rH .
Shifting the

∣∣Fp
∣∣2Fo -synthesis by the vector uH = (I− Cs)rH gives

ρ|Fp |2Fo
(r + uH) = 1

V ∑h exp(i∆ϕh)∑i fi f 2
Hexp[2πih(ri − r)]

+ 1
V ∑h exp(i∆ϕh)

′
∑
j,l

fi fpj fplexp{2πih[ri + rpj − rpl − r

+(I− Cs)rH ]}

(21)

The first term at the right-hand side of Equation (21) corresponds to the case rH = rpl
and CsrH = rpj; it is expected to provide an image of the target structure if the model
structure is sufficiently good. The second term includes all the other cases (see the prime to
one summation symbol) and generates noise peaks at r = ri + rpj − rpl + (I− Cs)rH .

4.5. The Shifted Difference Patterson Synthesis

When shifted by the vector rH = rj, it may be rewritten as

∆P(u− rH) =
1
V ∑h fH ∑i fiexp2πih(ri − u)

+ 1
V ∑h ∑i,j 6=H fi f jexp2πih

(
ri − rj + rH − u

)
− 1

V ∑h fH ∑i fiexp2πih
(
rpi − u

)
− 1

V ∑h ∑i,j fi f j 6=Hexp2πih
(
rpi − rpj + rH − u

) (22)

Equation (22) suggests that the shift results in a positive image of the target crystal
structure and a negative image of the model structure. Peaks belonging to both the target
and to the model structure are expected to have nearly zero amplitude, while peaks not
belonging to the model are expected to have a large positive amplitude. Negative amplitude
is expected for peaks belonging to the model but not to the target.

In Table 1 we show the suggested shifting vector (VH), the expected positional vectors
of the signal peaks (Exp. Signal) and their amplitudes (Exp. Sig. Ampl.) and the expected
positional vectors of the noise peaks (Noise Peaks) for each shifted Fourier synthesis. The
shifted synthesis ∆P(u− rH) shows two lines, the first corresponding to positive peaks and
the second to negative peaks. The table suggests that each Fourier synthesis can provide an
image of the structure, while different positional vectors are obtained for the noise peaks.
In principle, a VSP procedure that combines the structural information provided by the
different shifted Fourier syntheses may enhance the image of the structure and reduce the
noise peaks.
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Table 1. For each Fourier synthesis applied in this paper we show: the shifting vector (VH), the
expected image of the target structure (Exp. Signal), the expected amplitude of the signal peaks (Exp.
Sig. Amp.), the location of the noise peaks (Noise Peaks).

Synthesis VH Exp. Signal Exp. Sig. Ampl. Noise Peaks

P rH ri, for i = 1, . . . , N ZH Zi ri − rj + rH
FoFo −rH ri, for i = 1, . . . , N ZH Zi〈exp(2i∆ϕ)〉 ri + rj − rH
FoFp rH ri, for i = 1, . . . , N ZH Zi〈exp(i∆ϕ)〉 ri − rpj + rH

Fp
∣∣Fo
∣∣2 (I− Cs)rH ri, for i = 1, . . . , N Z2

H Zi rpi + rj − rl + (I− Cs)rH∣∣Fp
∣∣2Fo (I− Cs)rH ri, for i = 1, . . . , N Z2

H Zi〈exp(i∆ϕ)〉 ri + rpj − rpl + (I− Cs)rH

∆P rH
ri, for i = 1, . . . , N

rpi, for i = 1, . . . , Np

ZH Zi
ZH Zi

ri − rj + rH
rpi − rpj + rH

5. Discussion

We selected 12 test structures with data resolution (RES) between 1.8 Å and 2.2 Å, each
containing one or more heavy atoms in the asymmetric unit. Their PDB codes and RES are
shown in Table 2: 10 are proteins, 2 are nucleic acids. For each test structure we calculated
the symmetry minimum function (SMF) using Equation (14). On the corresponding map
we selected the six peaks with the largest intensities to use them as PST pivots. A number
of six was suggested by two conflicting needs: first, taking a low number of trials, second,
considering the fact that the largest peak in the Harker section is not always really a
Harker peak.

