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Highlights:

1. The research is focused on analyzing the structural properties of SiGe alloys with different
compositions, with a particular focus on the effect of annealing temperature on the quality of
the crystalline structure.

2. The findings suggest that the quality of the crystalline structure in SiGe alloys improves as
annealing temperature increases, and that this is particularly noticeable in alloys with higher
percentages of Ge. This indicates that the thermal treatment of SiGe alloys is an important factor
in optimizing their properties for various applications.

3. Understanding the structural properties of SiGe alloys is important for a wide range of techno-
logical applications, including electronics, optoelectronics, and thermoelectric devices.

Abstract: This study investigates the structural and optical characteristics of Silicon Germanium
(SiGe) thin films with varying compositions and annealing temperatures for potential use in electronic
and optoelectronic devices. Si0.8Ge0.2 and Si0.9Ge0.1 films were deposited onto a high-temperature
quartz substrate and annealed at 600 ◦C, 700 ◦C, and 800 ◦C before being evaluated using an X-Ray
Diffractometer (XRD), Atomic Force Microscopy (AFM), and a UV-Vis Spectrometer for structural and
optical properties. The results show that increasing the annealing temperature results in an increase
in crystalline size for both compositions. The transmittance for Si0.8Ge0.2 decreases slightly with
increasing temperature, while Si0.9Ge0.1 remains constant. The optical band gap for Si0.9Ge0.1 thin
film is 5.43 eV at 800 ◦C, while Si0.8Ge0.2 thin film is 5.6 eV at the same annealing temperature. XRD
data and surface analysis reveal significant differences between the band edges of SiGe nano-structure
materials and bulk crystals. However, the possibility of a SiGe nano-crystal large band gap requires
further investigation based on our study and related research works.

Keywords: SiGe; thin film; nano-crystal; XRD; opto-electronic; alloy

1. Introduction

The widespread consumption of coal and petroleum has a devastating impact on
global warming and climate change. In order to mitigate these environmental issues, it
is essential to generate eco-friendly energy [1,2]. SiGe semiconductor is a transparent
material that offers numerous technical and technological advantages for the future. It has
a wide range of applications, including uses for solar cells, transistors, photodetectors, and
thermoelectric devices. Optical transparency is also required as it allows for light emission
through the wavelength. However, the production of SiGe semiconductor requires a unique
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production procedure, requiring that it be put on a high-temperature substrate [3,4]. The
minimization of optoelectrical losses in solar photovoltaic cells that use several contact
approaches is introduced. However, a low resistance transparent barrier with superior
electrical performance has yet to be achieved. Therefore, there is significant potential for
the development of a low optoelectrical p-contact.

Silicon-doped germanium offers its own stability and efficient spectral utility; this
allows for modulation in the optical window through bandgap engineering [5]. Achieving
these specialties might be possible by changing the Ge mole fraction in the SiGe material [5].
According to Fathipour et al., the addition of Ge mole fraction in the c-Si thin film could
reduce the bandgap and increase the absorption coefficient of the thin film. On the other
hand, the addition of SiGe mole fraction in the composition might affect the structural and
optical characterization of the thin film [6]. Increasing the Ge content in a composition
may be beneficial due to its stability and improved performance [7]. Additionally, SiGe
alloy MOSFET stressors are utilized to induce strain into the Si and Ge channels [8]. The
production of nanocomposites is a viable method for lowering SiGe alloys’ lattice thermal
conductivity [9].

It has been reported that lower deposition temperatures are more effective in im-
proving carrier lifetimes when compared to higher temperatures due to less substantial
degradation of Si characteristics [10]. CdTe solar cells have been found to exhibit reduced
efficiency with increasing temperature, while mcSi and Si modules have been shown to
have higher efficiency when compared to CdTe solar cells [4–11]. Moreover, SiGe thin film
is well-known for its higher transparency and exhibits superior photo-electrical properties
for future transparent solar cells. In addition, these similar complex material systems have
been successfully addressed by ab initio calculations, including the structural and growth
aspects [12].

The deposition of SiGe thin film is achieved using the Radio Frequency sputtering
method. This method is considered to be the most effective method for depositing a wide
range of thin film materials under vacuum conditions [13]. Previous research has found that
Si0.5Ge0.5 grown by chemical vapor deposition exhibits an optical bandgap of approximately
1 eV, with high defect concentration at lower growth temperatures [14]. Si solar cell is
realized to have the best module efficiency, with both chemically and electrically appealing
designs for the aSi:H buffer and emitter, as well as metal oxide back passivation [15]. In
this research, the structural and optical characterization for both Si0.8Ge0.2 and Si0.9Ge0.1
were analyzed.

