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Abstract: Based on the density functional theory, the effect of rare-earth La doping at different
concentrations on the electronic structure, optical properties, and magnetic properties of ZnO was
calculated by using the GGA+U method under the condition of spin polarization. The calculation
results show that the cell of a La-doped ZnO system is distorted, resulting in a formation energy less
than zero, in which case it is easy to dope. After La doping, the band gap narrows, the Fermi level
enters the conduction band, and the excess carriers induced by La atoms degenerate to form n-type
degenerate semiconductor materials. In the visible light region, a blue shift in the optical absorption
edge of the La-doped ZnO system causes an increased average static dielectric constant, stronger
polarization ability, stronger binding ability on charges, and the photoconductivity of the doped ZnO
system is improved. The magnetic moment of the La-doped ZnO system is zero, so it is not magnetic.
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1. Introduction

At room temperature, ZnO has a direct wide band gap (3.37 eV), a large exciton
binding energy (60 meV), excellent electronic and piezoelectric properties, and is widely
used in the fields of optoelectronics, spintronics, and other materials [1–3]. At present,
impurity doping is an effective method to change the electronic, optic, magnetic, and other
properties of semiconductor materials. Domestic and foreign research groups have carried
out a large number of experimental studies and theoretical calculations on 3d transition
metal ions, rare-earth ions, non-magnetic ions, and other doped ZnO crystals [4,5]. Rare-
earth ions have partially filled 4f shells and, if incorporated into ZnO matrixes, their intra-4f
optical transitions become possible because of splitting induced by the crystal field of
ZnO. Rare-earth-element-doped ZnO has a significant influence on its photoelectric and
magnetic properties [6,7]. In terms of experimental research, Li et al. [7] have proposed
that by coating silica shell on ZnO: Yb3+, Tm3+ nanocrystals, substantial photon avalanche
is generated, which leads to efficient upconversion luminescence. Moreover, these ZnO
nanoparticles have been successfully explored for fluorescence imaging of myocardial
tissue. Yao et al. [8] studied rare-earth-ion-doped phosphors for dye-sensitized solar cell
applications, and showed that RE-doped upconverters or downconverters serve as an
excellent luminescent conversion material arising from their intra-4f transitions, which
have been widely applied in photovoltaic devices. ZnO is one of the most commonly used
host materials. Vettumperumal et al. [9] Er-doped a ZnO semiconductor structure that was
prepared by the sol-gel method. It was found that a low-concentration of rare-earth-doped
ZnO would not destroy the hexagonal structure of ZnO, and showed stronger exciton
bonds than the intrinsic ZnO, and a greater transmission coefficient. In terms of theoretical
calculations, Khuili et al. [10] studied the electronic, optic, and magnetic properties of ZnO
doped with rare-earth elements (Tm, Yb, and Ce) using the density functional theory. The
results showed that ZnO doped with rare-earth elements had a significant impact on the
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photoelectric and magnetic properties of ZnO, which was mainly due to the existence of 4f
electrons, and the conductivity was significantly improved after doping. Zhang et al. [11]
studied the electronic structure and magnetic properties of rare-earth elements (La, Ce,
Pr, Nd, and Eu) -doped ZnO by using the first-principle calculation method. The results
showed that La-doped ZnO can produce a diamagnetic ground state, with the doping
of La and Ce more stable than that of Pr, Nd, and Eu. The ground state of Pr-, Nd-, and
Eu-doped ZnO has weak antiferromagnetism, while the ground state of Ce-doped ZnO
has ferromagnetism. The above research and a few important applications indicate that it
is scientific and significant to calculate the effect of rare-earth (La) doping with different
concentrations on the electronic structure, optical properties, and magnetic properties
of ZnO based on density functional theory in this paper, which can provide important
theoretical guidance for the research and preparation of electronic devices with excellent
magneto-optical properties.

In this work, we study orbital charge using the Mulliken population analysis method [12],
which is calculated according to the formalism [13]. It is an important method to understand
the bonding behavior of crystals. The analysis of the orbital charge number is used to
describe the charge transfer after bonding, where positive and negative values indicate
the loss and gain of the atom, respectively. However, the Hirshfeld partitioned charges
are defined relative to the deformation density. The deformation density is the difference
between the molecular and the unrelaxed atomic charge densities [14]. Natural bond
orbital (NBO) analysis is a method to study hybridization and covalent effects in polyatomic
molecular systems [15–17]. Compared with the Mulliken population analysis method, NBO
methods give information about interactions in both filled and virtual orbital spaces that
could enhance the analysis of intra- and intermolecular interactions, and all orbital details
are mathematically chosen to include the highest possible percentage of the electron density.
At the same time, it can avoid negative orbital occupancy, so the calculated results are
more consistent with the experimental values. However, the Mulliken population analysis
method has also been cited by many papers, and its calculation results can scientifically
explain the test results.