Table 2. For the 12 test structures we show: PDB codes (PDB), data resolution (RES), minimum
average phase error among the 6 S(r) maps (MPES), minimum average phase error (MPEEDM)
found when the 6 S(r) sets of phases are submitted to 30 EDM cycles. In the columns MPEFo Fo ,
MPEFo Fp

, MPEFp |Fo |2 , MPE|Fp |2 Fo
, we show the minimum average phase errors attained when each

of the 6 S(r) sets of phases are submitted to 30 VST cycles based on the FoFo-, FoFp-, Fp
∣∣Fo
∣∣2- and∣∣Fp

∣∣2Fo -synthesis, respectively.

PDB RES MPEs MPEEDM MPEFoFo MPEFoFp
MPEFp|Fo|2 MPE|Fp|2Fo

4ms5 2.23 59.92 69.05 51.77 51.08 56.21 55.48
3ajw 2.10 69.40 75.35 60.71 61.91 60.92 61.18
4ltl 2.07 57.35 67.05 43.28 42.99 52.35 49.88
1crm 2.02 68.77 71.28 68.15 68.53 73.44 73.57
1z1y 2.00 72.59 73.95 63.11 63.73 74.88 73.62
1buu 1.93 66.64 64.45 56.73 55.93 48.46 47.70
1yfd 1.90 73.17 74.70 71.99 71.54 70.01 69.73
1jpr 1.89 70.87 74.00 64.67 64.58 65.73 65.59
1naq 1.86 68.44 70.75 59.33 59.12 68.85 69.02
1ytt 1.80 61.06 63.08 50.21 50.07 52.37 53.01
1pm2 1.80 77.40 77.96 69.93 69.94 78.81 78.53
1arm 1.80 69.42 70.34 68.34 69.08 74.33 70.99

For each pivot peak a S(r) map was calculated using Equation (15). The six maps
provided the first model structures: one EDM cycle, with map modification and subsequent
Fourier inversion, yields the corresponding six sets of phases. Our computing tool is
DM [21], a well-known and effective EDM program. To simplify the results, for each test
structure we report in Table 2 the minimum MPE value among the six trials (MPEs). We
did not use a figure of merit to recognize MPEs among the six trials; we simply identified it
a posteriori. The high MPEs values suggest that PSTs provide rough model structures, a
usual result when the data resolution is low.

The first point to assess now is whether the PST phases are refinable via a typical
EDM procedure or if the mean phase errors are too high for a successful refinement. If
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EDM techniques succeed, VST refinement is no longer necessary. Accordingly, for each
test structure we submitted the corresponding six PST phase sets (one set per pivot) to
thirty EDM cycles. In the MPEEDM column of Table 2 we show, for each test structure, the
minimum MPE values (over the six trials) obtained via EDM techniques. Once again, we
did not use a figure of merit for recognizing the solutions with the minimum MPE value,
we identified them a posteriori.

For most of the test structures the phase refinement procedure diverged or remained
stationary. In practice, none of the test structure could be solved by standard EDM approaches.

To show the failure of the EDM techniques in more detail, for each test structure
we selected the pivot (among six) leading to the minimum value of the average phase
error (MPEEDM in Table 2). In Figure 1a we show the progress, throughout the 30 EDM
refinement cycles, for the selected pivots. The judgement is clear: EDM refinement fails.

Figure 1. (a) Trend of the average phase error throughout the 30 cycles of the EDM refinement.
Each line corresponds to the pivot (among six) leading to the minimum value of the average phase
error. (b) Trend of the average phase error throughout the 30 cycles of the VST refinement. Each line
corresponds to the pivot (among six) leading to the minimum value of the average phase error.

We now describe the VST phase refinement approach. To make our algorithm more
general we denoted by G a generic Fourier synthesis as described in Section 3 (one of the
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FoFo, FoFp, Fp
∣∣Fo
∣∣2 and

∣∣Fp
∣∣2Fo ) and by VH the generic shift vector associated with it (one of

those listed in Table 1). After the application of the PST algorithm described in Section 4 a
set of S(r) maps (six in our procedure) were available, each corresponding to a specific shift
vector VH. The Fourier inversion of each S(r) generates a set of phases, which, together
with the corresponding VH vector, are the input for the application of our VST algorithm.
Thirty super-cycles were then applied, each consisting of:

(a) Calculation of the G synthesis;
(b) Calculation of the minimum function ρmin = Min[P(u + rH), G(r− VH)];
(c) Calculation of the ρmin map and its Fourier inversion, followed by a few EDM cycles.