2. Experimental Details

To prepare the quartz glass substrate for the sputtering process, it was first cleaned in
an ultrasonic bath for 15 min using a combination of distilled water, ethanol, and acetone.
The quartz substrate was then rinsed with distilled water and blown dry with an inert
gas (nitrogen gas). Si0.8Ge0.2 and Si0.9Ge0.1 layers were sputtered on the cleaned quartz
substrate using a Radio Frequency sputtering machine for about 30 min. Prior to sputtering,
the quartz substrate was heated to 900 ◦C in a furnace. The sputtering process was carried
out under the following conditions: a sputtering power of 98 W, a working pressure of
3 mTorr, and a temperature of 900◦. A SiGe target was positioned parallel to the substrate
to ensure even distribution. The process involved introducing argon gas at a low pressure
of less than 0.4 mTorr, causing the gas atoms to become ionized and form plasma with
the aid of electrons and neutral atoms. The plasma was then deposited onto the quartz
substrate, resulting in the formation of a thin film. Table 1 shows the thin film composition
and target parameters used in the deposition process.
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Table 1. Deposition composition and parameters.

Thin Film Composition • Silicon Germanium (Si 90%, Ge 10%) wt%
• Silicon Germanium (Si 80%, Ge 20%) wt%

Material purity (Sputter target) 99.99%

Target size 3” diameter × 0.125” thickness

Substrate Quartz Glass

Annealing temperature 600 ◦C, 700 ◦C and 800 ◦C

Sputtering power 98 W

The sputtering time was kept constant throughout the process to ensure a constant
growth thickness of 300 nm for both SiGe compositions. Following the sputtering process,
all the samples were annealed inside a furnace for 30 min at varying temperatures of 600 ◦C,
700 ◦C, and 800 ◦C for both SiGe compositions. A Bruker Multimode 8-HR, an atomic
force microscope, was used to analyze and study the surface and morphological properties
of the deposited SiGe thin film. Additionally, the optical properties of the samples were
observed using a Lambda EZ210 UV-Vis spectrometer to measure the optical transmittance
and calculate the optical bandgap of the samples.

3. Result and Discussion
3.1. Structural Properties of Si0.8Ge0.2 and Si0.9Ge0.1 Thin Film

XRD data has been analyzed and there are two peaks observed at 64.4◦ (4 0 0) and
77.5◦ (3 3 1) for both Si0.8Ge0.2 and Si0.9Ge0.1 as in Figure 1 [16,17]. From the XRD result in
Figure 1, it can be seen that there is some shifting happening at 64.4◦; this might be due to
lattice mismatch and the sample stage.

Crystals 2023, 13, x FOR PEER REVIEW 3 of 11 
 

 

Table 1. Deposition composition and parameters. 

Thin Film Composition 
 Silicon Germanium (Si 90%, Ge 10%) wt% 

 Silicon Germanium (Si 80%, Ge 20%) wt% 

Material purity (Sputter target) 99.99% 

Target size 3” diameter × 0.125” thickness 

Substrate Quartz Glass 

Annealing temperature 600 °C, 700 °C and 800 °C 

Sputtering power 98 W 

The sputtering time was kept constant throughout the process to ensure a constant 

growth thickness of 300 nm for both SiGe compositions. Following the sputtering process, 

all the samples were annealed inside a furnace for 30 min at varying temperatures of 600 

°C, 700 °C, and 800 °C for both SiGe compositions. A Bruker Multimode 8-HR, an atomic 

force microscope, was used to analyze and study the surface and morphological proper-

ties of the deposited SiGe thin film. Additionally, the optical properties of the samples 

were observed using a Lambda EZ210 UV-Vis spectrometer to measure the optical trans-

mittance and calculate the optical bandgap of the samples. 

3. Result and Discussion 

3.1. Structural Properties of Si0.8Ge0.2 and Si0.9Ge0.1 Thin Film 

XRD data has been analyzed and there are two peaks observed at 64.4° (4 0 0) and 

77.5° (3 3 1) for both Si0.8Ge0.2 and Si0.9Ge0.1 as in Figure 1 [16,17]. From the XRD result in 

Figure 1, it can be seen that there is some shifting happening at 64.4°; this might be due to 

lattice mismatch and the sample stage. 