2. Calculation Model and Method
2.1. Calculation Model

ZnO belongs to the hexagonal wurtzite structure, whose space group is P63m (No.
186), lattice constant a = b = 0.325 nm, c = 0.520 nm, α = β = 90◦, and γ = 120◦ [18]. In
this paper, the supercell model of intrinsic Zn16O16 (2 × 2 × 2) includes 16 O atoms and
16 Zn atoms; the supercell model of Zn15La1O16 (2 × 2 × 2) includes 16 O atoms, 15 Zn
atoms, and 1 La atom; and the supercell model of Zn14La2O16 (2 × 2 × 2) include 16 O
atoms, 14 Zn atoms, and 2 La atoms, as shown in Figure 1. We designed four different
configurations for Zn14La2O16 and the La sites in Zn14La2O16 are shown in Figure 1c–f.
The electronic structure, optical properties, and magnetic properties were calculated and
analyzed on the basis of geometric structure optimization.

2.2. Calculation Method

In this study, the plane-wave pseudopotential approach and GGA+U [19] method
were used, as implemented in the CASTEP [20] module of Material Studio 2020 software,
which is based on the density functional theory (DFT), wherein, U is the coulomb po-
tential. The exchange-correlation energy was described by the GGA-PBE [21]. Since the
geometrical configurations of the La element play a significant role in determining the
magnetic behavior of Zn15La1O16 and Zn14La2O16 [22]. So, it is crucial to obtain realistic
geometries for the doped structures. We computed the value of Hubbard U via the linear
response approach and confirm its validity [23]. When Ud-Zn = 10.0 eV, Up-O = 7.0 eV, and
Uf-La = 6.0 eV [24,25], the calculated band gap for ZnO was 3.34 eV, and the lattice parame-
ters were a = 3.269 Å and c = 5.272 Å, which are in good agreement with the experimental
values [26], overestimated by only 0.6% and 1.3%, respectively. This minor expansion in
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lattice constants is attributed to the nature of the GGA in softening chemical bonds [27,28].
To obtain both speed and accuracy, the energy cut-off and k-point mesh were set to 800 eV
and 4 × 4 × 2, respectively. However, in this work, convergence testing was performed, by
increasing the k-point mesh to 4 × 4 × 3 and the energy cut-off to 930 eV. It was found that
the total energy differs very little. Thus, the results were well-converged. The outer valence
electron configurations selected for calculation were Zn-3d104s2, O-2s22p4, and La-5d16s2.
Other orbital electrons were used as rump electrons for calculation. Spin polarization was
used to treat electrons when calculating energy. Due to convergence issues, we set the
computational parameters as the following: the energy tolerance is 5 × 10−6 eV/atom and
the convergence criteria are 0.01 eV/Å, 0.02 GPa and 5 × 10−4 Å for maximum force, stress,
and displacement, respectively.
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Figure 1. Calculation model. (a) Zn16O16, (b) Zn15La1O16, (c) Zn14La2O16
a1, (d) Zn14La2O16

a2,
(e) Zn14La2O16

a3, (f) Zn14La2O16
a4. Annotation: a1–a4 represents four different configurations for

Zn14La2O16.

3. Results and Discussion
3.1. Doping System Structure and Stability Analysis

The geometric structure of Zn16O16, Zn15La1O16, and Zn14La2O16 supercell models
was optimized; the Zn14La2O16 supercell model includes four different configurations. The
cell parameters are listed in Table 1. It can be seen from the analysis that with the increase
in La doping concentration, the lattice parameters, which include lengths and angles of the
doped system distortion, indicate the lattice mismatch between the La3+ and ZnO lattice.
By comparing the lattice parameters of the four different configurations of the Zn14La2O16
supercell model, it is found that there is little difference between them. According to
the theoretical analysis of quantum chemistry, the radius of La3+ ions (0.1032 nm) is
greater than that of Zn2+ ions (0.074 nm), and the volume of the system will become larger
after La3+ replaces Zn2+. In addition, the repulsion between the surplus positive charges
of La3+ is enhanced after doping, which leads to the larger volume of the system after
doping impurities based on the above two reasons [29]. The experimental results of the
reports [30,31] showed that the wurtzite ZnO is the only XRD detectable phase of the films.
This might indicate that the La3+ cation entered into the ZnO lattice, and the lattice also
expands with the increase in La content. It showed that the theoretical calculation results in
this paper are in agreement with the experimental results.



Crystals 2023, 13, 754 4 of 16

Table 1. Cell parameters and formation energy after structural optimization of intrinsic ZnO and
La-doped ZnO systems.

Model a/Å b/Å c/Å α β γ V/Å3 Ef/eV

Zn16O16 6.821 6.821 10.942 90.00◦ 90.00◦ 120.00◦ 440.898 -
Zn15La1O16 6.909 6.909 10.979 90.00◦ 90.00◦ 119.99◦ 453.885 −6.505

Zn14La2O16
a1 7.056 7.064 10.758 90.00◦ 89.89◦ 120.01◦ 464.264 −12.519

Zn14La2O16
a2 7.232 7.090 10.459 90.06◦ 90.02◦ 120.64◦ 461.378 −11.962

Zn14La2O16
a3 7.091 7.091 10.457 89.93◦ 90.07◦ 118.65◦ 461.387 −11.956

Zn14La2O16
a4 7.096 7.096 10.568 89.99◦ 89.99◦ 119.97◦ 460.942 −12.496

Annotation: a1–a4 represents four different configurations for Zn14La2O16.