We used 30 cycles of the FoFo-, FoFp-, Fp
∣∣Fo
∣∣2- and

∣∣Fp
∣∣2Fo -syntheses, one at a time.

After each VST refinement we selected, for each synthesis, the trial (among six) with the
smallest MPE value; as before, it was identified a posteriori. These minimum values are
denoted in Table 2 by MPEFo Fo , MPEFo Fp

, MPEFp |Fo |2
, MPE|Fp |2Fo

, respectively.
For most of the test structures, the VST refinement is able to significantly reduce the

MPEs values, whereas EDM techniques, generally, degraded the quality of the S-phases.
The VST syntheses may therefore be considered as constraints to which phases obtained
by EDM inversion are subject. Such constraints are often able to prevent stationarity
or divergence of the phase refinement process. VST refinement leads to different MPE
values, depending on the synthesis involved in the procedure. There is no synthesis which
systematically provides phases significantly better than the others.

To provide a more detailed illustration of the success of the VST refinement, we show
the trend of the average phase error when the FoFp-synthesis is used. For each test structure
we selected the pivot (among six) that resulted in the minimum value of the phase error
(MPEFo Fp

in Table 2). In Figure 1b, we present the progress according to the cycles of
the EDM refinement for the selected pivots. It can be observed that in most cases the
phase error continuously decreases with the cycle number. The reader will also notice an
oscillatory behavior in the VST phase refinement process. Oscillations are essential for the
success of the procedure as they generate new starting points for the EDM cycles. Any
attempt to reduce these oscillations would result in a stationary phase refinement process.

Even though the quality of the VST phases is generally higher than that of the cor-
responding minimum superposition function S(r), the corresponding MPE values are,
however, too high for defining a model structure of sufficient quality. Therefore, the
VST phases were automatically subjected to a further refinement procedure (direct space
refinement, DSR). The DSR procedure [15] is based on various criteria and consists of
four modules that are repeatedly applied: sets of EDM cycles according to the VLD algo-
rithm [22,23] HAFR (the heaviest atomic species present in the crystal is associated with a
number of peaks selected from the current electron density map; their site occupancies are
suitably modified), LSQH (the isotropic displacement parameters of the heavy atoms are
refined via least-squares), EXALT (the electron density map is periodically enhanced, to
avoid a possible weakening of the heavy atom peaks).

To make the procedure suitable for practical cases, each set of DSR phases is submitted
to a figure of merit (FFOM) which selects the most promising solution. FFOM is defined
as follows [20]:

FFOM =
RATCurrent CC(all)Current CC(large)Current

RATinitial CC(all)initial CC(large)initial

CC is the correlation factor between the observed normalized structure factors (Robs)
and the calculated normalized structure factor (Rcalc). We notice that Rcalc is obtained by
inverting a small percentage (3.5%, corresponding to the pixels with highest intensity) of
the current electron density map. CC(all) is calculated for all observed reflections, while
CC(large) is calculated over the subset of 70% of the largest |Fobs| values.

In RAT = CCw/ < R2
calc >weak, CCw is the correlation coefficient between the largest

Robs amplitudes (about 70% of the total) and the corresponding σA weights, and the average
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< R2
calc >weak is calculated over 30% of the measured reflections (those with the weakest

|Fobs| values). Basically, the FFOM selects the model for which the numerator at the right-
hand side attains its largest value with respect to its initial value, while the denominator is
essentially a normalizing constant.

Based on our experience, an FFOM value larger than 2.9 typically indicates a good set
of phases. This result allowed us to modify the software into a program capable of solving
unknown crystal structures. The following procedure is adopted: if an FFOM larger than
2.9 is found, the procedure does not check any other pivot and jumps from the refinement
process to the AMB and graphical steps (see Section 7). Otherwise, all six trials are explored,
but now only the RAT component is used to identify the best solution.

The average phase errors of the trials selected by our figures of merit are reported in
Table 3 for each Fourier synthesis, and the corresponding FFOM (or RAT) are in parentheses.

Table 3. For each test structure the average phase errors obtained at the end of the DSR phase
refinement for the syntheses FoFo, FoFp, Fp

∣∣Fo
∣∣2 and

∣∣Fp
∣∣2Fo are shown. The corresponding trials are

selected by our figures of merit (FFOM) or RAT (in parentheses).