  

(a) (b) 

Figure 1. XRD result for both (a) Si0.8Ge0.2 and (b) Si0.9Ge0.1 composition. 

The interplanar distance of the film samples or the lattice parameter was calculated 

using Equation (1). 

𝑑ℎ𝑘𝑙 =  
ℎ2

𝑎2
+

𝑘2

𝑏2
+

𝑙2

𝑐2
 (1) 

where h, k, and l are the Miller indices. From the XRD data, the increase in annealing tem-

perature causes lattice distortion. It enhances crystal defect, as proven by the micro-strain 

result in Table 2 for Si0.8Ge0.2 composition for 700 °C and 800 °C annealing temperature 

*sign refer to the sample stage 
*sign refer to the sample stage 

Figure 1. XRD result for both (a) Si0.8Ge0.2 and (b) Si0.9Ge0.1 composition.

The interplanar distance of the film samples or the lattice parameter was calculated
using Equation (1).

dhkl =
h2

a2 +
k2

b2 +
l2

c2 (1)

where h, k, and l are the Miller indices. From the XRD data, the increase in annealing tem-
perature causes lattice distortion. It enhances crystal defect, as proven by the micro-strain
result in Table 2 for Si0.8Ge0.2 composition for 700 ◦C and 800 ◦C annealing temperature [18].
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The crystallite size for both compositions in Si0.8Ge0.2 and Si0.9Ge0.1 are calculated using
the Scherrer Equation, as stated in Equation (2).

D =
kλ

β cos ϑ
(2)

where D is crystalline size, k is the Scherrer constant, λ is the wavelength of x-ray source, β
is the FWHM in radian, and θ is the peak position in XRD analysis. The crystallite size is
observed to be in nanoscale; this follows the XRD peak in Figure 1 [19]. The micro-strain of
the crystallite has been calculated using the micro-strain equation as stated in Equation (3).

ε =
β

4 tan θ
(3)

where ε is the micro-strain in radian, β is the line broadening at FWHM in radian, and θ is
the Bragg’s angle in degree, which is half of the 2θ value in the XRD data.

Table 2. The structural properties for XRD data.

Composition Si0.8Ge0.2 Si0.9Ge0.1

Parameter Crystallite
Size (nm)

Micro-Strain,
×10−3 (Rad)

Lattice
Constant

Peak
Position

Crystallite
Size (nm)

Micro-Strain,
×10−3

(radian)

Lattice
Constant

Peak
Position

600 ◦C 35.79 1.92 5.58002 64.4◦, 77.5◦ 35.63 1.91 5.57932 64.4◦, 77.5◦

700 ◦C 31.41 143.76 5.58086 64.4◦, 77.5◦ 22.98 1.92 5.58102 64.4◦, 77.5◦

800 ◦C 36.78 165.49 5.58057 64.4◦, 77.5◦ 36.28 0.97 5.58063 64.4◦, 77.5◦

Table 2 reveals a discrepancy between the crystallite size from the XRD data and the
grain size from the AFM data. Specifically, the crystallite size increases from 35.79 nm and
36.78 nm at 600 ◦C and 800 ◦C for Si0.8Ge0.2 composition, respectively, while the grain size
obtained from the AFM data increases from 61.08 nm to 74.87 nm over the same temperature
range. This can be explained by the fact that the crystallite size is composed of several
particles that are coherent diffraction domains in X-ray diffraction and is dependent on the
size of the defect-free volume, while grains are volumes inside crystalline materials with a
specific orientation and are visualized without taking the degree of structural imperfection
into account. The XRD data indicate that an increase in annealing temperature leads to
lattice distortion and enhanced crystal defect, as evidenced by micro-strain results in Table 2
for Si0.8Ge0.2 composition at 700 ◦C and 800 ◦C annealing temperatures [18]. However,
strain characteristics are also impacted by changes in composition and lead to an increase
in carrier mobility [20]. Surface roughness, particle analysis, and particle density for both
Si0.8Ge0.2 and Si0.9Ge0.1 were also analyzed using Atomic Force Microscopy (AFM). Figure 1
displays the crystalline image of Si0.8Ge0.2 and Si0.9Ge0.1 at different temperatures. For the
Si0.8Ge0.2 composition, the lower annealing temperature resulted in a larger grain size than
the higher annealing temperature. The AFM analysis in Figure 1 shows that richer grains
can be observed at 700 ◦C and 800 ◦C when compared to the lower temperature. However,
Si0.9Ge0.1 composition shows a constant trend in grain size from the AFM analysis, as shown
in Figure 2d–f. Both compositions have larger grain sizes at an annealing temperature of
800 ◦C.
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Figure 2. AFM analysis for both crystalline Si0.8Ge0.2 at (a) 600 ◦C, (b) 700 ◦C, and (c) 800 ◦C, and
Si0.9Ge0.1 (d) 600 ◦C, (e) 700 ◦C, and (f) 800 ◦C.