In order to further test the stability of the doped system and the difficulty of La doping,
the formation energy Ef of the doped system is calculated, which is listed in Table 1, and its
expression is [32,33]

E f = E(ZnO + La) − EZnO − nLaµLa + nZnµZn (1)

wherein E(ZnO+La) is the total energy of the doped system, EZnO is the total energy of the
intrinsic ZnO with the same atomic number, nLa is the number of doped atoms La, nZn
is the number of replaced Zn atoms, µLa and µZn are the chemical potential of the doped
atoms La and Zn, respectively (when T = 0 K), and the total energy of an atom placed in
the bulk structure La (P63/mmc) and Zn (P63/mmc) can be used to replace the chemical
potential of doped La and Zn atoms. It can be seen from Table 1 that the formation energy
Ef of the La-doped ZnO system is negative, indicating that doping is easier. Moreover, we
calculated the formation energy of the four different configuration systems of Zn14La2O16,
respectively, the results show that the formation energy of the a1 configuration (Figure 1c)
is the lowest, indicating that the a1 configuration is easier to form and the system is more
stable. The electronic structure, optical properties, and magnetic properties that were
calculated and analyzed of Zn14La2O16 are mainly based on the a1 configuration.

3.2. Analysis of Energy Band Structure

The band gap width is the energy difference between the highest energy level of
the occupied electron and the lowest energy level of the unoccupied electron. It is a
key characteristic parameter that affects the optical property of semiconductor materials.
Figure 2 shows the spin-up and spin-down energy band structure of the intrinsic ZnO and
La-doped ZnO systems under the condition of spin polarization. The dotted line Ef is 0 eV
Fermi surface. Figure 2a shows the energy band structure of Zn16O16. Analysis suggests
that the band gap value of the intrinsic ZnO corrected by the GGA+U method is 3.34 eV,
which is basically consistent with the experimental value of 3.37 eV [26], so the U parameter
selected for calculation is reliable. In addition, both the top of the valence band and the
bottom of the conduction band are located at the G point and the transition type is G-G,
which indicate that the intrinsic ZnO is a direct band gap semiconductor.

Figure 2b,c show the energy band structure of Zn15La1O16 and Zn14La2O16. Analysis
shows that the band gap value of Zn15La1O16 is 3.16 eV, and the band gap value of
Zn14La2O16 is 2.90 eV. With the increase in the La atom doping concentration, the band
gap decreases; this is consistent with the results obtained by R. Bomila et al. [34] using
UV-VIS spectral data to determine that the band gap energy decreases with the increase
in the La doping concentration. The decrease in the band gap is beneficial to improve the
optical and electron transport characteristics of the doping system, which is explained
by the combined action of the Burstein–Moss effect and the renormalization effect. After
the doping of La atoms, the energy band voltage decreases, indicating that the effective
mass of electrons in the energy band increases, the degree of localization increases, the
atomic orbital expansion weakens, and the number of the conduction band and valence
band energy bands increases significantly. The energy band structure is more compact.
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The doping of La atoms enhances the interaction between different atoms, indicating that
the existence of impurity atoms will strongly interfere with the electronic structure of
the ZnO semiconductor, which can be further verified by analyzing the splitwave state
density. Compared with the energy band structure diagram of Zn16O16, the conduction
band and valence band of all doped systems move towards the low energy direction. As the
valence band moves down more, the Fermi energy level enters the conduction band. The
combined action of the Burstein–Moss effect and the band gap contraction effect explains
this phenomenon [35,36]. The La atom introduces impurity energy levels at the bottom of
the conduction band and the top of the valence band. In combination with the density of
states in Figure 2b,c, the impurity energy levels are mainly contributed by the electrons
of La-5d and -6s states, indicating that the doping of ZnO with the La atom is a donor-
type doping. The introduction of extra carriers (electrons) by the La atom enhances the
conductivity and metallicity of the system and these carriers degenerate. Therefore, the
La-doped ZnO systems are n-type degenerate semiconductors. The difference between
the Fermi level of Zn15La1O16 and the bottom of the conduction band is 1.48 eV, and the
difference between the Fermi level of Zn14La2O16 and the bottom of the conduction band
is 1.87 eV. Zn14La2O16 shows stronger metallicity and conductivity. The results show that
the La-doped ZnO system has photoelectric transport characteristics, which can provide
theoretical guidance for the experimental preparation of highly conductive ZnO thin films.
In addition, the spin-up and spin-down band structures of the La-doped ZnO system are
the same and no spin splitting occurs, indicating that La-doped ZnO materials do not
exhibit magnetic characteristics.
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3.3. Density of States Analysis