PDB DSRFoFo DSRFoFp
DSRFp|Fo|2 DSR|Fp|2Fo

4ms5 50 (2.93) 49 (2.92) 48 (2.98) 49 (2.99)
3ajw 49 (3.08) 49 (3.11) 49 (3.23) 49 (3.20)
4ltl 42 (3.01) 42 (3.16) 42 (3.21) 41 (3.17)
1crm 71 (2.29) 69 (2.31) 89 (2.15) 70 (2.23)
1z1y 69 (2.28) 68 (2.43) 76 (2.29) 89 (2.24)
1buu 31 (4.85) 32 (3.95) 32 (3.78) 30 (4.87)
1yfd 52 (3.12) 52 (3.01) 89 (2.93) 50 (3.03)
1jpr 47 (2.99) 47 (3.13) 51 (2.92) 46 (3.22)
1naq 51 (2.26) 51 (2.10) 51 (2.14) 51 (2.13)
1ytt 43 (3.08) 43 (2.91) 43 (3.08) 43 (3.09)
1pm2 48 (2.93) 48 (3.01) 47 (2.91) 48 (2.96)
1arm 88 (2.26) 58 (2.49) 89 (2.42) 88 (2.32)

We observe:

(i) The quality of the DSR phases is higher than that of the VST phases.
(ii) For most of the test structures good sets of phases are obtained and FFOM (or RAT)

is able to recognize them. That is particularly true for the three structures with
RES > 2.05.

(iii) The final average phase errors for 1crm and 1z1y remain high for all the syntheses.
We do not know why these test structures resist the phasing procedure.

(iv) None of the four columns in Table 2 provides a set of phases systematically better than
the others; nevertheless, a minor effectiveness may be associated with the synthesis
Fp
∣∣Fo
∣∣2 and a major effectiveness with the synthesis FoFp.

The DSR phases so obtained were subjected to an additional refinement procedure
based on the shifted difference Patterson synthesis ∆P(u− rH). Positive peaks were ex-
pected to introduce a new electron density into the model structure, while negative peaks
were expected to eliminate incorrect density from the model. However, no significant
improvement was observed, and therefore we consider the DSR phase refinement to be the
conclusive step of our phasing procedure.

6. The CAB Application

To fully automatize the ab initio crystal structure solution via VSTs, a further step is
necessary: submitting the DSR phases to an appropriate AMB program. The DSR step
(see Section 5) was able to substantially reduce the average phase error of 10 over 12 test
structures up to a level suitable for succeeding in the automatic model building process
(1crm and 1z1y are excluded). The AMB procedure of our pipeline is CAB [24,25], an AMB
approach which cyclically applies BUCCANEER [26] and NAUTILUS [27] algorithms,
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respectively. The high quality of CAB has been shown in a recent paper [28], but, un-
fortunately, it is a program specifically written for molecular replacement studies. The
standard CAB needs a molecular model for the MR step, and also needs to know how
many models should be located in the asymmetric unit of the target. Therefore, heavy
modifications are necessary for optimizing CAB when phases are obtained by VSTs. Despite
the above limitations, we submitted to CAB the phases obtained by the FoFp refinement
(see Table 3) as selected by the FFOM (or RAT) criterion; we excluded 1crm and 1z1y from
the tests because of their large average phase value. For each model structure CAB calcu-
lated the MA parameter (MA is the percentage of the atoms that lie within 0.6 Å from the
published positions).

In five of the ten suitable cases (3ajw, 1buu, 1jpr, 1ytt, 1pm2) CAB provides MA values
larger than 0.6. For them, Table 4 displays the pivot order (PIV) corresponding to the
selected solution, the average phase error of the CAB structural model (MPECAB) and the
corresponding MA value. The MA values are often sufficiently high to suggest that the
CAB model is substantially correct.

Table 4. For five test structures for which MA > 0.60 we show the pivot order (PIV) corresponding
to the selected solution, the average phase error of the CAB structural model (MPECAB) and the
corresponding MA value.