The AFM analysis was supported by the XRD data (shown in Figure 3); these data
reveal the crystallite size for both SiGe compositions. Based on Figure 3, the highest
roughness was observed at 700 ◦C for each composition, reaching 34.7 nm, and then
decreased to 27.7 nm as the temperature increased. The trend was consistent for both
compositions. This tendency justifies the dislocation rearrangement and removal of point
defect during recovery, which could considerably lower the amount of stored energy [21,22]
and weakens the bonds of the material [23,24]. Samples annealed at high temperatures
have more energy trapped inside the matrix due to insufficient time for recovery between
grains [21]. This may also be caused by insufficient recovery and faster grain growth rates
due to higher stored energy within the samples. Table 3 shows the summary of structural
properties, including particle density, for both Si0.8Ge0.2 and Si0.9Ge0.1 compositions.

Table 3. The summary of structural properties for both SiGe compositions using AFM analysis.

Composition Si0.8Ge0.2 Si0.9Ge0.1

Parameter Grain Size
(nm)

RMS Roughness
(nm)

Particle Density
(µm−2)

Grain Size
(nm)

RMS Roughness
(nm)

Particle Density
(µm−2)

600 ◦C 61.078 20.3 19.961 69.359 23.9 24.897
700 ◦C 70.895 28.6 51.401 87.978 34.7 17.889
800 ◦C 74.868 26.4 52.486 97.689 27.7 19.868

Based on Table 3, the particle density for Si0.8Ge0.2 increases with the annealing tem-
perature, whereas for Si0.9Ge0.1, the particle density decreases with increasing temperature.
Particle density was determined using an Atomic Force Microscopy (AFM) nano-scope
analyzer from Bruker [25]. Among the compositions, Si0.8Ge0.2 has the highest particle
density, with a value of 52.486 µm−2 at 800 ◦C, which is higher than that of Si0.9Ge0.1. This
observation suggests that Si0.8Ge0.2 has a more stable structure than Si0.9Ge0.1, consistent
with the reported decrease in lattice parameter as Ge concentration increases [26]. These
results support the benefits of higher particle density, such as in the double stack structure,
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which may increase cation disordering due to high thermal energy in the nanocrystalline
system [27]. For both compositions, the highest particle roughness was observed at 700 ◦C,
with values of 28.6 nm and 34.7 nm for Si0.8Ge0.2 and Si0.9Ge0.1, respectively.
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3.2. Optical Properties Analysis for Both Si0.8Ge0.2 and Si0.9Ge0.1 at Different
Annealing Temperature

The transmittance and absorbance graph from our UV-Vis analysis has been plotted
for both materials at different annealing temperatures, as shown in Figure 4. At 600 ◦C,
the transmittance of Si0.8Ge0.2 at 850 nm wavelength is 87.87%, while the transmittance
for Si0.9Ge0.1 remains constant at 87.90% across all annealing temperatures. The observed
trend can be attributed to the roughness of grain boundaries in Si0.9Ge0.1, which might be
caused by the rapid annealing process employed for this composition [28,29].
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The absorbance values obtained can be utilized to estimate the band gap energy values
of the formed SiGe films. According to the absorbance data, the optical bandgap for both
compositions was calculated using Equation (4) [30].

αhv ≈
(
hv − Eg

)1/2 (4)

where α is the absorption coefficient, hv is the incident photon energy, and Eg refer to the
optical bandgap [31]. Table 4 shows the summary of optical bandgap and transmittance for
both compositions of SiGe.

Table 4. The summary of transmittance at 850 nm wavelength and bandgap for both SiGe composi-
tions from the absorption graph.