The density of the state is one of the important properties of semiconductor materials.
It can scientifically explain the energy band structure, optical properties, and magnetic
properties of semiconductors, and is a visual result of the energy band structure. Figure 3
shows the total density of states and partial density of states of intrinsic ZnO and La-doped
ZnO systems under spin polarization conditions. Figure 3a shows the total density of states
and the density of separated states of Zn16O16. Analysis shows that the GGA+U method
can correct the interaction between electrons in the atomic orbits. The electronic density
of the Zn-3d state and O-2p state in the valence band near the Fermi level are obviously
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separated, so the valence band becomes wider and the p-d hybridization becomes weaker.
In the deep valence band−15.8 eV~−14.3 eV region, it is contributed by O-2s state electrons,
and its locality is strong. In the −10.3 eV~−6.9 eV valence band region, it is contributed
by Zn-3d state electrons and some O-2p state electrons. Therefore, there is a strong pd
hybridization between Zn-3d state electrons and O-2p state electrons, forming a stronger
Zn-O bond. In the upper valence band −6.3 eV~0 eV region, it is contributed by O-2p
state electrons, and in the conduction band region, it is contributed by Zn-4s and 3p state
electrons. The calculations are consistent with the theoretical calculations of Li. H [37]. In
addition, it is found that the Zn-4s state electrons determine the bottom position of the
intrinsic ZnO conduction band, and the O-2p state electrons determine the top position of
the intrinsic ZnO valence band. Therefore, when the Zn atom and the O atom bond, the
electrons in the above two states interact to form a chemical bond, of which the electron in
the O-2p state contributes the most [38]. In addition, the total state densities of intrinsic
ZnO are completely symmetrical in spin-up and spin-down conditions, and the net spin
state density is a straight line, indicating that the intrinsic ZnO is nonmagnetic.
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Figure 3b,c show the total density of states and the separate density of states of
Zn15La1O16 and Zn14La2O16. Analysis shows that the number of conductive carriers
increases due to the doping of La, which causes the conduction band and valence band
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to move towards the low energy direction and the Fermi level to enter the conduction
band, thereby forming a degenerate semiconductor that exhibits n-type semiconductor
properties. In the doping of La atoms, the hybridization of the La-5d and La-5p state
electrons has a major impact on the state of the density of the valence band top, band gap,
and conduction band bottom of the doped system. The impurity energy level contributed
by the La-5d state electrons at the bottom of the conduction band produces the Urbach tail
effect. With the increase in the La doping concentration, the band tail moves towards the
direction of low energy, and the band gap further decreases. Compared with Zn and O
atoms, the partial wave state density of La accounts for a smaller proportion of the total
density of states. Except that some orbital electrons have a greater impact on the local
density of states, the overall effect on the performance of the doped system is small. In
the −20 eV~−18.7 eV energy region, it is mainly contributed by O-2s and Zn-3d state
electrons; in the −14.7 eV~−11.6 eV energy region, it is mainly contributed by Zn-3d and
O-2p state electrons; in the −10.4 eV~−4.9 eV energy region, it is mainly contributed by
Zn-3d, O-2p, and La-5d state electrons; and the local state of the conduction band is mainly
contributed by La-5d state electrons. Therefore, p-d hybridization is formed in the Zn-3d
state, O-2p state, and La-5d state near the Fermi level. In addition, the total density of the
state of Zn15La1O16 and Zn14La2O16 systems are completely symmetrical in the spin-up
and spin-down conditions, and the net spin density of the state is a straight line, indicating
that the La-doped ZnO system is nonmagnetic.

3.4. Orbital Charge Analysis

The Mulliken population analysis method is often cited by scholars to understand the
bonding behavior of crystals [39,40]. In this work, we also used this approach to calculate
the orbital charge number, which is used to describe the charge transfer after bonding.
Table 2 shows the Mulliken charge distribution of intrinsic ZnO and La-doped ZnO systems
under spin polarization conditions. It can be seen from the analysis that the Zn atom in
Zn16O16 has a strong ability to lose electrons, with a +0.93 positive charge, and the O atom
has a strong ability to obtain electrons, with a −0.93 negative charge. This is mainly due to
the transfer of electrons on the Zn-4s orbital to the O-2p orbital. A covalent bond containing
ionic bond components is formed between the Zn atom and the O atom. In addition, the
spin-up and spin-down electron numbers of each orbit of Zn and O atoms are the same,
indicating that the intrinsic ZnO is nonmagnetic, which is consistent with Section 3.3 on
density of state analysis.

Table 2. Mulliken charge distribution of intrinsic ZnO and La-doped ZnO systems.