PDB PIV MPECAB MA

3ajw 1 36 0.63
1buu 1 30 0.87
1jpr 1 35 0.89
1ytt 1 55 0.60
1pm2 1 33 0.89

The CAB coordinates were processed using the graphical software JAV [29], providing
an instant visualization of the structural model. JAV is capable of reading coordinates in
different formats such as pdb, ent, cif, ins and res. In Figures 2–4 we show for 1ytt [30] (the
case with the smallest MA value), 1pm2 [31] and 1jpr [32] the CAB backbones in red and
the published backbones in blue. The figures demonstrate that the CAB models have good
chain overlap with the published structures.

Figure 2. 1ytt: CAB chain-trace in red, published chain-trace in blue.
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Figure 3. 1pm2: CAB chain-trace in red, published chain-trace in blue.

Figure 4. 1jpr: CAB chain-trace in red, published chain-trace in blue.
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7. Conclusions

When the data resolution is low, Patterson superposition techniques are unable to
solve macromolecular structures. They usually provide sets of phases that are too rough to
be refined by standard EDM techniques; the refinement procedure is stationary or divergent.
This paper extends the concept of Patterson superposition techniques, by including them in
the larger concept of vector superposition techniques. In fact, we showed that the Patterson
map is only one of a variety of Fourier syntheses to which superposition techniques can
be applied. In this context we described the properties of the FoFo-, FoFp-, Fp

∣∣Fo
∣∣2- and∣∣Fp

∣∣2Fo -syntheses; the usefulness of the latter three has always been overlooked and, as
a result, they have never been applied in a phase refinement procedure. However, our
theoretical analysis of their properties indicates that they can offer images of the structure
that are accurate enough to serve as a valuable starting point for phase refinement.

In this paper, VSTs are used as a tool for refining PST phases; they may be considered
as a constraint hindering EDM techniques from being stationary or diverging. The VST
phases are a better starting point for a further phase refinement procedure, performed by
our DSR program, which adopts an atypic EDM approach which leads to a solution for
most of the test structures. The two failure cases (1crm and 1z1y) can be attributed more to
the limited effectiveness of the refinement procedure rather than to the limited utility of the
new Fourier syntheses. The problem will be the object of a new investigation.

The procedure described above shows that 2.2 Å resolution is an accessible threshold
for ab initio crystal structure solutions of macromolecular structures, provided heavy
atoms are in the unit cell. The new resolution threshold is an important factor as a non-
negligible percentage of macromolecular structures currently exhibit a resolution better
than 2.2 Å. Furthermore, the use of ligands containing heavy atoms is a current technique
for improving the crystallization process, especially for nucleic acids.
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Abbreviations

F = |F|exp(iϕ)
|F| is the observed structure factor of the target structure; ϕ is its
phase value.

Fp =
∣∣Fp
∣∣exp

(
iϕp

)
structure factor of the current structure model.

∆ϕ = ϕp −ϕ

ρ(r)
ideal electron density map, calculated via observed amplitudes |F| and
true phases ϕ.

ρp(r)
electron density map of the current structure model, calculated by using∣∣Fp
∣∣ amplitudes |F| and estimated phases ϕp. Usually, it contains

heavy atoms.
Cs, for s = 1, . . . , m symmetry operators of the space group.
N number of atoms in the target unit cell.
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Np number of atoms in the model unit cell.
NL number of atoms in the ρ(r)− ρp(r) substructure.
Zi atomic number of the ith atom of the target structure.
Zpi atomic number of the ith atom of the model structure.

ri, rpi, rHi

positional vector of the ith atom of the target structure, of the ith atom of
the model structure and of the ith heavy atom, respectively. Frequently, a
heavy atom is part of the model structure.

F, Fp complex conjugates of F and Fp.
E = Rexp(iϕ),
Ep = Rpexp

(
iϕp

) normalized structure factors of F, Fp, respectively.

ΣN = ∑N
j=1 f2

j
Σp = ∑

p
j=1 f2

j
D = 〈cos(2πh∆r)〉 the average is found per resolution shell.
σA = D

√
Σp/ΣN

Ii(X) modified Bessel function of order i.
m = 〈cos

(
ϕ− ϕp

)
〉 I1(X)/I0(X), where X = 2σARRp/

(
1− σ2

A
)
.

asu asymmetric unit.
EDM electron density modification.
PST Patterson superposition technique.
VST vector superposition technique.
* convolution symbol.
Paper I [17] https://doi.org/10.1107/S0021889806017894.
Paper II [16] https://doi.org/10.3390/cryst10060538.
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