Composition Si0.8Ge0.2 Si0.9Ge0.1

Optical Parameter Transmittance (%) Bandgap (eV) Transmittance (%) Bandgap (eV)

600 ◦C 87.87 5.505 87.9 5.528
700 ◦C 86.86 5.380 87.9 5.558
800 ◦C 87.28 5.595 87.9 5.429

The optical bandgap was found to be approximately 5.505 eV for Si0.8Ge0.2 at 600 ◦C,
while the bandgap for Si0.9Ge0.1 is slightly higher (5.528 eV) at the same temperature. At
800 ◦C, Si0.8Ge0.2 composition has a higher bandgap (5.595 eV), while Si0.9Ge0.1 has the
lowest bandgap (5.429 eV). From the optical bandgap summary in Table 4, an annealing
temperature of 800 ◦C was found to be the most effective for Si0.9Ge0.1, resulting in a lower
bandgap and, therefore, a lower recombination rate [32]. As for Si0.8Ge0.2 thin film, the
structural modifications for increased quantum confinement can be attributed to the effects
where the optical bandgap increases as the annealing temperature rises [33–35]. Overall, it
was observed that the optical bandgap increases as the grain size of the nanocrystalline
state increases, as seen in XRD data in Figure 1 and Table 3 [36]. It is realized that for
nanocrystalline SiGe thin film, the discrepancy from the bandgap approximation might be
explained by the bands’ nonparabolicity as a result of band-folding and state mixing, while
holes and electrons cannot be transferred to tiny clusters [37,38]. Furthermore, explorations
between the bandgap of bulk and nanocrystalline SiGe thin film have reported that the
dependence on Ge concentration is consistent with the results presented in Table 3 [36].
The invariance of the shape can be described by Equation (5) [36].

Eg(d, x) = ENC
0 + 4.58/d1.25 (5)
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Figure 4 shows the transmittance data for both SiGe compositions. The absorption
coefficient and bandgap for Si0.8Ge0.2 show a decreasing trend at 700 ◦C, followed by a
rapid increase at 800 ◦C. This indicates that Si0.8Ge0.2 has a greater ability to control how
far light of a specific wavelength can pass into a substance before being absorbed. On
the other hand, Si0.9Ge0.1 exhibits a decreasing trend in bandgap across the temperature
range, but its absorption coefficient increases. Figure 5 plots the (ahv)2 versus energy
graph for both compositions to further investigate the relationship between absorption
coefficient and energy. From Peng et al., the absorption edge for pure quartz glass shows
a lower absorption edge than in this study. The absorption peak observed in Figure 6
indicates that the SiGe thin films are deposited on top of the quartz glass [39]. Overall,
these results suggest that the optical properties of SiGe thin films are highly dependent on
the composition and annealing conditions, which could have important implications for
their potential applications in optoelectronics and other fields.
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Photoluminescence is the light emission from any matter after photon absorption,
also known as UV-Vis spectroscopy. This process involves the absorption of photons by
a material, followed by re-emission of photons at lower energies with a smaller number
of photons. Photoluminescence can be analyzed with the absorbance graph from UV-Vis
data [40,41]. Figure 6 shows the absorbance peaks for both Si0.8Ge0.2 and Si0.9Ge0.1 shift
towards the right side; this is observed as a red shift. These observations are consistent with
the AFM data for Si0.8Ge0.2 and Si0.9Ge0.1 at 800 ◦C (74.5 nm and 97.7 nm, respectively).
At high doping concentrations, the band gap for both Si0.8Ge0.2 and Si0.9Ge0.1 thin films is
reduced due to the convergence of the donor and conduction bands; these are the effects of
red shift in the optical absorption [42–45].

4. Conclusions

This study investigated the impact of annealing temperature on the structural and
optical properties ofSi0.8Ge0.2 and Si0.9Ge0.1 compositions fabricated using RF sputtering.
Both compositions exhibited significant changes in their optical properties, with Si0.8Ge0.2
showing greater variation than Si0.9Ge0.1. The transparency analysis revealed that the
transparency of Si0.8Ge0.2 decreased with increasing temperature, while the transparency of
Si0.9Ge0.1 remained constant at around 87.9%. The difference in transparency between the
two compositions was found to be 0.1%. The structural stability of Si0.8Ge0.2 was attributed
to its higher grain size and particle density when compared to Si0.9Ge0.1, which had lower
values for these properties. Overall, Si0.9Ge0.1 was found to be the optimal composition in
this study due to its higher transparency, larger grain size, and crystallite size at 800 ◦C.
XRD and surface analysis revealed that SiGe nanostructure materials exhibited a larger
bandgap than bulk crystals. These findings suggest that SiGe with a larger bandgap may
be advantageous in ultraviolet photodetector applications.
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