Model Atom s p d Total/eV Net Charge/e

Zn16O16

Zn (spin up) 0.20 0.34 4.99 5.54 0.93
Zn (spin down) 0.20 0.34 4.99 5.54 -

O (spin up) 0.92 2.55 0.00 3.46 −0.93
O (spin down) 0.92 2.55 0.00 3.46 -

Zn15La1O16

Zn (spin up) 0.19 0.36 4.99 5.54 0.93
Zn (spin down) 0.19 0.36 4.99 5.54 -

O (spin up) 0.91 2.56 0.00 3.47 −0.95
O (spin down) 0.91 2.56 0.00 3.47 -

La (spin up) 0.15 −0.22 0.68 0.62 1.77
La (spin down) 0.15 −0.22 0.68 0.62 -

Zn14La2O16

Zn (spin up) 0.26 0.36 5.00 5.62 0.76
Zn (spin down) 0.26 0.36 5.00 5.62 -

O (spin up) 0.93 2.53 0.00 3.46 −0.92
O (spin down) 0.93 2.53 0.00 3.46 -

La (spin up) 0.25 −0.17 0.71 0.79 1.42
La (spin down) 0.25 −0.17 0.71 0.79 -

In doping the ZnO system with the La atom, the doped atom loses electrons and
becomes a positively charged center with the characteristics of donor impurities. In the
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Zn15La1O16 system, the La atom has a positive charge of +1.77, the Zn atom has a positive
charge of +0.93 when it loses electrons, and the O atom has a negative charge of −0.95
when it gains electrons. This is mainly due to the transfer of electrons on the 6s orbital of
the La atom to the 2p orbital of the O atom. In the Zn14La2O16 system, the La atom has a
positive charge of +1.42 when it loses fewer electrons, the Zn atom has a positive charge of
+0.83 when it loses fewer electrons, and the O atom has a negative charge of −0.91 when
it obtains fewer electrons. The charge distribution of the O-2s and -2p orbitals changes
little after La doping, indicating that stable chemical bonds can be formed between the O
atoms and La atoms. In addition, because the valence electrons of the La atom and the
Zn atom are different, the La atom has more positive charges, indicating that the La atom
contributes more electrons. These results can also be described by NBO methods, which
will be used to further analyze the orbital charge in a future study. It is also found that
the charge numbers of Zn15La1O16 and Zn14La2O16 systems are identical on spin-up and
spin-down orbitals, indicating that the La-doped ZnO system has no magnetism, which is
consistent with density of state analysis in Section 3.3.

3.5. Analysis of Population Value and Bond Length

In order to more intuitively show the distribution of charge in the intrinsic ZnO and
La-doped ZnO systems, the population value and bond length of the doped system are
calculated, and the calculation results are listed in Table 3. The size of the population value
can intuitively reflect the strength of covalent bonds and ionic bonds. Generally, the zero
value of the chemical bond population represents the ideal ionic bond. A positive bond
population indicates that atoms are bonded, and a high value indicates that bonds are
covalent bonds. The larger the population value, the stronger the covalent bonds. A low
value indicates that atoms are interacting with ions. The smaller the population value,
the stronger the ionic bond. A negative bond population indicates that there is antibond
between atoms, that is, there is no bond [41,42]. By analyzing the Zn-O bond between
other Zn and O atoms in the system that are not directly connected with the doped La
atom, we found that, after doping, the population value of the Zn-Omax bond decreases
gradually and the bond length increases gradually, indicating that its covalence gradually
weakens. In addition, the population value of the La-O bond is lower than that of the
Zn-O bond. This is because the electronegativity of La (1.10) is lower than that of Zn (1.65),
which makes it easier for O atoms to obtain electrons from La atoms during bonding. As
a result, the polarity of the La-O bond is stronger. With the increase in the La doping
concentration, there are some changes to the population values of La-O bonds parallel to
the c-axis and La-O bonds perpendicular to the c-axis change. This is due to the increased
mutual repulsion between excess positive charges after replacing Zn2+ with La3+, and the
reduced hybridization between La3+ and O2- ions. The results show that with the increase
in La doping, the overlap of the electron cloud around the La-O bond decreases, which
leads to decreased covalence and enhanced ionic property.

Table 3. Population value and bond length of inherent ZnO and La-doped ZnO system.

Model Bond Type Population Value Bond Length

Zn16O16
Zn-Omax 1.08 1.966
Zn-Omin 0.12 1.975

Zn15La1O16

Zn-Omax 0.32 2.052
Zn-Omin 0.41 1.966

La-O (//c) 0.27 2.313
La-O (⊥c) 0.3 2.264

Zn14La2O16

Zn-Omax 0.25 2.166
Zn-Omin 0.39 2.050

La-O (//c) 0.27 2.303
La-O (⊥c) 0.18 2.376
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3.6. Analysis of Differential Charge Density

By analyzing the differential charge density diagram of ZnO before and after doping,
the bonding between atoms in the La-doped ZnO system can be discussed in a more vivid
and intuitive manner [43,44]. The differential charge density distributions of Zn16O16,
Zn15La1O16, and Zn14La2O16 on the plane of the doped La atom under spin polarization
conditions are calculated, and the calculation results are shown in Figure 4. In the figure,
the green electron cloud represents electron aggregation, the pink electron cloud represents
electron dissipation, the red color scale bar represents electron gain, and the blue color
represents electron loss. The darker the color is, the more electrons are transferred. It can
be seen from the analysis that, compared with the electron cloud between the Zn atom and
O atom in the intrinsic ZnO system, the doped La atom has a greater impact on the electron
cloud density of the surrounding O atom, the interaction is enhanced, and the directivity
of the electron cloud is strong. Most of the electrons lost in La are transferred to the O
atom. With the increase in the doping concentration of the La atoms, the electron transfer
density in the La-O bond area increases, but the overlap of the electron cloud between the
La atom and the surrounding O atom in the doped system is weakened. The covalent bond
of the doped system is weakened, while the ionic bond of the doped system is strengthened.
The calculated results are consistent with the population value, bond length, and stability
analysis results of the doped system. These results also can be described by NBO methods,
which will be used to further analyze the orbital charge in the future study.
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3.7. Optical Properties

The optical properties of semiconductors are closely related to the electronic structure.
In the linear response range, the research on the macroscopic optical properties of solids
is generally based on the research on the ε(ω) = ε1(ω) + iε2(ω) of the complex dielectric
function,

ε1= n2 − κ2 (2)

ε2= 2nκ (3)

where n is refractive index and κ is extinction coefficient.
Electronic transition includes the in-band transition and inter-band transition of elec-

trons: the in-band transition mainly occurs in metals and the inter-band transition mainly
exists in semiconductors. The inter-band transition can be further divided into direct
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transition and indirect transition. The indirect transition involves phonon dispersion,
which has little effect on the dielectric function, so it can be ignored. In this paper, the
optical properties of ZnO doped systems are systematically analyzed by calculating its
dielectric function, absorption coefficient, reflectivity, and energy loss function. According
to the definition of direct transition probability and Kramers–Kronig dispersion relation,
the imaginary part ε2(ω) and real part ε1(ω) of the crystal dielectric function, absorption
coefficient, reflectivity, and energy loss function can be deduced. The specific deduction
process will not be repeated [45–47].

ε2(ω) =
π

ε0

( e
mω

)2
· ∑

V,C
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(2π)3

∣∣∣∣→a · →MV,C

∣∣∣∣2δ

[
EC

(→
K
)
− EV

(→
K
)
− }ω

] (4)

ε1(ω)= 1+
2e

ε0m2 · ∑
V,C

∫
BZ

2d
→
K

(2π)3

∣∣∣∣→a · →MV,C

(→
K
)∣∣∣∣2[

EC

(→
K
)
− EV

(→
K
)]

/}
· 1[

EC

(→
K
)
− EV

(→
K
)]2

/}2 −ω2

(5)

R(ω) =
(n− 1)2 + k2

(n + 1)2 + k2
(6)

α ≡ 2ωκ

c
=

4πκ

λ0
(7)

L(ω) = Im
(
−1

ε(ω)

)
− ε2(ω)

[ε2
1(ω) + ε2

2(ω)]
(8)

where ε0 is the dielectric constant in vacuum, λ0 is the wavelength in vacuum, } is Planck’s
constant, C and V are the conduction band and valence band, respectively, BZ is the first

Brillouin zone,
→
K is the electron wave vector, a is the unit direction vector of the vector

potential A, MV,C is the transition matrix element, ω is the electromagnetic wave frequency,
EC(K) and EV(K) are the intrinsic energy level on the conduction band and the valence
band, respectively, R(ω) is the reflectivity, α is the absorption coefficient, and L(ω) is the
energy loss function.

The size of the dielectric constant indicates the capacity of the medium to bind charges.
The larger the dielectric constant is, the stronger the capacity of the medium to bind charges
is. On the contrary, it means that the binding capacity is weaker [48]. The real part of
the dielectric function represents the change in the dielectric constant with the change
in photoelectron energy [49], and the imaginary part of the dielectric function reflects
the information between the energy band structure and the optical transition. Figure 5
shows the dielectric function curve of the intrinsic ZnO and La-doped ZnO systems. The
photoelectron lifetime τc on the conduction band is proportional to the dielectric constant
ε1 of the photocatalyst. Therefore, the larger the ε1 of the system, the larger the τc, that is,
the longer the photoelectron lifetime on the conduction band [11]. Figure 5a shows the
real part curve of the dielectric function. It can be seen from the analysis that the average
static dielectric constant εave

1 (0) of Zn16O16 is 3.21, and the average static dielectric constant
εave

1 (0) of Zn15La1O16 and Zn14La2O16 is 3.21 and 4.66, respectively. With the increase in
the La doping concentration, the dielectric constant of the doped system becomes larger,
indicating that La enhances the polarization of the doped system and has strong binding
capacity to electrons, that is, it extends the photoelectron lifetime on the conduction band
of the doped system and brings good conductivity.
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Figure 5b shows the imaginary part curve of the dielectric function. It can be seen
from the analysis that the ε2(ω) of the imaginary part of the dielectric function of the
intrinsic ZnO mainly has four peaks: the first dielectric peak is located at 5.82 eV, which is
mainly formed by the electronic transition from the top of the valence band to the energy
band near the bottom of the conduction band, that is, the transition from the O-2p state
at the top of the valence band to the Zn-3p state at the bottom of the conduction band.
The second dielectric peak is located at 9.15 eV, which is mainly formed by the complex
electronic transitions between the valence band and the top of the valence band away from
the Fermi surface, that is, the transition from the Zn-3d state in the valence band to the
O-2p state, the transition from the O-2s state in the valence band to the Zn-3d state and
other complex electronic transitions. The third dielectric peak is located at 13.33 eV, which
is mainly formed by the complex electronic transition between the valence band and the
bottom of the conduction band away from the Fermi surface, that is, the transition from the
Zn-3d state in the valence band to the Zn-3p state at the bottom of the conduction band.
The fourth dielectric peak is located at 15.71 eV, which is mainly formed by the complex
electronic transition between the valence band and the bottom of the conduction band
away from the Fermi surface, that is, the transition from the O-2s state in the valence band
to the Zn-3p state at the bottom of the conduction band. The Zn14La2O16 system has a new
peak near 0.67 eV, which is small, and is caused by the in-band transition of La-5d orbital
electrons. However, this peak is not found in the imaginary part of the dielectric function
of Zn15La1O16 system. In addition, the doping of La affects the O-2s state electrons in the
deep valence band region. As a result, with the increase in the doping amount of La, the
peak near 9.09 eV moves to the high energy direction and the peak intensity is enhanced,
while the peak near 15.71 eV moves to the low energy direction and the peak intensity is
weakened.

Figure 6 shows the absorption spectrum and reflection spectrum of the intrinsic
ZnO and La-doped ZnO system. Optical absorption is one of the most essential optical
properties of ZnO semiconductor materials, reflecting the luminescence mechanism of the
spectrum generated by the electronic transition between energy levels. The absorption
spectrum calculated according to Formulas (1)–(7) is shown in Figure 6a, with an absorption
coefficient of 105 cm−1. Analysis shows that the intensity of the first peak of the doped
system is not high, and is generally located in the lower energy range. It is generated due
to the electrons that absorb energy and transition from the top of the valence band to the
conduction band. Though not obvious, the first peak is crucial. The optical absorption edge
of the intrinsic ZnO is around 3.30 eV. The absorption edge is where intrinsic absorption
begins to appear and intrinsic absorption determines the key optical properties of ZnO.
With the increase in photon energy, the absorption coefficient increases sharply in the order
of 105 and strong light absorption occurs, indicating that the direct transition begins. In
the visible light region (1.64 eV~3.19 eV), the light absorption edge of Zn15La1O16 and
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Zn14La2O16 moves towards the direction of high energy, which causes a blue shift. The
widening of the optical bandgap Eg because of La atoms introduce a large number of
carriers (electrons) as donor atoms, Fermi levels enter the conduction band, resulting in the
Burstein–Moss effect. This maximal widening is almost equal to the reported value 0.38 eV
resulted from La doping of 0.14 at.%, and larger than the reported value 0.2 and 0.13 eV
resulted from La doping of 0.3–0.57 at.% [24]. The optical absorption spectra of Zn15La1O16
and Zn14La2O16 show a smaller new absorption peak near 1.06 eV, which is caused by the
in-band transition of La-5d orbit. In the visible light region, compared with the intrinsic
ZnO, as the doping concentration of La increases, the absorption spectrum moves to the
direction of high energy, resulting in a blue shift, and decreased light absorption intensity.
The main absorption peak of Zn16O16 is at 16.96 eV, the main absorption peak of Zn15La1O16
is at 16.60 eV, and the main absorption peak of Zn14La2O16 is at 15.38 eV, which is in the
vacuum ultraviolet region. With the increase in La doping concentration, the absorption
peak moves to the direction of low energy, resulting in a red shift and a decreased intensity
of the main absorption peak. As the doping of La introduces new impurity energy levels, a
new emission center is developed, leading to the red shift of ultraviolet emission. These
results are the same as the reported conclusion that the light absorption of the films in UV
range first blue-shift and then red-shift with the increase in the La content (0.5–2.0 at.%) [30].
The absorption peak mainly comes from the transition of excited state electrons from the
valence band to the conduction band. The weakening of the absorption peak intensity
indicates that the transition process of electrons in this excited state is reduced after La
doping. In addition, the absorption peaks near 25.35 eV, 34.58 eV, and 38.86 eV are red-
shifted and weaker than Zn16O16. Therefore, the optical properties of La-doped ZnO
become worse in the visible light range, but the light absorption in the ultraviolet region is
good, so it can be used as a short wave device.
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Figure 6. (a) Absorption spectrum, (b) Reflectivity. 
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Reflectivity refers to the macroscopic phenomenon of the electron transition between
energy bands in solids under the interference of a photoelectric magnetic field. The reflec-
tivity of intrinsic ZnO and La-doped ZnO systems calculated according to Formulas (1)–(6)
is shown in Figure 6b. The static reflectivity R(0) of Zn16O16 is 0.08, and that of Zn15La1O16
and Zn14La2O16 is 0.08 and 0.14. It has high reflectivity in the range of 16 eV to 20 eV.
Zn16O16 has maximum reflectivity of 0.24 at 17.2 eV, Zn15La1O16 has maximum reflectivity
of 0.28 at 17.8 eV, and Zn14La2O16 has maximum reflectivity of 0.23 at 16.0 eV. In the visible
light area, with the increase in the La doping concentration, the reflectivity decreases, which
is lower than the intrinsic ZnO. When photons pass through the material, some of them will
be reflected, some will be absorbed by the material, and the rest will be transmitted from the
material. Therefore, the absorption coefficient and reflectivity of La-doped ZnO decrease
both in the visible and ultraviolet regions, thereby resulting in increased transmittance.
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Photoconductivity indicates the change in the conductivity of semiconductor materials
along with the light intensity. Figure 7a shows the photoconductivity of intrinsic ZnO
and La-doped ZnO systems, which strictly corresponds to the imaginary part ε2(ω) of the
dielectric function (Figure 5b). The analysis shows that the intrinsic ZnO and La-doped
ZnO systems have high conductivity, in the range of 10 eV to 20 eV, and the real part reaches
its main peak near 15 eV of energy. The peak value of intrinsic ZnO is 7.71 fs−1, and the
peak values of Zn15La1O16 and Zn14La2O16 are 6.21 fs−1 and 4.59 fs−1. In the visible light
region, the photoconductivity of the intrinsic ZnO and La-doped ZnO systems increases
with the increase in the incident photon energy. Compared with the photoconductivity
value in the low energy region, it is found that the photoconductivity of the La-doped
ZnO system is greater than that of the intrinsic ZnO. This is due to the introduction of
excess carriers by the La atom at the Fermi level of the doped system, which increases
the photoconductivity in the low energy region, but the photoconductivity of all systems
is small. This shows that the doping of La improves the photoconductivity of the ZnO
semiconductor in the visible light region.

The energy loss function describes the energy loss of electrons passing through a
homogeneous crystal, and its peak value is related to the plasma frequency. Based on
calculations with Formulas (1)–(8), the energy loss function reflects the energy loss when
photons pass through the crystal. Figure 7b is the energy loss function of the intrinsic
ZnO and La-doped ZnO systems. Analysis shows that the plasma frequency of Zn16O16
is 40.29 eV, the plasma frequency of Zn15La1O16 is 38.79 eV, and the plasma frequency
of Zn14La2O16 is 18.57 eV. With the increase in the La doping amount, the peak value is
red-shifted, and the intensity is always weaker than the intrinsic ZnO system.
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3.8. Magnetic Properties

At present, according to the research progress of ZnO thin magnetic semiconduc-
tors, the magnetic properties of ZnO semiconductors are induced by intrinsic defects, 3d
transition metals, rare-earth elements, and other magnetic ions doping and non-magnetic
ions doping. For doping, 3d transition elements (Cr, Mn, Fe, and Co) are the preferred
elements due to their unpaired electrons in the 3d shell and large magnetic moment, which
can produce strong magnetic properties. A large number of studies have shown that
effective transition metal doping can improve the photocatalytic performance of ZnO while
presenting room temperature ferromagnetism [28,50,51]. In addition, the optical and mag-
netic properties of the over metal-doped ZnO system are closely related to the transition
metal doping type, preparation environment, and annealing environment. However, the
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magneto-optical properties of rare-earth-doped ZnO mainly depend on the interaction
between the 4f electrons of rare-earth-doped elements and the defects arising from doping
in the ZnO body. The magnetic and optical properties of rare-earth doped ZnO have
attracted the attention of many researchers [52–54]. This paper adopts the spin polarization
calculation method. The calculation results output values of 2 * Integrated Spin Density and
2 * Integrated | Spin Density|. The former represents the spin polarization DOS integral
results, that is ∑ M, the difference between spin-up and spin-down conditions. This result
is the Bohr magnetic moment of the system, and 2 is the spin magnetic moment g factor.
Whereas, the latter represents the sum of the absolute spin polarization DOS integral, that
is ∑|M|, the sum of spin-up and spin-down electron density of state integrals. These two
values can be used to preliminarily judge the magnetism of the system. The ∑ M = 0,
∑|M| = 0 of Zn15La1O16 and Zn14La2O16, the total magnetic moment is 0. At the same
time, by analyzing the density of states in Figure 3, it is found that the total density of
states and the partial wave density of states in the Zn15La1O16 and Zn14La2O16 systems are
completely symmetrical in spin-up and spin-down conditions, and the net spin density of
states is also a straight line, indicating that the La-doped ZnO system is nonmagnetic. The
analysis of the Mullike orbital charge distribution in Table 2 shows that, in the Zn15La1O16
and Zn14La2O16 systems, the spin-up and spin-down orbital electron number of each atom
are identical, indicating that the La-doped ZnO system is nonmagnetic, so the La-doped
ZnO system has no magnetic moment and no magnetism, which is consistent with the
calculation results in study [11], while [55] holds that La-doped ZnO in replacement of Zn
is magnetic. The authors of [56] proved that it was due to the existence of Zn vacancies in
the doped system.

4. Conclusions

In this paper, based on the density functional theory, the GGA+U method is used to
calculate the effect of rare-earth element La doping at different concentrations on the elec-
tronic structure, optical properties, and magnetic properties of ZnO under spin polarization
conditions. The electronic structure calculation results show that the cell of the La-doped
ZnO system is distorted, and the formation energy is less than zero, in which case it is easy
to dope. After La doping, the band gap narrows, the Fermi level enters the conduction
band, and the excess carriers introduced by La atoms degenerate. The La-doped ZnO
system is an n-type degenerate semiconductor, and the carriers enhance the conductivity
and metallicity of the system. The calculation results for optical properties show that in the
visible light region, the optical absorption edge of the La-doped ZnO system experiences
a blue shift, which increases the average static dielectric constant and strengthens the
polarization ability and the capacity to bind charges. The photoconductivity of the doped
ZnO system is improved. The calculation results on magnetic properties suggest that the
magnetic moment of La-doped ZnO system is 0, and the system has no magnetism.
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